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Run up flow of a couple stress fluid
between parallel plates

M. Devakar1, T.K.V. Iyengar2

1Department of Mathematics, Visvesvaraya National Institute of Technology
Nagpur-440 010, India

m devakar@yahoo.co.in
2Department of Mathematics, National Institute of Technology

Warangal-506 004, India
iyengarnitw@yahoo.co.in

Received:2009-05-31 Revised:2009-11-16 Published online: 2010-03-04

Abstract. Consider the flow of an incompressible fluid between two parallel plates,
initially induced by a constant pressure gradient. After steady state is attained, the
pressure gradient is suddenly with drawn while the plates are impulsively started
simultaneously. The arising flow is referred to as run up flow and the present paper
aims at studying this flow in the context of a couple stress fluid. Using Laplace transform
technique, the expression for velocity is obtained in Laplace transform domain which is
later inverted to the space time domain using a numerical approach. The variation of
velocity with respect to various flow parameters is presented through graphs.
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1 Introduction

The growing importance of the use of non-Newtonian fluids in modern technology and
industries has led various researchers to attempt diverse flow problems related to several
non-Newtonian fluids. One such fluid that has attracted the attention of research workers
in fluid mechanics during the last four decades is the couple stress fluid. The theory
of couple stress fluids initiated by Stokes [1], is a generalization of the classical theory
of viscous fluids, which allows for the presence of couple stresses and body couples in
the fluid medium. The concept of couple stresses arises due tothe way in which the
mechanical interactions in the fluid medium are modeled. In this theory the rotational
field is defined in terms of the velocity field itself and the rotation vector equals one
half the curl of the velocity vector. The stress tensor here is no longer symmetric. An
excellent introduction to this theory is available in the monograph “Theories of Fluids
with Microstructure – An Introduction” written by Stokes [2] himself. Rao and Iyengar
[3] have made analytical and computational studies of diverse couple stress fluid flows
dealing with a class of axisymmetric problems. Nabil et.al [4] discussed the effects of
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couple stresses on pulsatile hydro magnetic Poiseuille flow. Some salient references to
couple stress flows through tubes and channels can be seen in Stokes [2]. This theory
has several industrial and scientific applications as well,which comprise pumping fluids
such as synthetic fluids, polymer thickened oils, liquid crystal, animal blood, synovial
fluid present in synovial joints and the theory of lubrication (Naduvinamani et al. [5–7],
Naduvinamani et al. [8,9], Lin and Hung [10]).

In lubrication theory and in many physical situations wherewe come across slip
flows, there arises a class of problems referred to as “run up and spin up flows”. Kazakia
and Rivlin [11] initiated the study of these flows and later Rivlin [12–14] elaborately
studied the run-up and spin-up flows of viscoelastic fluids between rigid parallel plates
and in circular geometries. Ramacharyulu and Raju [15] investigated the run-up flow of a
viscous incompressible fluid in a long circular cylinder of porous material. Ramakrishna
[16] discussed the run up and spin up flows related to a dusty viscous fluid.

Prompted by the recent researches in couple stress fluid flowscited earlier, in
the present paper, we examine the run-up flow of an incompressible couple stress fluid
between two infinite rigid parallel plates. The flow is assumed to be initially induced by a
constant pressure gradient between two infinite rigid parallel plates. After the steady state
is attained, the pressure gradient is suddenly withdrawn and the parallel plates are set
to move instantaneously with different velocities in the direction of the applied pressure
gradient. The time dependence of the resultant flow is investigated.

2 Mathematical formulation of the problem

The equations of motion that characterize a couple stress fluid [1] flow are similar to the
Navier-Stokes equations and are given by

dρ

dt
+ ρ div (q̄) = 0, (1)

ρ
dq̄

dt
= ρf̄ +

1

2
curl(ρc̄) + div

(

τ (s)
)

+
1

2
curl

(

div (M̄)
)

, (2)

whereρ is the density of the fluid,τ (s) is the symmetric part of the force stress diad and
M̄ is the couple stress diad and̄f , c̄ are the body force per unit mass and body couple per
unit mass respectively.

The constitutive equations concerning the force stresstij and the rate of deforma-
tion tensordij are given by:

tij = −pδij + λdiv (q̄)δij + 2µdij −
1

2
εijk[m,k + 4ηwk,rr + ρck]. (3)

The couple stress tensor that arises in the theory has the linear constitutive relation

mij =
1

3
mδij + 4ηwj,i + 4η′wi,j . (4)

In the abovew = 1
2 curl(q̄) is the spin vector,wi,j is the spin tensor,p is the fluid pressure

andρck is the body couple vector. The quantitiesλ andµ are the viscosity coefficients and
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η, η′ are the couple stress viscosity coefficients. These material constants are constrained
by the inequalities,

µ ≥ 0, 3λ + 2µ ≥ 0, η ≥ 0, |η′| ≤ η. (5)

There is a length parameterl =
√

η/µ, which is a characteristic measure of the polarity
of the fluid model and this parameter is identically zero in the case of non-polar fluids.

