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Abstract. This paper suggests a family of estimators of populationrmesing multi-
auxiliary variate based on post-stratified sampling angbiitgerties are studied under
large sample approximation. Asymptotically optimum estion in the class is identified
alongwith its approximate variance formulae. The proposkds of estimators is
also compared with corresponding unstratified class ofmestirs based on estimated
optimum value. At the end, an empirical study has been chwig to support the
proposed methodology.
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1 Introduction

Stratification is one of the most widely used techniques mga survey design serving
the dual purpose of providing samples that are represeataftimajor sub-groups of the
population and improving the precision of estimators [ttatfied sampling presupposes
the knowledge of strata size as well as the availability ofaane for drawing a sample
in each stratum [2]. However application of this techniquesppposes the knowledge of
strata size and the availability of sampling frames withiats. In many socio-economic
and agricultural surveys where it is necessary to partttierfinite population under con-
sideration, due to its heterogeneity, into different solpydations (strata), the sampling
frame within strata may not be available. However frame fdire population may be
available and percentage of population units falling inféecent strata may be known.
Under such circumstances usual stratified sampling can eaisbd and thus an effort
is made to get over the problem through post-stratificatibichvconsists in selecting a
sample from the whole population by the procedure of simgtelom sampling without
replacement followed by the classification of the selectadpde units by strata and then
treating it as if it were stratified sample, for instance, [4e8-11].
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It is further noted that in sample surveys, the informationam auxiliary variate
correlated with the principal (study) variate under stuglgither readily available or may
be made available by diverting a part of the survey resour€his information may be
utilized to increase the precision of estimators of popaitatneany” of the study variate
y. Such an information is the known population me&rof the auxiliary variate:. For
illustration, the average farm size in a local governmeatasr district may be known
while the problem is to estimate the average area under eylartcrop per farm. The
strata may be formed according to farm size, the percentdgenos falling into different
size groups may be known but the identity of farms within @ gioup may not be known,
see [12].

We assume that the population compri$ésunits, which can be uniquely parti-
tioned intoL strata of sizeVy, Ns, ..., Ny such tha@ﬁ=1 N, = N. The strata weights
Wy = Ny/N (h = 1,2,..., L) are assumed known. Léb;, z:) (i = 1,2,..., Ny)
denote the values of variatég, ) respectively fori-th unit in k-th stratum and’;, and
X, denote strata means. A simple random sample ofisigelrawn without replacement
from the population which results into the configuratios- (n4,ns, ..., nr), ny deno-
ting the number of units in the sample falling in stratlhrnZﬁ:1 np = n. Assume that
n is large enough so that the probabilityof being zero is small (i.ePr(n, = 0) =
0). Based on the foregoing procedure which is known as postifgtation, the usual
unbiased post-stratified estimators for population méans Zﬁzl WY, andX =
S r_, Wi X, of the study variatey and the auxiliary variate arejps = > 1_, Wiy,

andZpg = Zh | Wi Ty, Wherey, = %ZZ“H yni and@;, = # f’Ll xp; are the
means of they;, sample units that fall into thk-th stratum whose siz4’, is assumed to
be known.

For given configuration of sample= (n1,ns,...,nz) we have

L
Var(@ps|n) = E((Tps - V)’ |n) Zw,$< )s,w

h=

h»—t

Var(fps|ﬂ) = E((fps — Y)Q‘Q) = ZW}%(l — fh)S?m,

n
=1 h

>

Cov{(Ups, Tprs)In}
:E{((gPS_?)(fPS_ n} ZWh( f}L)thy;

see [1], where

Ny,
o L ¥,
fn= N, Shy = N1 ; (yni —Yn)~,
1 - \2 1 & ¥ v
szw = N,—1 Z (xhi - Xh) ) Sh;cy = m Z (xhi - Xh) (yhi - Yh)-

=1 =1
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Using the results from [13] foE(n; '), to the terms of order—2, we have

1—f\ <& N-n\1 &
Var(ypg) = (T) > WnSi, + (ﬁ) 3 > (1 -W)Sh,,
h=1

h=1

11—\ & N-n\1&
Var(Tpg) = <T> Z WhSE, + <m) e} Z(l - Wh)Si,,
h=1

h=1

1—f\ <& N-n\1
COV(yPSvaS) = (T) Z Whthy + <N 1 ) — Z(l — Wh)Shzy,
h=1

wheref = n/N is over all sampling fraction.

