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Abstract. In this paper we propose an application Stdistance theory for testing
the hypothesis of uniformity on hypersphes&~'. The work is a continuation of our
research started in [1, 2]. Particular attention is devategd = 2,3 cases. A brief
comparative Monte Carlo power study for proposed critexigrovided.
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1 Introduction

Several invariant tests for uniformity of a distribution tire circle, the sphere and the
hemisphere have been proposed by Rayleigh [3, 4], Watsd],[Bjne [7], Beran [8]
and others. In this paper we propose an applicatio&vedistance theory for testing
the hypothesis of uniformity of spherical data. The proplgsecedures have a number
of advantages: consistency against all fixed alternatineariance of the test statistics
under rotations of the sample, computational simplicitg aase of application even in
high-dimensional cases.

We start from a brief review ofV-distance theory. Then some new criteria of
uniformity on S?~! based onV-metrics are introduced. Particular attention is devabed t
p = 2 (circular data) angh = 3 (spherical data). In these cases the asymptotic behavior
of proposed tests under the null hypothesis is establishied) two approaches: first is
based on an adaptation of methods of goodness of fit testslwbn [1, 2], and second
using Gine theory based on Sobolev norms [9, 10].

At the end of the paper we present a brief comparative Monteo @awer study
for proposed uniformity criteria.S' and S? cases are considered. Analyzed tests are
compared with classical criteria: Rayleigh, Giné and Ajising a variety of alternative
hypotheses (see also [3]). Results of simulations shovitikairoposed tests are powerful
competitors to existing classical criteria.
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2 N-distances

Tests, proposed in this article are based on a class of pititpafetrics — NV -distances,
introduced by Klebanov in [11]. These metrics, generatedidyative definite kernels
are very convenient and allow obtaining new statisticdaeda for testing parametric and
nonparametric hypothesis in arbitrary dimension.

Let (X, U) be a measurable space aBdhe set of all probability measurgson it.
Suppose thak is a real continuous function, and denoteBy the set of all probability
measureg on (X, U) under condition

X/ )[ L(z, ) dp(z) du(y) < o0

Denote by
/L z,y) du(z //nydu z) du(y)
X X

X
/La:ydl/ dv(y), (1)
X

):=2

X\ M—

whereu, v € By,
The theorem, proved by Klebanov [11], says thatlifz,y) = L(y,z) and
L(z,z) = 0Vz,y € X the inequality

N(p,v) >0

holds for all measureg, v € By with equality in the cas@ = v only, if and only if L
is a strongly negative definite kernel. This fact allows uslitain consistent tests against
all fixed alternatives.

Some examples of strongly negative definite kernels fortmacusage can be
found in Section 4 orin [1, 2, 11].

3 Testsof uniformity on the hypersphere

3.1 Statement of the problem

Consider the samplé(y, ..., X,, of observations of random variablg€, where X; <
RP and||X;|| = 1,7 = 1,...,n. Let us test the hypothesid, that X has a uniform
distribution onSP~1.

The statistics for testingl, based onV-distance with the kerndl(z, y) have the
form

) n 1 n

4,j=1
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N-distance tests of uniformity on the hypersphere

whereX,Y, Y’ are independent random variables from the uniform distidbuon SP—!
andEv{L(X,,Y)} = [L(X;,y)dFy(y) is a mathematical expectation calculated by
Y with fixed X;,i =1,...,n

We should reject the null hypothesis in case of large valfiesiatest statistics, that
is if T}, > ¢, Wherec,, can be found from the equation:

R)(Tn > Ca) = «,

whereP, is the probability distribution corresponding to the nulplothesis and: is the
size of the test.

For our further research let us consider a strongly negdtfimite kernels of the
form L(z,y) = G(||z — y||), where|| - || is the Euclidean norm. In other wordsy-)
depends on the length of the chord between two points on Bgpere. As an example of
such kernels we propose the following ones

L(Qj‘vy):”lC*yHa, 0<Oé<2,
|z — vl
L x7y == 7’
) = T
L(z,y) =log (14 ||z — y||*).

