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Abstract. The velocity field and the adequate shear stress, correspptal the flow
of a generalized second grade fluid in an annular region legtviwo infinite coaxial
cylinders, are determined by means of Laplace and finite elardnsforms. The motion
is produced by the inner cylinder which is rotating abougits due to a constant torque
f per unit length. The solutions that have been obtainedfgatisimposed initial and
boundary conditions. Fo8 — 1 or 8 — 1 anda; — 0, the corresponding solutions
for an ordinary second grade fluid, respectively, for the davwan fluid, performing the
same motion, are obtained as limiting cases.
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1 Introduction

Among the many constitutive assumptions that have beenagmglto study the non-
Newtonian fluid behavior, one class that has gained supontihoth the experimentalists
and the theoreticians is that of Rivlin-Ericksen fluids af@ed grade. The Cauchy stress
tensorT for such fluids is related to the fluid motion by [1-3]

T=-pI+pA;+a1As + asA?, (1)

where—p is the hydrostatic pressurkis the unit tensory is the coefficient of viscosity,
a1 andas are the normal stress moduli ad,, A, are the kinematic tensors defined
through
T dA; T

A, =gradv+ (gradv)’, As= e + Aj(gradv) + (gradv)* A;.  (2)
In the above relations; is the velocity,% denotes the material time derivative agichd
is the gradient operator. Since the fluid is incompressiblegn undergo only isochoric
motions.
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The flows to be here considered have the velocity field of the {d—6]
v =v(rt) =w(rt)eyp, 3)

whereey is the unit vector along thé-direction of the cylindrical coordinate system
r,0 andz. For such flows the constraint of incompressibility is auatically satisfied.
Introducing (3) into the constitutive equation (1), we fihet

) = (e angy )| 252 - ), @

wherer(r,t) = S,¢(r,t) is the tangential shear stress that is different of zero.hén t
absence of a pressure gradient in the flow direction and ciéglethe body forces, the
balance of the linear momentum leads to the relevant equatio

ow(r,t) 0 2
p 2 = (5 + 2 ) ©
Eliminating(r, t) between equations (4) and (5), we get the governing equation
ow(r,t) 0 2 10 1
o - (”*%J(Wﬁ@‘ﬁ)“’(”)’ ©)

wherev = p/p is the kinematic viscosity of the fluidp is its constant density and
a=aq/p.

In the last time, the fractional calculus has encounteredhauccess in the de-
scription of visco-elasticity [5, 7-12]. Especially, theeplogical constitutive equations
with fractional derivatives play an important role in thesdeption of the behavior of the
polymer solutions and melts. Generally, these equatianslarved from those for non-
Newtonian fluids by replacing the inner time derivatives ofisteger order with the so
called Riemann-Liouville operator [13, 14]

t

1 d

DO = 5 [ i 0<a<l )
0

wherel'(.) is the Gamma function.

Consequently, the governing equations correspondingetonibtion (3) of a gene-
ralized second grade fluid are (cf. [5, Egs. (2), (4)]) or E@s. (7), (9)]

0 0? 0
wg;, t = (1/ + osz) (W + % o :2) (r,t), (8a)
) =t a9 (5 = 2t (8b)
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where the new material constamf (for simplicity, we are keeping the same notation)
goes to the initiaky; for 5 — 1.

In this paper, we are interested into the motion of a gererdlsecond grade fluid
whose governing equations are given by equations (8). Mxaetly, we would like to
extend the results of the Section 5 from [4] to a larger cléfisiids. The fractional partial
differential equations (8), with adequate initial and bdary conditions, can be solved in
principle by several methods, the integral transformsriggle representing a systematic,
efficient and powerful tool. The Laplace transform will beedgo eliminate the time
variable and the finite Hankel transform to eliminate theigpsariable.