It is known that when the auxiliary information is used at #stimation stage, the
ratio estimator is the best among a wide class of estimatbenwhe relation between
y andz, the variate under study and the auxiliary variate respelgtiis a straight line
through the origin and the variance pbout this line is proportional te, see [14]. In
such a situation the ratio estimator is as good as regressionator. In many practical
situations, the regression line does not pass through igaorn these situations, the
ratio estimator does not perform equally well as that of@sgion estimator. Keeping this
fact in view and also due to the stronger intuitive appedisiaians are more inclined
towards the use of the ratio and the product estimators amceteelarge amount of work
has been carried out towards the modification of ratio andysrbestimators, for instance,
see [11,15-17] etc. These authors have proposed variooésts under simple random
sampling without replacement (SRSWOR) and stratified remtechnique which under
some realistic conditions is more efficient than the mearupérestimator, the ratio and
the product estimator are efficient as the linear regresstimator in optimum case. Itis
to be mentioned that the problem of estimation of populati@any” of the study variate
y based on post-stratification and auxiliary information hesattracted much attention
of survey statisticians, for instance, [12] and [18].

In this paper, following approaches developed by [19] an@],[2ve have sug-
gested a family of estimators of population méawf the study variatgy based on post-
stratification using multi-auxiliary variate and its propes are studied.

When information orp-auxiliary variatescy, z2, . . ., 7, is available. LetV), (h =
1,2,...,L)andX, X,,..., X, be the known strata weights and the known population
means of the auxiliary variates,,7», ..., T, respectively. Suppose the observations

(Ynis Tkni)y @ = 1,2,...,np, h = 1,2,..., L andk = 1,2,...,p are available. We
denote

L 1 nh
kaS:E WhiZTkn, Tin = g Thhi,

np

h=1 1=1
L L M
Xy = E WiXkn, Xin=— E Thhi-
Np, “
h=1 =1
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LetZpg denote the column vector ptelementst; pg, Taps, - . ., Tpps. Superfix
T over a column vector denotes the corresponding row vector.
Definingeg = (Yps—Y), ek = (Trps—X) ande’ = (e1,¢e0,...¢,), we have for
a given configuration of = (n1, ne, ..., nz), the values of the conditional expectations:

E(eoln) = 0 = E(ex|n)

and ifny, is large, to terms of order;l, the conditional expected values are

1—fn
BE) =S wi (0 ) s
h=1 v
I g, 1)
E — 2
(E()€k|n) Z Wh < " )Sh()k,
h=1
L
L—fn
E — 2
(exerln) = > Wi ( ” )Shkz,
h=1
where
S S
Shok = ProkShoShk = Prok = POk Shit = PrktSnkSh = prrt = L
ShoShk ShkShi
1 Np, ) 1 Np, )
2 — 5 _
= — i—Y5)", =— i — X )
ShO Nh 1 ; (yh h) Shk Nh 1 ; (th hk)
1 _ —
Shok = Y D= Xom),
hok = 7 ; (yn 1) (Thi hie)
1 _ _
_ X i = X).
Shiki N, 1 ; (zhi nie) (T ht)
Putting the above results in matrix notations, we have
E(eln) =0, E(ee"|n) =D, FEB(eoeln) = A, (2)
where
L -
AT = (a1, az,...,ap), ap= ZW3< n h>Sh0kv
1
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The unconditional expectations are:
E(eg) = E(e,) =0, forall k=1,2,...,p

and for largen, to terms of orden—*, the unconditional expected values are given by

1—f
E(e]) = > WSk,

n h=1
o (3)
E(goe) = - Z WhShok,
h=1
L
1-f
E = .
(erer) - Z Wi Shi
h=1
Putting the above results in matrix notation, we have
E(e) =0, E(ee’)=A* E(eoe) = D", (4)

L
= (a17a2a"'aap)7 ap = " hOKOk>

h=1
1-f &
D" = [le]pov and le = ” ZW}zShkl-
h=1

2 The suggested family of estimators

Let X = (X1,Xa,...,X,) denote the row vector gf elementsXy, Xo,..., X,.
Whatever be the sample chosen(igt ¢, T5¢) assume values in a closed convex subset,
Q, of the (p + 1) dimensional real space containing the pdirt XT). We suggest a
family of post-stratified estimators for the population meaing multi-auxiliary variable
as:

Yo =GWUpg,T1ps:Tops, - - - Tpps) = G(ﬂpsigs), (5)
whereG(ypg, Thg) is a function ofy pg, Z1 ps, T2ps, - - - , Tpps Such that
G(?,XT) —Y, foral ¥ (6)

and such that it satisfies the following conditions:
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1. The functionG (7 pg, Thg) is continuous and bounded d,

2. The first and second order partial derivatives of the fionet (7,5, T ) €xist and
are continuous and bounded@h

Expanding the functiofi!(7 ¢, Z5¢) about the poinfY’, X' ) in a second order Taylor’s
series, we obtain:

= . - — O0G(- . — N
Ye=GY.X) + (7ps ) 6@55) (v x7) + (@ps —X) GOT.X)
1 —20%G(")
51 —
2 { ( e ) ay%S (y;siyﬁs)

% =T
(yPs@Ps)