Note, that considered kernels are rotation-invariants pnoperty implies that the math-
ematical expectation of the length of the chord between hdependent uniformly dis-
tributed random variables andY’ on SP~! is equal to the mean length of the chord
between a fixed point and a uniformly distributed randomalalgy” on SP~1. Thus, we
can rewrite (2) in the form

n

T, =n[B{G(IY -V} - 5 3 601X~ %), 3)

ij=1

In practice statisticg), with the kernelL(z,y) = ||z — y||*, 0 < o < 2 can be calculated
using the following proposition.

Proposition 1. In cases op = 2, 3 statisticsT;, have the form:

(2R)*T (%

1) 1
2
WF(L

) n—— Z X = X5[% (p=2),

1,j=1

TTL -

T, = (2R)®

(p=13),

LJ 1
whereR is the radius of hypersphere ade (0, 2).

The proof of the Proposition 1 is presented in Section 5.
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In case of(x,y) = ||z — y||, the test statistic (3) is very similar to Ajne’s statistic
A, where instead of chord is taken the length of the smaller arc

1 n
A:%*%Zwij,

1,j=1

where);; is the smaller of two angles betweén and X;,,j =1,2,...,n.

One can see, that the Ajne’s test is not consistent agaihattatnatives, as an
example consider the distribution on the circle conceettat two diametrically opposite
points with equal probabilities. Taking instead of arc teedth of the chord lead to a
consistency of thév-distance test against all fixed alternatives.

T,
— BNXY), n— o,
n

whereN (X,Y) is the N-distance given by (1) between probability distributiofisan-
dom variablesY andY. If X #¢ Y, thenN(X,Y) > 0 and7,, — oo, asn — oo.

Further we consider the asymptotic distribution of stet$s?;, given by (2) un-
der the null hypothesis. Particular attention is devoteditoular and spherical data
(p = 2,3). In these cases the asymptotic behavior of proposed testsruhe null
hypothesis s established using two approaches. Firssedoan an adaptation of methods
of goodness of fit tests described in [1, 2], and second using tBeory based on Sobolev
norms [9, 10].

For an arbitrary dimensiomp (> 3) it is rather difficult from the computational point
of view to establish the distribution of test statistiGsanalytically, in this case the critical
region of our criteria can be determined with the help of datians of independent
samples from the uniform distribution ¢~

3.2 Asymptoticdistribution
3.2.1 Uniformity on the circleS!

For our further research, without loss of generality, wesider the circleS* with unit
length, that is with? = 5-. Let us transform the circle, and therefore our initial séemp
X1, Xn, Xi = (Xi1, Xi2), X + X3 = R? to the interval0, 1) by making a cut in
arbitrary pointz, of the circle

rext, zeSt z*el0,1),

wherex* is the the length of the smaller argz. It is easy to see, that X has a uniform
distribution onS*, after described transformation we will get the randomataig X *
with uniform distribution orf0, 1).

Let L(z, y) be a strongly negative definite kernel®A, then the functiord (z*, y*)
on [0, 1) defined as

H(m*vy*) = L(l‘,y) (4)
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is a strongly negative definite kernel ¢ 1). In this caseV-distance statisti@’", based
on H (z*,y*), for testing the uniformity o0, 1) has the form (see [1, 2])

T: = —n /H(x*,y*m(Fn(x*) — ) d(FyY) — y).
0

o—__

where F, (z*) is the empirical distribution function, based on the sam¥le. .., X,
Xrelo,1),i=1,...,n.
Due to (4) the following equality holds

Tn = T;a (5)

whereT’, is defined by (2).

Thus, instead of testing the initial hypothesis®nusingT’},, we can test the unifor-
mity on [0, 1) for X* on the basis of statisticE with the same asymptotic distribution.
The limit distribution of7} is established in Theorem 1 in [1] and leads to the result:

Theorem 1. Under the null hypothesis, statisti@$, have the same asymptotic distribu-
tion as the quadratic form

B oo o0 akj ‘
= ,;; g oG (6)

where(;, are independent random variables from the standard norrisatidution and
11
agj = *2//H(Z*,y*)dSiIl(’]Tkl‘*)dSiIl(’]ij*).
0 0

It is easy to see, that in cad€x, y) is a rotation-invariant function on the circle,
the considered transformation 6t to [0, 1) does not depend on the choice of the point
of cut.