2 Taylor—Couette flow between two infinite cylinders

Consider an incompressible generalized second grade fluesin the annular region
between two infinitely long co-axial cylinders. At tinte= 07, let the inner cylinder
of radiusR; be set in rotation about its axis by a constant torque perlemith 2r R, f
and let the outer cylinder of radius, be held stationary. Owing to the shear, the fluid
between cylinders is gradually moved, its velocity beinghaf form (3). The governing
equations are given by equations (8) and the appropriataliahd boundary conditions
are (see also [4, Egs. (5.2), (5.3)]

w(r, 0) = 0, re [Rl, RQ], (9)
H(Rut) = (M+Q1Df)(awg7ﬁ) B w(f,z&)) _
T T =Ry (10)
'LU(RQ,t) =0, t>0,

wheref is a constant.

3 Calculation of the velocity field

Applying the Laplace transform to the equations (8a) and, (&6 get

0? 0
qw(ra q) = (V + O‘qﬁ) (m + %E - %)E(T, q)a (11)
f
q

(1) = ot nd”) (57 - - JolRe) =L, @R =0 a2)

wherew(r, q), and7(Ry,q) are the Laplace transforms of the functionér,t) and
7(R1,t) respectively. We denote by

R2

Wy (rn, q) = /rﬁ(r, q)B(rry) dr, (13)

Ry
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the finite Hankel transform of the functian(r, ¢), where
B(T’rn) = Jl (TTTL)Yé(erTL) - J2 (ern)yl (rTn); (14)

r, are the positive roots of the equati@(R.r) = 0 and J,(.), ¥,(.) are the Bessel
functions of the first and second kind of orger
By means of equations (12) and of the identity

T(2)Ya(2) = Ba(2)Yi(2) = ——, (15)

Uv4

we can easily prove that

Ra
0? 10 1\ _
[ (5 3o 53 ot sera

Ry

2 0 1
_ 2 A P
— ran(rn,q)Jr?TTn(ar R1>w(R1,q). (16)

Combining (11), (12) and (16), we find that

2f 1 1
w ny = 9 17
(@) = 2 q pq+ o1 + pr? a7
or equivalently
— 2f 1 2f 1
WH(Th,q) = —%
= S it ond®)  mrd (ut aadP) (g + agPr + o)
= EIH(TTU Q) + EQH(T’ru q)a (18)
where
2f 1
w Q) = —3 75 19a
@i (1, q) 3 q(p + a1g®) (192)
2 1
Tott (1 g) = ——2 (19b)

73 (1 + a14%)(q + agbr +vr2)’

The inverse Hankel transforms @f, z; (7, ¢) and@ap (r,, q), are given by (see (A.1)
from Appendix)

R f(r® — R) !

w ’ = 3 y 20a

w1(7" Q) 2R27“ (M n oqqﬁ) ( )
r Jl RQT’M (T’rn) —

Z JZ(Ryry) — J2 (RQTn)w2H(TmQ)- (20b)
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The inverse Laplace transform of the last factdtq) = or = oo W’ from

equation (20a) is

_ 1 1 R A A
h(t) = L™VH(g)] = — G < t> <—> T g @
0= L7H@) = o2 Gonn(—omt) = 2 2 (-3 T @
where the generalized functi@®, ; (., .) is defined by [15, Egs. (97), (101)]
[e%S) k (c+k)a—b—1
Gape(d,t) = L_l{(i} N Fcécf Ck++ki [t(0+ k)a —b]’
=0 (22)

Re(ac —b) > 0, ‘q—a‘ < 1.

By taking the inverse Laplace transform of equation (20d)w@sing (21), we find that

¢
2402 P2 _p2
wi (r t) = ML% [1 H(q)} _ Rif(? - R /h
2R5r q 2R27“
0
_ R¥f(r® — R) i (_ ﬁ)k t(k+1)8
2R;ra1 o\ o Ll(k+1)8 +1]
2002 P2
_ MG@L(&O, (23)
2R5ron Qg

In order to determine the inverse Laplace transform of thetionw, (r, ¢), we
rewrite the functionva g (r,,, ¢) in the form