(= D0, 24) o5 - ) @)

wheregsg = Y + £(Tpg — V), Thg = X + &(Tps — X), 0 < € < 1, GV de-
notes thep elements column vector of first partial derivatives@f-) i.e. GMT =

(GV,G5), . Gy with GV = (G (Fps. Tps)/0Twrs)| v x,, andG® denotes
thep x p matrix of the second partial derivatives @f-) with respect taz g about the
point (Y, XT). Expressing (7) in terms afs and noting tha&(Y, XT) —Y", we have

oG (.
v 2,72 ()
(75s.Ti5) Yps

(7psT%)
+eTG® (?}25@73;)5} ®)

Taking conditional expectation in (8) and noting that setderivatives are bounded.
Thus we arrived at the following theorem:

Theorem 1.
E(Veln) =Y +o(n;").

From Theorem 1, it follows that the bias of the estiméngf is of the ordem,jl,

and hence its contribution to the mean squared errdi@fvill be of the order ohf.
Now we prove the following result:
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Theorem 2. Up to terms of orden;l, the conditional variance o?g is minimized for
GOY,X')=-D'4A 9)
and the conditional minimum variance is given by
Var( YG\ (1 - R?)S;2. (10)
Proof. From (8), we have upto terms of orde,fl,
Var (Valn) = B{ (Vo - 7)[}
e
IYps (v.x")

= 5{(e0 + TGO (7, X)) |n},

2
LG (Y, YT))

from (6) which implies tha%| vx™y =L
V.X)
(¢V(7.X"))]
(Y

X)) D (VX)) @y

Var(?c;‘ﬂ) [ (e5|n) +2E(808T‘Q)G(1)
+(EV(T.X)) B

=5324+24T¢M (Y, X ') +(6W

(
n)

which is minimized for

G — _DlA=4, (say) (12)

opt —

whereS;* = Z}Lzzl Wf%(l_—fh)sgo-

nh

Thus the resulting conditional variance is given by

min.\far(?g‘ﬂ) = (1 — RQ)SSQ, (13)
whereR? = A~ SQQ 4 andR is the multiple correlation coefficient betwegpg and the
Vectorz pg. Hence proved the Theorem 2. O

The conditional variance of any estimator of the class (B)amobtained from (11).

From (11) the conditional minimum variance (ixin.Var(Y ¢|n)) is not larger than the
conditional variance of the unbiased estimatg, sinceAT D14 > 0.

Taking unconditional expectation in (8) and noting thatoset derivatives are
bounded, we have:

Theorem 3.

E(Yg) =Y +o(nY).
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Theorem 3 shows that the bias of the estipi@ris of the ordem !, and hence
its contribution to the mean square error (MSEYaf will be of the ordem 2. Thus, to
the first order of approximation, the unconditional variaoéY ; will be the same.

Theorem 4. Upto terms of order. !, the unconditionaVar(?G) is minimized for
GO, X")=-D'ar (14)
and the unconditional minimum variance%& is given by
minVar(Yg) = (1 - R*2) 852, (15)

whereSg*? = LS W, 57,

Proof. From (8), we have upto terms of order !,

Var(Ve) = E(Ve - 7)° = (50 0G()

= E(co+ "¢V, X1))°,
from (6) which implies tha%(y(7 X7 = 1,

Var(Ve) = [B(e3) +2B(=0eT) GV (V. X)
+ (T, X)) BT (@O (7.X)]

Using the results (3) and (4) in the above expression we geutitonditional
variance over all possible distribution, for largeto the terms of order !, as:

Var(?g) _ 3*2 + 2A*TG(1) (?, XT)
+ (GO, X)) D (O (T.X)) (16)
which is minimized for

Gl =D A =Gy (say) (17)

opt —

whereSy*2 = =Ly 11,52,

Thus the resulting unconditional varianceYof is given by

minVar(Y¢) = (1 — R*?)S;*, (18)
whereR*? = % andR* is the multiple correlation coefficient betwegpg and
the vectorz . Hence proved the Theorem 4. O
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The unconditional variance of any estimator of the classcd) be obtained

from (16). From (16), theninVar(Y ) is not large than the unconditional variance
of the unbiased estimatgig, sinced*” D*~1A* > 0.

Let GO (Y, X' ) = —aGY = —aD*~14*, is a departure from the optimum
value ¢ > 0 is a constant), we have
Var(Ve) = [S572 — 204 T D* 1 A* 4 a24*T D"~ A*]
[S**Q ( o a)A*TD*flA*] (19)

It is well known that the unconditional variance of the usugbiased estimatary ¢ is

Var(Ye) = lff ZWhShO 52, (20)

Thus for anyG) (Y, X ), we find from (18) and (19) that
Var(Tpg) — Var(Ye) = a(2 — a) AT D1 A* 1)
which shows that the proposed class of estimﬁmwould be better than usual unbiased

estimatoryp4 as for ad) < a < 2.