Proposition 2. If strongly negative definite kernélz, y) = ||z —y|*, where0 < a < 2,
x,y € S, then

. «
sin 7Td:|
b

- [

where d = min(|z* — y*|,1 — |2* — y*]), z*,y* € [0,1).

The proof of the Proposition 2 is presented in Section 5.
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3.2.2 Uniformity on the spher&?

In case of the sphere we also first try to substitute the Irigipothesis of uniformity on
52 by testing the uniformity on the unit square. Consider spl$&rwith unit surface
area, that if?? = L.

Note, that if X* = (X7, X3) has the uniform distribution of), 1)? then random
variableX = (X1, X», X3)

X1 = Rcost;, Xs= Rsinf;cosbty, X3= Rsinb;sinby, (7
where
0o =27 X{, 61 =arccos(l—2X7)

has the uniform distribution o42.
Consider the strongly negative definite kerfilz*, y*) on[0, 1)? defined by

H(m*vy*) = L(l‘,y), (8)

whereL(z,y) is a strongly negative definite kernel®¥, z*, y* € [0,1)?, z,y € S? and
the correspondence betweeandz* follows from (7).

N-distance statistics, based &f(z*, y*), for testing the uniformity or0, 1)? has
the form (see [1, 2])

T: = —n / / H(a*,y) d(Fa(a) — 2323) d(F(y") — vin3),
[0,1)2[0,1)2

whereF, (z*), z* € R? is the empirical distribution function based on the transfed
sampleX ™.
The equations (7) and (8) implies that

T, = T;. ©)

Thus, the asymptotic distribution @f, coincides with the limit distribution of’, estab-
lished in Theorem 2 in [1].

Theorem 2. Under the null hypothesis statisti@s will have the same asymptotic distri-
bution as quadratic form

T = Z @ijkl /i Okt Gij Chi (10)

.5,k 1=1

where(;; are independent random variables from the standard norrigtfidution,

Qijkt = — / H(z,y) dipy;(x) dvw(y), o,y € R?,
[0,1]#
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a;; andy;;(z, y) are eigenvalues and eigenfunctions of the integral operato

Af(x) = / K(z,9)f(y) dy (11)
[0,1]2

with the kernel
2 2
K(z,y) = Hmin(fﬂm Yi) — Hfﬂzyz
=1 =1

Note, thatifL(z, y) is a rotation-invariant function on the sphere then the esiof
statisticsT,, and7* does not depend on the choice of coordinate systesfon

The main difficulties in application of the Theorem 2 are ceeted with calcula-
tions of eigenfunctions of the integral operator (11). Ofehe possible solutions of
these problems is in detail discussed in [1]. Another apgras considered in the next
subsection, where the asymptotic distribution of propostatistics for some strongly
negative definite kernels is established with the help oféGheory based on Sobolev
tests.

3.2.3 Alternative approach to limit distribution df’,

In this section we propose an application of Giné theory @b@ev invariant tests for
uniformity on compact Riemannian manifold$ to establish the null limit distribution
of someN-distance statistics on the circle and sphere. A detaileiéweof Giné theory
can be foundin [9, 12].

Let M be the circler? + 23 = 1 in R%. Giné showed (see [9]) that in general case
Sobolev test statisticS,, ({ar }) on M has the form

S,({ax}) =2n""! iai i cosk(X; — X;), (12)

k=1 i,j=1

where{ai, as, ...} is a sequence of real numbers such gt | a? < .
The limit null distribution of (12) is established in Thear&.1 in [9] and coincides
with the distribution of random variable

o)
2

E A Xk

k=1

wherey;, are independent random variables with chi-square digtobwith two
degrees of freedom.