If the fluid is incompressible, in the absence of body forces and body couples the
above field equations (1) and (2) reduce to

div (q̄) = 0, (6)

ρ

[

∂q̄

∂t
+(q̄.∇q̄)

]

=− grad(p)−µ curl
(

curl(q̄)
)

−η curl
(

curl
(

curl
(

curl(q̄)
)))

. (7)

The boundary conditions usually employed in the solution ofthese equations are that
the velocityq̄ at the boundary equals to the velocityq̄B of the boundary and the couple
stresses vanish on the boundary [2].

Consider the flow of an incompressible couple stress fluid between two infinite rigid
parallel platesy = −k andy = k along the direction ofx-axis. Since the flow is along
the x-direction, we take the velocitȳq = (u(y, t), 0, 0), which satisfies the continuity
equation (6). It is seen that the equation governingu(y, t) is given by

ρ
∂u

∂t
= − ∂p

∂x
+ µ

∂2u

∂y2
− η

∂4u

∂y4
. (8)

The fluid is set in motion by a constant pressure gradientG between two infinite rigid
parallel plates. When the flow is fully developed, the pressure gradient is suddenly with-
drawn and at the same time the parallel plates are impulsively set to move with different
velocitiesW1, W0 respectively, in the direction of the applied pressure gradient. Using
the following non-dimensional variables,

u =
µ

ρk
u′, y = ky′, x = kx′, t =

ρk2

µ
t′, p =

µ2

ρk2
p′, a2 =

k2

l2
(9)

equation (8) reduces to,

∂u′

∂t′
= − ∂p′

∂x′
+

∂2u′

∂y′2
− 1

a2

∂4u′

∂y′4
, (10)

wherel2 = η

µ
. Neglecting the primes, the equation (10) takes the form

∂u

∂t
= − ∂p

∂x
+

∂2u

∂y2
− 1

a2

∂4u

∂y4
. (11)

The run up flow problem considered will be solved presuming that the couple
stresses vanish on the boundary in addition to the no-slip condition on the boundary.
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3 Initial state for the run-up flow

In the initial state, we consider the steady flow of an incompressible couple stress fluid
between two infinite rigid parallel plates under constant pressure gradientG. Therefore

u = u(y) and − ∂p

∂x
= G. (12)

Fig. 1. Initial state of run up flow.

The flow is characterized by the momentum equation

d4u

dy4
− a2 d2u

dy2
− Ga2 = 0. (13)

The general solution to the equation (13) is seen to be

u(y) = A + By + Ce−ay + Deay − G

2
y2, (14)

whereA, B, C, D are arbitrary constants to be determined using the boundaryconditions.

u(±1) = 0 (no-slip condition),
(15)

d2u

dy2
= 0 at y = ±1 (vanishing of couple stresses on the boundary).

The initial state for run-up flow (14) employing boundary conditions (15) is

u(y) =
G

2

[

(

1 − y2
)

− 2

a2

(

1 − cosh(ay)

cosh(a)

)]

. (16)

4 Run-up flow

The bounding plates which are hitherto stationary are impulsively set in motion along the
direction of applied pressure gradient with different velocitiesW0 andW1 respectively
while the applied pressure gradient is instantaneously withdrawn. This allows us to take,

u = u(y) and − ∂p

∂x
= G.
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Fig. 2. Run up flow.

Now the velocity fieldu(y, t) satisfies the equation

∂4u

∂y4
− a2 ∂2u

∂y2
= −a2 ∂u

∂t
(17)

together with the boundary conditions

u(−1, t) = W0H(t), u(1, t) = W1H(t) (no-slip condition),
(18)

d2u

dy2
= 0 at y = ±1 (vanishing of couple stresses

on the boundary),

whereH(t) is the Heaviside function given by

H(t) =

{

1 for t > 0,

0 otherwise.

Taking Laplace transforms with respect tot, of the equations (17) and (18), we get

d4ū

dy4
− a2 d2ū

dy2
+ a2sū = a2u(y, 0) (19)

with conditions

ū(−1, s) =
W0

s
, ū(1, s) =

W1

s
(no-slip condition),

(20)
d2ū

dy2
= 0 at y = ±1 (vanishing of couple stresses

on the boundary).