Remark 1. Itis to be mentioned that optimum estimators in the classateinique but
all of them have the same variance given either by (13) or. (48§ also note that in
practice the value ofy = —D~1' 4 at (12) orGél) = —D*71A* = §; at (17) may not be
known. However, they can be estimated by

o~ ~ ~

S0 =05 — DA, (22)

where

ﬁ = [Cfl\kl p><p dkl Z Wh ( —In ) Shkls

T _ (n = - -~ 21— fn
A :(al,ag,...,ap), ak:ZWh( . )Shom

1 ny
ok = i —Yn i — Thk),
Shok = (Yni — Up)(Thii — Thi)
h i=1
1 Np B MNh
Shkl = E (Thki — Thi)(@hii — Thi), Uy = E Yhis
-1 P nh
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In such a case we may define a class of estimators based oratestioptimum
valued, as:

?2‘ =G" (?P&Z;sﬁg)a (23)

whereG* (Jpg, Thg,0g ) is a function of(gpg, Ths, ot ) such that:

(Y, X ,6") =7,
aG*(-) ,
Ips |(vx" o) ’
oG* (") 6 —_D-14 (24)
OTpg (v.X"67)
9G"() =0.
ddo (v X" 67)

Under (24) the class of estimatoys; at (23) is expected to have, to the first order of
approximation, the conditional and unconditional varesiespectively as

Var (?g‘ﬂ) = min.\/ar(?;m) = (1 — RQ)SSQ (25)

and
Var (?g) = min.\far(?;) = (1 — R*Q)SS*Q. (26)

3 Comparison with corresponding unstratified multivariate estima-
tors

We assume that information grauxiliary variatesey, zo, . . ., x,, is available. A simple
random sample of size is drawn from the given finite population of si2é. Lety,; and
x; denote the values of the variatgeandx, of thei-th unit of the samplek = 1,2, ..., p;
i=1,2,...,n. Defining:

<

I
S

<

8|

ol

I
S|
[

8

§

~|

I
(1=

=

)

Il
2| -
=

8

z
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Furtherpg, andpy; denote the correlation coefficients between the variatasdz; and
between ther;, andzx;. - o
Definez” = (Z1,%2,..., %), e = (¥ — Y) ande; = (T, — X) such that:

E(e5)=0, E(f)=0 forall k=1,2,...,p,

E(E()2> = nga E(€i> = n Sl%a
E(eger) = T bi, Elerel) = T kL,

where(kl) = 1,2,...,p, bx = Sox = poxSoSk, qrt = priSkSi.
Putting the above results in matrix notations, we have
f *T) 1- f

* * 1- *
E(gl) =0, E(ghe™) = Tb’ E(gje = Q,

whereb” = (by,ba, ..., by), Q = [qrilpxp-
LetX = (X1, Xs,...,X,) denote the row vector gfelements\;, Xo, ..., X,.
Whatever be the sample chosen,(igtz’) assume values in a closed convex sub-

set,IW, of the(p+1) dimensional real space containing the pQﬁXT). Following [21]
one may define a class of estimator of population méas

~(1)
YG :G(yva) :G(yvflvf%"'afp)v (27)
whereG (7, z" ) is a function ofy, 71, T2, . . . , T, such that

GY,X')=Y, foral ¥
and such that it satisfies the following conditions:
1. The functionGG (7, z") is continuous and bounded ¥#.

2. The first and second order partial derivatives of the flonat (7, z”) exist and are
continuous and bounded T

=~(1)
To the first degree of approximation, the varianc&’ef is given by

=~(1) — —
Var(YVe ) = % |53 +207¢O (Y, X)

+ (@ FTX)) QEM(T.X))] (28)
which is minimized when

GV, X)=-Q 'b=n (say) (29)
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whereGM (Y, YT) denotes the elements column vector of the partial derivatives of
G(y,z") with respect taz” about the pom(Y X )

Thus the resulting minimum varlanceﬁg is given by

=7

mmVar( (1)) -

1— R*?)S3, (30)

whereR**? = (b7 Q~1b)/S2 and R** is the multiple correlation coefficient betwegn
and(z1,z2, ..., Zp).
Following [18], and from (18) and (23) it can be shown that greposed class
of estimatorsY ¢ in post-stratified sampling in unconditionally more effidi¢han the
(1)
corresponding unstratified class of estlmaﬁ:i@

Remark 2. In practice, the exact optimum valyg of GV (Y, XT) at (29) is not known,
it is available to replace it by its consistent estimateypfrom the sample data at hand.
Thus following the procedure outlined in [21], we define asslaf estimators for popula-
tion meanY” (based on estimated optimum values) as:

vy =Gz, ql), (31)
where

o = —Q b with Q = [Grilpxps Tkt = skis b= (b1,b2,...,bk), br = Sok,

1 < 1 <
Sok = T ; (vi = Y) (Thi — Tw), Sk = — ; (zki — Tk) (w1 — 7).