Consider statisticg;, on M with strongly negative definite kerndl(x,y) =
|z —yl|l, =,y e R From Proposition 1 we have

n

4n 1 — dn 2
T,=——— X, —Xi||=——— i
C S - Xl = -2 Y s

@7 (13)

ij=1 ij=1
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whereX; — X; and||X; — X|| denotes the length of the arc and chord betw&e@and
X respectively.
Under the null hypothesis the limit distribution ©f, is established by the theorem

Theorem 3. If X4,..., X, is a sample of independent observations from the uniform
distribution on the circle with unit radius, then

s d >

ZTn — ; aixi, (14)

wherey; are independent random variables with chi-square distidouwith two degrees
of freedom and

2
a; = % (1 — gsing) cos kx dx.
0
The proof of Theorem 3 is presented in Section 5.
We now pass over t&/-distance and Sobolev tests on the spherg/ = S? is the
unit spherer? + 23 + 23 = 1 in R3, then the general expression of Sobolev test statistic
on the sphere has the form (see [9])

S,({ax}) =n~" Z(Qk; +1)a? Z Pk(cos(m», (15)
k=1

4,J=1

where{a1, as, ...} is a sequence of real numbers under condffiof , (2k + 1)a? < oo,

m is the smaller angle betweef; andX;, P (-) are Legendre polynomials

Pi(x) = (k128) "1 (d*/da®) (% — 1),
Under the null hypothesis the limit distribution 6f,({ax}) coincides with the
distribution of random variable

Z A X3k 415 (16)
k=1

wherey3, ., are independent random variables with chi-square digtoibwvith 2% + 1
degrees of freedom.

Consider statisticg;, on S? with strongly negative definite kerndl(z,y) =
|2 — yll, 2,y € R*. From Proposition 1 we have

—

in 1 & dn 2 K. X, X
T,LZF—Eani—xj”:?—ﬁzsm 5 (17)

i3=1 i3=1

wherem and||X; — X;| denotes the smaller angle and the chord betwe&gand
X respectively.
The asymptotic distribution df;, is established by the Theorem 4.
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Theorem 4. If X4,...,X,, is a sample of independent observations from the uniform
distribution onS2, then

o0

3 d
ZTn - ;; aiX%ker (18)

wherex3, , , are independent random variables with chi-square distidnuwith 2k + 1
degrees of freedom and

1 s

a; = 5/ <1 — gsin ;) sin x Py (cos z) du, (29)
0

whereP, (x) are Legendre polynomials.

The proof of the Theorem 4 is presented in Section 5.
The inverse values to the largest coefficierfigiven by (19) are calculated below:

5 35 105 231 429
715 1105 1615 2261 3059
4025 5175 6525 8091 9889

4 Empirical power results

Let us switch to a comparative Monte Carlo power study of psagl uniformity criteria.
N-distance tests with strongly negative definite ketbgt, y) = ||z — y|| are compared
with classical criteria: Rayleigh (R) [3, 4], Watson (W) @, Giné (G) [3] and Ajne
(A) [7,8] for circular S* and sphericab? cases.

4.1 Simulation design

In all the cases we investigate the behavior of above meatditests for sample sizes—=
30, 50, 100 and significance level = 0.05. All the empirical results were produced
by the means of Monte Carlo simulations done with the help stdistical package.
The first part of simulations (Table 1) is devoted to the dacease. In the second part
of our study (Table 2) we consider the uniformity test on theeseS?2. In both cases
for N-distance statistics we used the critical values obtainech the asymptotic null
distribution established in Theorems 3, 4.

The power of the tests was estimated from a simulatior2(df samplesZ of
alternative distributions on the circle and sphere, whielnenmodeled using the formulas:

e Circular data
7Z = (cos27X, sin2rX),

whereX is arandom variable with the distributions from the firstooh of Table 1.
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e Spherical data
Z = (cos(2rX), sin(2rX)(1 — 2Y), sin(2rX)sin (arccos(1 — 2Y))),

where X, Y are independent random variables with the distributioosfthe first
column of Table 2.

