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Run up flow of a couple stress fluid
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Abstract. Consider the flow of an incompressible fluid between two pelralates,
initially induced by a constant pressure gradient. Aftevady state is attained, the
pressure gradient is suddenly with drawn while the plates iampulsively started
simultaneously. The arising flow is referred to as run up flowl ¢he present paper
aims at studying this flow in the context of a couple stress fluising Laplace transform
technique, the expression for velocity is obtained in Leplaansform domain which is
later inverted to the space time domain using a numericaloaigh. The variation of
velocity with respect to various flow parameters is presetiieough graphs.
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1 Introduction

The growing importance of the use of non-Newtonian fluids wdern technology and
industries has led various researchers to attempt divensepfloblems related to several
non-Newtonian fluids. One such fluid that has attracted tlem@dn of research workers
in fluid mechanics during the last four decades is the coupéss fluid. The theory
of couple stress fluids initiated by Stokes [1], is a geneadilbn of the classical theory
of viscous fluids, which allows for the presence of couplesses and body couples in
the fluid medium. The concept of couple stresses arises dtletway in which the
mechanical interactions in the fluid medium are modeled.his theory the rotational
field is defined in terms of the velocity field itself and theatiin vector equals one
half the curl of the velocity vector. The stress tensor hered longer symmetric. An
excellent introduction to this theory is available in themagraph “Theories of Fluids
with Microstructure — An Introduction” written by Stokes][BRimself. Rao and lyengar
[3] have made analytical and computational studies of dweouple stress fluid flows
dealing with a class of axisymmetric problems. Nabil et4ldiscussed the effects of
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couple stresses on pulsatile hydro magnetic Poiseuille flB@ame salient references to
couple stress flows through tubes and channels can be se¢okies$2]. This theory
has several industrial and scientific applications as welich comprise pumping fluids
such as synthetic fluids, polymer thickened oils, liquidstay, animal blood, synovial
fluid present in synovial joints and the theory of lubricatidNaduvinamani et al. [5-7],
Naduvinamani et al. [8, 9], Lin and Hung [10]).

In lubrication theory and in many physical situations wheweecome across slip
flows, there arises a class of problems referred to as “rumdgsgin up flows”. Kazakia
and Rivlin [11] initiated the study of these flows and latevIRi [12—14] elaborately
studied the run-up and spin-up flows of viscoelastic fluidsvieen rigid parallel plates
and in circular geometries. Ramacharyulu and Raju [15]dtigated the run-up flow of a
viscous incompressible fluid in a long circular cylinder ofpus material. Ramakrishna
[16] discussed the run up and spin up flows related to a dustpus fluid.

Prompted by the recent researches in couple stress fluid fited earlier, in
the present paper, we examine the run-up flow of an incomiptesuple stress fluid
between two infinite rigid parallel plates. The flow is assdrteebe initially induced by a
constant pressure gradient between two infinite rigid peljallates. After the steady state
is attained, the pressure gradient is suddenly withdravehthe parallel plates are set
to move instantaneously with different velocities in theedtion of the applied pressure
gradient. The time dependence of the resultant flow is ifyesd.

2 Mathematical formulation of the problem

The equations of motion that characterize a couple stress[fliflow are similar to the
Navier-Stokes equations and are given by

dp L
— 1
3 Trdv(@ =0, 1)
d(j r 1 _ . (s) 1 . -
i of + 3 curl(pé) + div (T s ) + 3 curl(dw (M)), (2)

wherep is the density of the fluid;(*®) is the symmetric part of the force stress diad and
M is the couple stress diad arfidé are the body force per unit mass and body couple per
unit mass respectively.

The constitutive equations concerning the force sttgsand the rate of deforma-
tion tensord,; are given by:

. 1
tij = —pdij + Adiv (9)dij + 2pdi; — 5Eiik [m e + dnwi v + peg). (3)
The couple stress tensor that arises in the theory has e loonstitutive relation
1
mij = gmbij + diwji + 4 wi;. (4)

In the abovey = % curl(q) is the spin vectony; ; is the spin tensop is the fluid pressure

andpcy, is the body couple vector. The quantitieandy are the viscosity coefficients and
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1,1’ are the couple stress viscosity coefficients. These mhtetstants are constrained
by the inequalities,

p>0, 3X+2u>0, n>0, [g|<n. (5)

There is a length parameter /n/u, which is a characteristic measure of the polarity
of the fluid model and this parameter is identically zero & ¢ase of non-polar fluids.