Now G(7,z",7¢) is a function of(z, 7, 7!") such that:

9G() _1
dy (Y,XT,WO ) 7
oG(-) 0, (32)

I (VXT,,](?)
Under the condition (32), it can be shown to the first degreappiroximation that the

variance oft’}’ is

Var (?(GU) = min.\/ar(?é?) _ 1= / (1- R**Q)Sg. (33)
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From (26) and (33), we

~

Var( )<Var( &)

(1-R?)S;*? = =7 ; ! (1 - R*?)S3. (34)

o~

Thus the proposed class of estimatbs based on estimated optimum values in post-
stratified sampling would be better than the correspondomgstratified class of esti-

matorSY(Gl) based on estimated optimum values in simple random samplitigut
replacement (SRSWOR), if the condition (34) holds true.

4 Empirical study

In the empirical study, we consider the relative efficien€yhe post-stratified sampling

estimatorY ¢ (= 01, say) and non-stratified estlmattfr‘ (= 05, say) with respect to
the S|mple sample mean estimator without using an auxﬂretcymatlony =1 ZZ 1 Yi

(= 90, say). The percent relative efficiency of the estlmfﬂpfj = 1,2 with respect to
the estlmatoﬂo is computed as:

V(6o)
V(0))

We consider the problem of estimation of Forced Expiratasiuie (FEV) of the
Pulmonary Disease persons, based on a datasétiqiersons available on the CD with
the book by [22], by using their age and height at the estonatiage, and using the other
variables gender and smoking status as post-stratificainables. Thus the population
of 654 persons has been divided into four post-strata. Postistratconsists of non-
smoking female$0, 0), post-stratun2 consists of non-smoking malés, 1), post-stratum
3 consists of smoking femalés, 0), and post-stratun consists of smoking malgs, 1).
The descriptive parameters of the three variablég!lV’, Age and Height (HT) in the
four post-strata are given in Table 1. The population cati@h coefficients between the
three variables in the four post-strata are given in Table 2.

In order to have a closer look at the data structure in fodeiht post-strata, we
have also devoted Fig. 1 to display the three variables.

To investigate various situations, we apply power tramsfdions on the study
variable in all the four strata ag;, = (FEV)? for different choice of values o in
the range of).1 to 2.5 with a step of0.1. The other two variablesX;; = (Age) and
Xo; = (Height) were used at the estimation stage. We decided to select aesamp
of size being 10 % of the total population size, and later wst{stratified the sample
based on gender and smoking status into four different hemeaus groups. A total of

E(6,0;) = x 100 % = RE(0,j), (say) (35)
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sample sizex = 65.4 (can be rounded t65) was selected from the entire population of
N = 654 persons. Out 065.4 persons27.9 persons were found to be from stratum-1,
3.9 persons were from stratum-21.0 persons were from stratum-3 a2@ persons were
from stratum-4. We used R-code given in the Appendix to pcedbe results shown in
Table 3.

Table 1. Descriptive parameters BEV, Age and HT .

Stra- St. Mini- . Maxi- Skew- Kur-
wm Ne Mean pol mum @ Median Qs mum  ness tosis
FEV
1 279 23792 0.6393 0.7910 1.8770 2.4170 2.8660 3.8160 —0.07 —0.69
2 39 29659 0.4229 2.1980 2.6770 3.0740 3.2080 3.8350 —0.25 —0.39
3 310 2.7344 0.9741 0.7960 1.9565 2.5475 3.3578 5.7930 0.70 —0.13
4 26 3.7430 0.8890 1.6940 3.3420 3.878 4.4300 4.8720 —0.89 0.13
Age
1 279 9.366 2.693 3.00 8.00 9.00 11.00 18.00 0.42 0.48
2 39 13.256 2.245 10.00 11.00 13.00 15.00 19.00 0.65 0.42
3 310 9.687 2.778 3.00 8.00 10.00 11.00 19.00 0.43 0.33
4 26 13.923 2.465 9.00 12.00 14.00 16.00 18.00 —0.13 —0.78

HT
279 59.605 4.739 46.00 57.00 60.50 63.00 71.00 —0.60 —0.10
39 64.551 2291 60.00 63.00 65.00 66.00  69.50 0.09 —0.68
310 61.519 6.268 47.00 57.00 61.00 67.00 74.00 —0.11 —0.90
26 68.058 3.232 58.00 67.00 68.00 69.75 72.00 —-1.63 3.86

=W N =

Table 2. Pearson correlation coefficient values for fowatatr

Correlations ~ Stratum-(0,0) | Correlations  Stratum-Q, 1)
FEV  Age FEV Age
Age 0.767 — Age —0.047 —
HT 0.843 0.776 HT 0.251 —0.092
Stratum-3(1, 0) Stratum-4(1, 1)
0.822 — Age 0.394 —
HT 0.883 0.842 HT 0.750 0.352

Table 3. Relative efficiency of the post-stratified and noatdied estimators
with respect to the sample mean estimator.