Proposed alternatives gave us a wide variety of types ofrtigeerom null hypoth-
esis and allowed to test the sensitivity of criteria to eafctmem.

4.2 Simulation results

Empirical results summarized in Tables 1, 2 illustrate ttwate of the tests are universally
superior. InS! case proposefy-distance criteria, together with Watson test, showed one
of the best results against all considered alternativealfgample sizes.

The empirical results for spherical data are summarizedbiel2. In comparison
with circular case, where all the criteria, except possiBiné test, showed more or
less similar results, the performance gfdistance test was really good for all sample
sizes against truncated uniform and von Mises distribsti@iné test, which was not so
powerful against considered alternativesSincase, was really sensitive to contamination
of hypothesized distribution with truncated uniform in eas spherical data.

Table 1. Empirical power of tests of uniformity on the circle

Alternative n W A R G T,
U(0,0.9)* 30 9 8 8 9 9
U(0,0.9 50 13 13 13 12 13

100 30 30 28 23 30

)
)

0,0.8) 30 47 43 42 24 46
) 50 74 60 57 45 70
) 100 99 93 91 72 98

0.9U(0,1) + 0.1U(0,0.1) 30 9 8 9 9 9

0.9U(0,1) + 0.1U(0,0.1) 50 15 13 13 15 15
0.9U(0,1) + 0.1U(0,0.1) 100 30 28 23 27 29
0.8U(0,1) + 0.2U(0,0.1) 30 25 20 20 24 24
0.8U(0,1) + 0.2U(0,0.1) 50 54 40 40 47 54
0.8U(0, 1) + 0.2U(0,0.1) 100 94 82 74 85 92
0.8U(0,1) + 0.2U(0, 0.25) 30 20 19 20 8 20
0.8U(0,1) + 0.2U(0, 0.25) 50 44 39 40 20 45
0.8U(0,1) + 0.2U(0, 0.25) 100 73 67 66 32 71

1U(a, b) is a uniform distirbution ofja, b]
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Alternative n W A R G T,
0.80(0,1) +0.2U(0, 0.5) 30 11 11 12 5 11
0.8U(0,1) + 0.2U(0, 0.5) 50 16 15 15 6 17
0.8U(0,1) + 0.2U(0,0.5) 100 41 42 42 9 41

vonMises(0,0.5)? 30 36 36 38 5 37
vonMises(0,0.5) 50 58 59 58 7 59
vonMises(0,0.5) 100 88 88 88 10 88
vonMises(0,0.3) 30 14 15 15 5 15
vonMises(0,0.3) 50 27 26 27 7 29
vonMises(0,0.3) 100 50 51 50 10 51
0.5U(0,1) 4+ 0.5vonMises(0,0.5) 30 15 14 15 5 15
0.5U(0,1) 4+ 0.5vonMises(0,0.5) 50 19 19 19 9 21
0.5U(0,1) 4+ 0.5vonMises(0,0.5) 100 31 34 33 10 32
0.5U(0,1) 4+ 0.5vonMises(0,0.8) 30 19 21 22 5 21
0.5U(0,1) + 0.500nMises(0,0.8) 50 40 40 40 6 42
0.5U(0,1) 4+ 0.5vonMises(0,0.8) 100 65 67 67 9 65

Table 2. Empirical power of tests of uniformity on the sphere

Alternative n A R G Tn
U(0,0.9) 30 16 15 10 18
U(0,0.9) 50 23 20 18 24
U(0,0.9) 100 53 50 43 58
U(0,0.8) 30 61 61 34 69
U(0,0.8) 50 8 8 57 93
U(0,0.8) 100 99 99 91 100

vonMises(0,0.5) 30 27 271 17 31
vonMises(0,0.5) 50 38 32 30 42
vonMises(0,0.5) 100 83 83 73 90
vonMises(0,0.3) 30 13 13 8 14
vonMises(0,0.3) 50 14 14 13 15
vonMises(0,0.3) 100 39 38 28 44
0.9U(0, 1) + 0.1U(0, 0.1) 30 9 8 7 10
0.9U(0,1) +0.1U(0,0.1) 50 13 12 16 14
0.9U(0,1) + 0.1U(0, 0.1) 100 35 30 41 36
0.8U(0, 1) + 0.2U(0, 0.1) 30 11 11 11 12
0.8U(0, 1) + 0.2U(0, 0.1) 50 54 41 81 66
0.8U(0,1) + 0.2U(0, 0.1) 100 96 92 99 99