As u(y, 0) = initial (steady state) velocity for run-up flow= u(y), using (16) we obtain,

d4ū

dy4
− a2 d2ū

dy2
+ a2sū = a2 G

2

[

(

1 − y2
)

− 2

a

(

coth(a) − cosh(ay)

sinh(a)

)]

. (21)
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The solution of equation (21) with conditions (20) is given by

ū(y, s) =
1

β2 − α2

{

W0 + W1

2s

[

β2 cosh(αy)

coshα
− α2 cosh(βy)

coshβ

]

− W1 − W0

2s

[

β2 sinh(αy)

sinhα
− α2 sinh(βy)

sinhβ

]

+ G

(

1

s2
+

2

s(s + 2a2)

)[

β2 cosh(αy)

coshα
− α2 cosh(βy)

coshβ

]

− 2Ga2

s(s + 2a2)

[

cosh(αy)

coshα
− cosh(βy)

coshβ

]}

+
G

2

[(

1

s
− y2

s
− 2

s2

)

− 2

a2

(

1

s
− 1

s + 2a2

cosh(ay)

cosha

)]

, (22)

where

α =
a√
2

√

1 +

√

1 − 4s

a2
, β =

a√
2

√

1 −
√

1 − 4s

a2
and a2 =

k2

l2
. (23)

As the expression̄u(y, s) is in terms ofα andβ each one of which depends upons,
the analytical inversion seems to be difficult. Hence, we have used a standard numerical
inversion procedure suggested by Honig and Hirdes [17] to determine the velocity in
space time domain.

Numerical inversion procedure

In order to invertū(y, s), we adopt a numerical inversion technique due to Honig and
Hirdes [17]. Using this method, the inversef(t) of the Laplace transform̄f(s) is appro-
ximated by

f(t) =
ebt

t1

[

1

2
f̄(b) + Re

(

N
∑

k=1

f̄

(

b +
ikπ

t1

)

exp

(

ikπt

t1

)

)]

, 0 < t1 ≤ 2t, (24)

whereN is sufficiently large integer chosen such that,

ebtRe

[

f̄

(

b +
iNπ

t1

)

exp

(

iNπt

t1

)]

< ε, (25)

whereε is a prescribed small positive number that corresponds to the degree of accuracy
required. The parameterb is a positive free parameter that must be greater than the real
part of all the singularities of̄f(s). The optimal choice ofb was obtained according to the
criteria described in [17].
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5 Results and discussion

We have inverted the function̄u(y, s) to getu(y, t) for any given timet andy between−1
and1 using the numerical approach proposed by Honig and Hirdes [17] takingε = 10−6.
The choice ofb has to be guided by the parametersG, a as well as timet and the spacial
coordinatey. For each one of the sets of parameters under consideration,the quantityb is
chosen to be sufficiently large so that the difference between two successive values ofu
obtained for two consecutive choices ofb is sufficiently small.

We observe from Fig. 3 that the velocity increases as time increases at anyy for a
fixed value ofa, G and withW0 = W1 = 10. In view of the equality of the velocities of
the upper and lower plates, as expected, the velocity profiles are symmetric abouty-axis.

Fig. 3. Variation of velocity with distance at
different times fora = 0.5, W0 = W1 = 10,

G = 2.

Fig. 4. Variation of velocity with distance
for t = 1.0, a = 0.5, W0 = W1 = 10.

Fig. 5. Variation of velocity with distance
for t = 1.0, G = 2, W0 = W1 = 10.

Fig. 6. Variation of velocity with distance
for t = 1.0, G = 2, W0 = W1 = 10.
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Fig. 4 indicates that for a fixedt, a andW0 = W1 = 10, asG increases the velocity
decreases for anyy. This is in accordance with the fact that an increase inG implies a
decrease in pressure which naturally results in a decrease of velocity.

From Figs. 5, 6, 7 and 8 we notice that the velocity decreases as a increases from
0.1 to 0.4. Whena increases from0.4 to 1.2, for anyy, the velocity increases. From
that stage onwards, asa increases from1.2 to higher values, the velocity is showing a
decreasing trend. The values ofa = 0.4 anda = 1.2 seem to be critical values where the
trend of the velocity appears to be changing.

Fig. 7. Variation of velocity with distance
for t = 1.0, G = 2, W0 = W1 = 10.

Fig. 8. Variation of velocity with distance
for t = 1.0, G = 2, W0 = W1 = 10.

6 Conclusions

The run-up flow of an incompressible couple stress fluid between two infinite parallel
plates is studied using Laplace transform technique. Analytical expressions for the fluid
velocity field is obtained in Laplace transform domain. Using a standard numerical
inversion procedure, the velocity field is obtained for the space time domain numerically.
It is interesting to note that there is a critical interval ofthe couple stress parametera,
wherein, asa increases the velocity increases; outside this critical interval, for the range
of values ofa taken, asa increases, the velocity decreases.
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