T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum#E(0,1) RE(0,2)

0.2 Pyzq 0.76839 —0.05719  0.82536  0.42073
Pyza 0.85847 0.24024  0.90837  0.78591 558.13 514.11
Paias 0.77642 —0.09219  0.84230  0.35209
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T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum#E(0,1) RE(0,2)

0.3 Pyzq 0.76675 —0.05889  0.82367  0.42475
Py 0.85921 0.23834  0.91010  0.79138 557.63 518.16
Paiaws 0.77642 —0.09219  0.84230  0.35209

0.4 Pyzy 0.76623 —0.05933  0.82311 0.42574
Py 0.85923 0.23785  0.91040  0.79273 556.72 518.43
Py 0.77642 —0.09219  0.84230  0.35209

0.5 Pyzq 0.76604 —0.05947  0.82291 0.42607
Py 0.85931 0.23768  0.91048  0.79317 556.34 518.44
Py 0.77642 —0.09219  0.84230  0.35209

0.6 Pyzq 0.76597 —0.05953  0.82283  0.42620
Py 0.85931 0.23762  0.91051 0.79335 556.17 518.44
Paiaws 0.77642 —0.09219  0.84230  0.35209

0.7 Pyzq 0.76593 —0.05956  0.82279  0.42626
Py 0.85931 0.23759  0.91053  0.79343 556.10 518.44
Py 0.77642 —0.09219  0.84230  0.35209

0.8 Pyzq 0.76592 —0.05957  0.82278  0.42628
Py 0.85931 0.23757  0.91054  0.79347 556.06 518.43
Paias 0.77642 —0.09219  0.84230  0.35209

0.9 Pyzq 0.76591  —0.05957  0.82277  0.42630
Py 0.85931 0.23757  0.91054  0.79348 556.05 518.43
Py 0.77642 —0.09219  0.84230  0.35209

1.0 Pyzq 0.76591 —0.05957  0.82277  0.42630
Py 0.85931 0.23757  0.91054  0.79348 556.05 518.43
Paiazs 0.77642 —0.09219  0.84230  0.35209

1.1 Pyzy 0.76592 —0.05957  0.82277  0.42629
Py 0.85931 0.23757  0.91053  0.79347 556.06 518.43
Paiazs 0.77642 —0.09219  0.84230  0.35209

1.2 Pyzq 0.76593 —0.05956  0.82279  0.42626
Py 0.85931 0.23758  0.91053  0.79344 556.09 518.44
Pxixs 0.77642 —0.09219  0.84230  0.35209

1.3 Pyzq 0.76598 —0.05954  0.82281 0.42622
Py 0.85931 0.23760  0.91052  0.79339 556.14 518.44
Paizs 0.77642 —0.09219  0.84230  0.35209

1.4 Pyzy 0.76599  —0.05951 0.82285  0.42616
Py 0.85931 0.23764  0.91050  0.79330 556.23 518.44
Pxixs 0.77642 —0.09219  0.84230  0.35209

1.5 Pyzq 0.76606 —0.05946  0.82293  0.42604
Pyza 0.85930 0.23770  0.91047  0.79313 556.37 518.44
Paias 0.77642 —0.09219  0.84230  0.35209

1.6 Pyzq 0.76618 —0.05936  0.82306  0.42582
Py 0.85929 0.23780  0.91042  0.79284 556.63 518.44
Paizs 0.77642 —0.09219  0.84230  0.35209
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T Correlations Stratum-1 Stratum-2 Stratum-3 Stratum#E(0,1) RE(0,2)

1.7 Pyzq 0.76640 —0.05919  0.82329  0.42542
Pyza 0.85927 0.23800  0.91031 0.79230 557.05 518.38
Paiaws 0.77642 —0.09219  0.84230  0.35209

1.8 Pyzq 0.76681 —0.05884  0.82373  0.42463
Py 0.85920 0.23839  0.91007  0.79123 557.73 518.11
Py 0.77642 —0.09219  0.84230  0.35209

1.9 Pyzq 0.76755 —0.05814  0.82451 0.42301
Pyza 0.85897 0.23918  0.90946  0.78903 558.47 516.96
Py 0.77642 —0.09219  0.84230  0.35209

2.0 Pyzq 0.76878 —0.05666  0.82574  0.41945
Py 0.85810 0.24082  0.90766  0.78420 557.30 511.93
Paiaws 0.77642 —0.09219  0.84230  0.35209