2f 1

w n,q) = — H(q).Hi(rn,q), Hi(rn,q) = ————— 24
Warr (Tn, q) = (¢)-Hi(rn,q) 1(Tn q) PR Bt (24)
Using again equation (22) and the following expansion offtimetion H, (1, q)
-3 i k —B(k+1)
_ q
Hl(rnvtﬁf (q1 ’8+CW“2)+1/7”2 ; 1— ’8+Oé7”2 k+1 (25)
we get
[ee]
hi(rn,t) = L' [Hi(ryn, q Z (—vrl) e 8-+ k1 (— ara, ). (26)
k=o

Applying the Laplace transform to equation (20b) and usiggagions (21), (24), (26)
and the property

t

L [H(q)Hy (v, )] = h(t) * ha(rm, t) = / h(t — $)ha (ra, )ds,
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we find that

nf = JE(Rary)B(rry,)
aq TTL[J22 (ern) - J12 (RQTn)]

wa(r,t) = L7 [@a(r,q)] = —

n=1
o t
XZ( vr ) /G,@o1< Ml,tS)G1—6,—B(k+1),k+1(arias)dsa (27)
k=o 0

Consequently, the velocity field(r, ¢) is given by

2 2 p2 e} 9
utrt) = BT g, (- L) - Ty B

2R5ran o a1 = r[J3(Riry) — J3(Rars)]

XZ —Vr /G501( Jt— S)G1 B,—B(k+1), kﬂ( r2 s)ds. (28)

4 Calculation of the shear stress

Applying the Laplace transform to equation (8b), we find that

7(r,q) = (n+ a1q”) <% - 1>@(T, q)

r
o 1 0 1
—(utad)| (- 1m0+ (5 -3 Jme0]. @
Using equation (20), we obtain

oo

_ J1 Rory, Bl(rrn) 1
T(’I“, Q) + fz J2 ern JQ(RQT'n) (quOéqﬁ?“% + Z/T,,%).

(30)

whereBy (rr,) = Jo(rry,)Ya(Ryrn)—J2 (R, ) Ya(rr, ). Now taking the inverse Laplace
transform of both sides of equation (30) and using (25), we ge

= R27“n Bl (7“7"”)
m(n?) fnzl J Riry) — J2(Rarn)
XZ( Gl B,—Bk— 6k+1( Oé’l“n,t) (32)
k=o
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5 The special cas@ — 1

Making 5 — 1 into equations (28) and (31), we obtain the similar solwgion

R2f(r? — R?
w(r,t) = M;(TOCIQ)GL—LI (_o%’t)

_nf Z JZ(Rary)B(rry,)
Qg | J (Ryry) — J1 (Ramy)]
t

k/G101<— t— S)Go —k—1k+1(—ary,s)ds (32)

n=1

=0 0
and
B 2. J¥(Rorn)Bi(rry)
( e f Z J2 Rﬂ“n Jl (Rg?“n)

n=1

XZ —vr? GO e 1k+1( ari,t), (33)

for a second grade fluid performing the same motion. Now,gigie identities (A.2) and
(A.3), w(r,t) andr(r,t) can be written in the simplified forms

w(r,t) = 7]%%]‘(7“2 — &) [1 —ex (u_t)]
T 2Ryrp P o
Tf — JE(Rary)B(rry)

ar = rp[J3(Riry) — JP(Rorn)]
¢ . )
1 vras
_ P _ s 4
X /exp ( o (t s)) T+ ar? exp ( T ar%)ds’ (34)
0
o0
J2(Rary)Bi(rry) 1 vr2t
_ ——7"n ). (35
7(rt o fz J2(Ryryp) — J3(Rary) 1+ ar? P\ +ar? (35)

n=1
The expression (34) ab(r,t) can be further processed to give the simpler form

Rf(r® — R3)
2R§7“,u

7rf J1 Rorp)B(rry) vrt
— n . 36
Z:l Pl J2(Rirn) — J2(Ror)] C P\ T+ ar2 (36)

w(r, t) =

which is identical to equation (5.17) from [4], obtained bgtifierent technique.