ZyonMises(u, ) is a von Mises distribution (also known as the circular ndrdigtribution) with location
w1 and concentratior parameters
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5 Proofs

5.1 The proof of Proposition 1

The stated formulas follow directly from (3) and the progert
ElY -Y'||* =E[Y —a|%

whereY, Y’ are independent random variables from the uniform distidbon S?~* and
a is a fixed arbitrary point o?~!.

In the two-dimensional case, let us calculate the mathealagkpectation of the
length of the chord between fixed point= (0, R) and an uniformly distributed random
variableY’

27

1 a
EHa—YH‘“:ﬁ/R( cos d)Jr(Rsm ¢ — R) )2 do
0
27

23—1 « o 2a+1 «
- i/(1—cos¢)f dp—= 21 /sinaédqﬁ
Vs

™

w3

0 0

_ eRPTENG)

In casep = 3 let us fix pointa = (0,0, R) and calculate the average length of the
chord

Ella —Y*

47TR2 //RQSlnH(RQ(sm 0 cos® ¢ + sin? @sin® ¢ + (cosf—1) ))%d9d¢>

—7m 0

us

// (1 —cosh)? sinfdfdp = 2“+1R"‘/sino‘+19dsin9

—m 0 0

22R“

= (2R)* 04—|—2'

5.2 The proof of Proposition 2

Kernel L(z, y) in the circle equals to the length of the chord between twatsai =
(z1,22) andy = (y1,y=2) in « power. After proposed transformation, the length of the
smaller arc between andy equals tod = min(|z* — y*|,1 — |* — y*|). The length

of the chord in the circle witl? = ;- based on the anglerd equals to%, and this
completes the proof of the statement.
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5.3 The proof of the Theorem 3
Let us express statistids, given by (13) in the form

whereh(z) =1 — §sing.
Functionh(x) can be represented in the form of a series by complete orthwio
sequence of functionsy'2 cos kz} on [0, 27

[ee]
=2 Z ay cos kzx,
k=1

whereq;, = ‘2/—7?f02 1 — Zsin §) cos kxdz. Note, thaty, > 0, Vk = 1,2,..., really

after some simple caIcuIatlons we have

27 e
/(1— gsing) coskxdx:4/sinmsin2kxdx—4
0

0

T Tk Tk
1 2
/sinxsin2 kxdxr = —k2/sin (E — Q)mdx — %H /sin%dm
0 0

0
B 4k3
2k —1)(2k+1)
Thus statisticg’,, can be rewritten in the form of Sobolev statistics (12)

—T *2n*12akZCOSkX X;),

4,j=1

>1 Vek=1,2,....

where\/iai = «. After that the statement of the theorem follows directynfr Theo-
rem4.1in [9].
5.4 Theproof of the Theorem 4

The proof of the theorem can be done in nearly the same wayaasftifheorem 3. Let
us first rewrite statisticg;, in the form

==-n! Z (X5, X;)

4,j=1

whereh(z) = 1 — 2sinZ. And then decomposk(z) to the series by orthonormal

sequence of functionsy/2k + 1P (cos )} for z € [0, 7]

x) = Z V2k + 1 ay Py (cos ),
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where

Ak

2
V2 1
= v2k+1 // (1 — §sing) sin 0 Py (cos 0) df d¢.
47 2 2
00

As a result statistic$;, can be expressed in the form of Sobolev statistics (15)

n

4 > —
3Tn = n' Y 2k + 1)ai Y Pi(cos Xi, X;),

k=1 ij=1

wherev/2k + 1a? = «j. Applying Theorem 4.1 in [9] the assertion of the theorem
follows.
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