2.1 Pyzq 0.76992 —0.05338  0.82653  0.41105
Pyzo 0.85451 0.24439  0.90143  0.77282 542.98 490.27
Py 0.77642 —0.09219  0.84230  0.35209

2.2 Pyzy 0.76560 —0.04576  0.81962  0.38930
Pyza 0.83905 0.25223  0.87710  0.74336 471.43 410.63
Paias 0.77642 —0.09219  0.84230  0.35209

2.3 Pyzq 0.72779  —0.02781 0.76664  0.32980
Py 0.77699 0.26831 0.78138  0.66352 296.36 247.49
Py 0.77642 —0.09219  0.84230  0.35209

24 Pyz1 0.57491 0.00564  0.55799  0.20157
Pyza 0.59403 0.28686  0.50344  0.50005 148.39 130.84
Paiazs 0.77642 —0.09219  0.84230  0.35209

2.5 Pyzq 0.31371  —0.00472  0.28826  0.06937
Py 0.33364 0.26138  0.20492  0.34442 105.93 103.92
Paias 0.77642 —0.09219  0.84230  0.35209

ForT = 0.2, the values of the population correlation coefficients leems £V
andAge are0.76839, —0.05719, 0.82536 and0.42073 in the first, second, third and fourth
post-stratum, respectively. The values of the populatmmetation coefficients between
FEV and Height are0.85847, 0.24024, 0.90837 and0.78591 in the first, second, third
and fourth stratum, respectively. In the same way, the gadfithe populations correlation
coefficients betweerlge and Height are(.77642, —0.09219, 0.84230 and0.35209 in
the first, second, third and fourth stratum respectivelythis particular situation, the
percent relative efficiency of the post-stratified sampma];imatorél with respect to
the simple sample mean estimatlr remains558.13 % and that of the non-stratified
estimator@z remains514.11 %. In the same way, the results in Table 3 are readable for
other values of’". It is to be noted that so long as the valu€lofs less than or equal to
2.0, the percent relative efficiency of the post-stratifiedreator remains arounsb7 %
and that of the non-stratified estimator remains arobind%. As soon as the value of
T becomeg.3, the relative efficiency of the post-stratified estimataddically reduces
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to 296.36 % and that of non-stratified estimator reduce24@.49 %. For higher value
of T" equal t02.5, the relative efficiency of the post-stratified samplingreator reduces
to 105.93 % and that of non-stratified sampling estimator reduceR)®92 %. Thus,
we conclude that the proposed post stratified sampling atincan be used to estimate
population mean of a study variable in the presence of naultiiary variables more
efficiently than a non-stratified sampling estimator.

3D Scatterplot of FEV00 vs AGE0OO vs HT00 3D Scatterplot of PEWs AGEO1 vs HTO1

(@) (b)

3D Scatterplot of FEV10 vs AGE10 vs HT10

() (d)

Fig. 1. Pictorial representation of four post-strata: (&ptsm-1 (Female= 0,
Smoking= 0); (b) stratum-2 (Female= 0, Smoking= 1); (c) stratum-3 (Male= 1,
Smoking= 0); (d) stratum-4 (Male= 1, Smoking= 1).

Appendix

#R-Code used in the simulation study (File Name: post2.r)
names<-c(0,0,0,0,0);

inpll<-read.fwf("c:\\rc\\out00",c(14,10,8,5,5),head er=FALSE,
sep="\t", as.is=FALSE,skip=0,col.names=names);
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inpl0<-read.fwf("c:\\rc\\out01",c(14,10,8,5,5),head er=FALSE,
sep="\t",as.is=FALSE,skip=0,col.names=names);
inpO0l<-read.fwf("c:\\rc\\out10",c(14,10,8,5,5),head er=FALSE,
sep="\t",as.is=FALSE,skip=0,col.names=names);
inp00<-read.fwf("c:\\rc\\out11",¢(14,10,8,5,5),head er=FALSE,

sep="\t",as.is=FALSE,skip=0,col.names=names);
yl<-c(inp11[[1]])
x11<-c(inp11[[2]])
x12<-c(inp11[[3]])
sex11<-c(inp11[[4]])
skll<-c(inp11[[5]])
y2<-c(inp10[[1]])
x21<-c(inp10[[2]])
x22<-c(inp10[[3]])
sex10<-c(inp10[[4]])
sk10<-c(inp10[[5]])
y3<-c(inpO1[[1]])
x31<-c(inp01[[2]])
x32<-c(inp01[[3]])
sex01<-c(inp01[[4]])
sk01<-c(inpO1[[5]])
y4<-c(inpOO[[1]])
x41<-c(inp00[[2]])
x42<-c(inp00[[3]])
sex00<-c(inp00[[4]])
sk00<-c(inp0O[[5]])
npl<-length(yl)
np2<-length(y2)
np3<-length(y3)
np4<-length(y4)
np<-npl+np2+np3+np4
print(c(np1,np2,np3,np4,np))
wil<-npl/np
w2<-np2/np
w3<-np3/np
w4<-np4/np
ns<-0.10 *np
nsl<-ns *npl/np
ns2<-ns *np2/np
ns3<-ns *np3/np
ns4<-ns *np4/np
print(c(ns1,ns2,ns3,ns4,ns))
f1<-(1-nsl/npl)/nsl
f2<-(1-ns2/np2)/ns2
f3<-(1-ns3/np3)/ns3
f4<-(1-ns3/np3)/ns3
t<-0.1
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for (i in 1:25) {