M. Athar, M. Kamran, C. Fetecau

Making «; and themy — 0 into equations (36) and (35), the velocity field
R%f(TQ_Rg)iﬂ'_f = Ji(Rarn)B(rry)

w(r,t) = - ex fz/rit 37
( ) 2R27"ILL 1% ne1 Tn [J22 (ern) _J12 (RQTn)] P ( ) ( )
and the associated shear stress
B 2. J}(Rorn)Bi(rry) 5
T(r,t) = +7f Z TRirn) — 2 (Barn) exp ( V?“nt), (38)

corresponding to a Newtonian fluid are recovered.

6 Conclusions

The aim of this paper is to provide exact solutions for theweity field and shear stress
corresponding to the flow of a generalized second grade fetigden two infinite coaxial
cylinders, the inner one being subject to a constant torditeese solutions, obtained
by means of the Laplace and finite Hankel transforms, areepted under series form
in terms of the generalized, ; .(.,.) functions. They satisfy all imposed initial and
boundary conditions. Indeed, making= R; into (31) and having in mind the definition
of the transcendental functidBy (rr,), it immediately results-(Ry,t) = f. As regards
the second boundary conditigh0)-, it can be easily proved using the expansion (22) for
Gg,—1,1(.,t) and the known relation

e T(B+1)
r—a+1)’

In the special case whe# — 1, the solutions that have been obtained take the
simplified forms (32) and (33) corresponding to an ordinagond grade fluid performing
the same motion. Of course, these last solutions can beefupttocessed to give the
simpler forms (36) and (35), the first of them being identtca¢quation (5.17) obtained
in [4] by a different technique. Finally, making, and them — 0 into (36) and (35), the
similar solutions for a Newtonian fluid are recovered. Fernthore, making — oo into
equations (37) and (38), the solutions

’LU(?“) _ R%f(ri - R%)
2R,rp
corresponding to the steady motion are obtained. They a&adme for both types of
fluids, Newtonian or second grade.

Finally, in order to reveal some relevant physical aspefdiseoobtained results, the
diagrams of the velocity and the shear stress are presemtdiférent values of the time
t and of the fractional paramet@r Figs. 1 and 2 clearly show that the velocity-, ¢) and
the shear stresgr, ¢) (in absolute value) are increasing functiong.dfrom Figs. 3 and
4 it results that the velocity and the shear stress increfaséscreasings. Fors — 1
their diagrams tend to those for an ordinary second gradz flthie units of the material

parameters are Sl units and the rogt$have been approximated (21;;1};)].

D (tP) =

, T(r) = —-, (39)

10
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Fig. 1. Profiles of the velocityv(r,t) given

by (28), forf = —1,v=0.0011746, 1 =1.48,

ry = 0.2, 70 = 0.8, a1 = 2, ﬁ = 0.8 and
different values of.

150 T T
t=20s, =09
e“fe(Q t=20s,p=0.8
2 (1 100 t=20s, p = 0.6 4
3 (r)
() t=15s,p=0.9
[ an o
5 (r)
B (r)
O - I """" 1

0.8

Fig. 3. Profiles of the velocityw(r,t) given

by (28), forf = —1,»=0.0011746, n=1.48,

r1 = 0.2,72 = 0.8, « = 0.0015 and different
values oft andg.

t=25s, o, =2.0
t=25s,0,=2.3
t=25s,0,=2.6 |

Fig. 2. Profiles of the velocityw(r,t) given

by (28), forf = —1,v=0.0011746, 1 =1.48,

rp = 0.2, r0 =08, a1 = 2, ﬂ = 0.8 and
different values of anda;.

G T T
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r

Fig. 4. Profiles of the shear stresg-, t) given

by (31), forf = —1,v=0.0011746, u=1.48,

rr = 0.2, 720 = 0.8, a1 = 2, ﬁ = 0.8 and
different values of.

Appendix
R3(r*> — R2) = J2(Rory,)B(rry,)
- Al
Sy 2 B (Rar) — Earn)] D
Gi,0,1 <—,t> = exp <u_t)’
X1 (A.2)

11
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exp ( L%t) . (A.3)

oo
k
z:: (—vr2) " Go k-1, k41 (—ar),t) = 1+ar? 1+ ar2

k=o n
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