If the fluid is incompressible, in the absence of body foraes laody couples the
above field equations (1) and (2) reduce to

div (q) = 0, (6)
p [% + (q.Vq)} =— grad (p) — p curl(curl(g)) —n curl (curl (curl (curl(q)))). (7)

The boundary conditions usually employed in the solutionthese equations are that
the velocityg at the boundary equals to the velocity of the boundary and the couple
stresses vanish on the boundary [2].

Consider the flow of an incompressible couple stress fluii@en two infinite rigid
parallel plates) = —k andy = k along the direction of-axis. Since the flow is along
the z-direction, we take the velocity = (u(y,t),0,0), which satisfies the continuity
equation (6). It is seen that the equation governifg ¢) is given by

ou dp 0%u 0*u

Pot = ar Moy Mot ®)
The fluid is set in motion by a constant pressure gradiefetween two infinite rigid
parallel plates. When the flow is fully developed, the presguadient is suddenly with-
drawn and at the same time the parallel plates are impuwséetlto move with different
velocities,, W, respectively, in the direction of the applied pressure igrad Using
the following non-dimensional variables,

u pk? 1w K

u= Eu’, y=rky, x=ki, t= 715/7 p= Wp/’ =7 9)
equation (8) reduces to,

a / 8 / 62 / 1 84 ’

gu__ @ v dv (10)

8t' axl ay/Q a2 ay/4
wherel? = ﬁ Neglecting the primes, the equation (10) takes the form

0 0 0? 10*

w_ 9  ou u (11)

%" 0r o oyt

The run up flow problem considered will be solved presumireg the couple
stresses vanish on the boundary in addition to the no-sligiton on the boundary.
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3 Initial state for the run-up flow

In the initial state, we consider the steady flow of an incogspible couple stress fluid
between two infinite rigid parallel plates under constaespure gradier®. Therefore

p
= and — — =G. 12
w=u(y) o (12)
¥
r
y=1
—_—
— 0,0
., I
[ &3 x
y=-1
Fig. 1. Initial state of run up flow.
The flow is characterized by the momentum equation
d*u  ,d%u 9
The general solution to the equation (13) is seen to be
—a a G 2
u(y) = A+ By + Ce erDeyf;y, (14)

whereA, B, C, D are arbitrary constants to be determined using the bourdagitions.

u(£1) =0 (no-slip condition)

d? -
d_g =0 at y =41 (vanishing of couple stresses on the boundary)
Y

(15)

The initial state for run-up flow (14) employing boundary ddions (15) is
_ Gl o 2 /( cosh(ay)
uly) = 2 {(1 4 ) a? (1 cosh(a) /| (16)

4  Run-up flow

The bounding plates which are hitherto stationary are isipely set in motion along the
direction of applied pressure gradient with different \o#ies 11, and W, respectively
while the applied pressure gradient is instantaneouslydsétwn. This allows us to take,

u=u(y) and ——x:G.
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Y
ry=1 — W,
— (&, 0,0 —
X
y=-1 — ¥,

Fig. 2. Run up flow.

Now the velocity fieldu(y, t) satisfies the equation

otu 0% 20U
S S U s 17
ot Yoz T Yo (47
together with the boundary conditions
u(—1,t) = WoH(t), u(l,t)=W1H(t) (no-slipcondition)
d%u .
F 0aty==1 (vanishing of couple stresses
4 on the boundary)

(18)

whereH (t) is the Heaviside function given by

1 f
H(t):{ or t >0,

0 otherwise

Taking Laplace transforms with respectt®f the equations (17) and (18), we get

d*a d%u
d—yZ — a2d—y1; + a*su = a*u(y,0) (29)

with conditions

Wi W : .
u(—1,s) = —2, u(l,s) = — (no-slip condition)
S S
, (20)
d*u .
d—Z =0aty==1 (vanishing of couple stresses
Y

on the boundary)

As u(y,0) = initial (steady state) velocity for run-up flow u(y), using (16) we obtain,
da  ,d%u ., 5G o 2 cosh(ay)
-2 i=a—|(1— -z h(a) - ——22 ) |. 21

a + a”su a 2 |:( Yy ) a (COt (a’) Smh(a) ):| ( )
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The solution of equation (21) with conditions (20) is given b

iy, ) = - i - { Wo ;;Wl { 5 cosh(ay) o2 cosh(ﬂy)]

cosh cosh 3
- Wi =Wo [ psinh(ay)  ,sinh(8y)
2s sinh a @ sinh g
1 2 cosh(ay) cosh(By)
Gl = 2 2
* (52 * s(s+ 2(12)) [ﬁ cosha O cosh 3
B 2Ga®  [cosh(ay) ~ cosh(By)
s(s+2a?) | cosha cosh g8
Gl/1 > 2 2 (1 1 cosh(ay)
bl (. A [ cosay) 22
3 [(s s 52) a2(s s+ 2a% cosha /| (22)
where
a 4s a 4s k?
=—=\[1+4/1- =5, B=-—F4\/1-4/1-= and o’ = 7. 23