t<-t+0.1

print(c('t=",t))

yl<-(yl)t

x11<-(x11)

x12<-(x12)

rylxl1<-cov(yl,x11)/sqrt(var(yl) *var(x11))
rylx12<-cov(y1,x12)/sqrt(var(yl) *var(x12))
rx11x12<-cov(x11,x12)/sqgrt(var(x11) *var(x12))
print(c(ry1x11=",ry1x11,’ry1x12=",ry1x12,'rx11x12= ',rx11x12))
y2<-(y2)'t

x21<-(x21)

X22<-(x22)

ry2x21<-cov(y2,x21)/sqrt(var(y2) *var(x21))
ry2x22<-cov(y2,x22)/sqrt(var(y2) *var(x22))
rx21x22<-cov(x21,x22)/sqgrt(var(x21) *var(x22))
print(c('ry2x21=",ry2x21,'ry2x22=",ry2x22,'rx21x22= ',Ix21x22))
y3<-(y3)'t

x31<-(x31)

x32<-(x32)

ry3x31<-cov(y3,x31)/sqrt(var(y3) *var(x31))
ry3x32<-cov(y3,x32)/sqrt(var(y3) *var(x32))
rx31x32<-cov(x31,x32)/sqgrt(var(x31) *var(x32))
print(c('ry3x31=",ry3x31,’ry3x32=",ry3x32,'rx31x32= ’,1x31x32))
ya<-(y4)t

x41<-(x41)

x42<-(x42)

ry4x41<-cov(y4,x41)/sqrt(var(y4) *var(x41))
ry4x42<-cov(y4,x42)/sqrt(var(y4) *var(x42))
rx41x42<-cov(x41,x42)/sqgrt(var(x41) *var(x42))
print(c(ry4x41=",ry4x41, ry4x42="ry4x42,' rx41x42= ', Ix41x42))

s02<-f1 w12 *var(yl)+f2 *w2°2=*var(y2)+f3 »w3"2 *var(y3)+
f4 » w42 x var(y4)

a<-matrix(0,1,2)

d<-matrix(0,2,2)

a[ll<-f1  *»w1"2 *cov(yl,x11)+f2 *W2°2 * cov(y2,x21)+

f3 *w3"2 xcov(y3,x31)+ f4 w4 2 xcov(y4,x41)

a[2]<-f1 w12 * cov(yl,x12)+f2 *W2°2 * cov(y2,x22)+

f3 »w3"2 x cov(y3,x32)+ f4  xw4 2 * cov(y4,x42)

d[1,1]<-f1  *wl1"2*cov(x11,x11)+f2 * W22 * cov(x21,x21)+
f3 *w3"2 xcov(x31,x31)+ f4  »w4 2 xcov(x41,x41)

d[1,2]<-f1  *wl"2*cov(x11,x12)+f2 * W22 * cov(x21,x22)+
f3 *w3"2 x cov(x31,x32)+ f4  »w4 2 x cov(x41,x42)
d[2,1]<-d[1,2]

d[2,2]<-f1  *wl1"2 * cov(x12,x12)+f2 *W2°2 * cov(x22,x22)+
f3 *w3"2 x cov(x32,x32)+ f4  »w4 2 x cov(x42,x42)

#print(d)
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#print(a)

invd<-solve(d)

#print(invd)

out<-a% * %invd%= %t(a)
rsq<-out/s02

y<-C(y1ry21y31y4)
x1<-c(x11,x21,x31,x41)
x2<-¢(x12,x22,x32,x42)
vary<-(1-ns/np) *var(y)/ns
rel<-vary =100/(s02 =*(1-rsq))
print(c("re (post stattification)=",rel))
b<-matrix(0,1,2)

g<-matrix(0,2,2)

b[1]<-cov(y,x1)

b[2]<-cov(y,x2)
g[1,1]<-cov(x1,x1)
q[1,2]<-cov(x1,x2)

q[211]<_q[112]

g[2,2]<-cov(x2,x2)

#print(q)

#print(b)

invg<-solve(q)

#print(invq)

outl<-b% * %invq%=* %t(b)
rsql<-outl/var(y)
re2<-100/(1-rsql)

print(c("re (no stratification)=",re2))

}
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