As the expression(y, s) is in terms ofa and 5 each one of which depends upen
the analytical inversion seems to be difficult. Hence, weehased a standard numerical
inversion procedure suggested by Honig and Hirdes [17] terdene the velocity in
space time domain.

Numerical inversion procedure

In order to inverti(y, s), we adopt a numerical inversion technique due to Honig and
Hirdes [17]. Using this method, the invergé) of the Laplace transfornfi(s) is appro-
ximated by

bt N ik ke
£t i—lléf(b)JrRe(Zf(bJrf—l)exp<“z—1t)>], 0<t <2t (24)
k=1

whereN is sufficiently large integer chosen such that,

e’ Re {f(b + thV_lw) exp (Z]::Ttﬂ <e, (25)

wheree is a prescribed small positive number that correspondsstadigree of accuracy
required. The parametéris a positive free parameter that must be greater than the rea
part of all the singularities of (s). The optimal choice of was obtained according to the
criteria described in [17].
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5 Results and discussion

We have inverted the functia(y, s) to getu(y, t) for any given timet andy between-1
and1 using the numerical approach proposed by Honig and Hirdggdkings = 10~5.
The choice ob has to be guided by the parametétsa as well as time and the spacial
coordinatey. For each one of the sets of parameters under considerdit@quantityb is
chosen to be sufficiently large so that the difference betviwe successive values af
obtained for two consecutive choicesids sufficiently small.

We observe from Fig. 3 that the velocity increases as timesases at any for a
fixed value ofa, G and withiWy, = W; = 10. In view of the equality of the velocities of
the upper and lower plates, as expected, the velocity psafile symmetric aboytaxis.

VelocImy-u
velocImy-u

F—

15 - 05 diftance-y™

didtance-y""® 1 115 -1 -0,5 1 1,

Fig. 3. Variation of velocity with distance at  Fig. 4. Variation of velocity with distance
different times fora = 0.5, Wy = W; = 10, fort =1.0,a = 0.5, Wo = Wy = 10.
G =2.

velocity-u
velocy-u

4
T T SET T T

-1.5 -1 -0.5

. 0 05
dlgtance-yQ s distance-y

Fig. 5. Variation of velocity with distance  Fig. 6. Variation of velocity with distance
fort =1.0,G =2, Wy = Wy = 10. fort =1.0,G = 2, Wy = Wy = 10.
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Fig. 4 indicates that for a fixeld « and, = W, = 10, asG increases the velocity
decreases for any. This is in accordance with the fact that an increasé&implies a
decrease in pressure which naturally results in a decréasdouity.

From Figs. 5, 6, 7 and 8 we notice that the velocity decreasesrecreases from
0.1 to 0.4. Whena increases front).4 to 1.2, for anyy, the velocity increases. From
that stage onwards, asincreases from.2 to higher values, the velocity is showing a
decreasing trend. The valuesmf= 0.4 anda = 1.2 seem to be critical values where the
trend of the velocity appears to be changing.

-==-a=1.6|
—m—a=1.3
—&— a=2.0|

a=2.0
====a=4.0
—— a=6.0
—&—a=8.0

VEIDCITy-U
VEIOCITY-U

e

thstancxe-;?r'5 ! o5 - 05 di.@tanc:e-&5 ! T

Fig. 7. Variation of velocity with distance Fig. 8. Variation of velocity with distance
fort = 1.0,G =2, Wo = W1 = 10. fort = 1.0,G: 2, Wo = W1 = 10.

6 Conclusions

The run-up flow of an incompressible couple stress fluid betwsvo infinite parallel
plates is studied using Laplace transform technique. Aitalyexpressions for the fluid
velocity field is obtained in Laplace transform domain. sk standard numerical
inversion procedure, the velocity field is obtained for thace time domain numerically.
It is interesting to note that there is a critical intervaltbé& couple stress parameter
wherein, as: increases the velocity increases; outside this critidalriral, for the range
of values ofa taken, as: increases, the velocity decreases.
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