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Abstract. This paper investigates the problem of globally asymp#diticstable in
probability by state-feedback for a class of stochastibtagder nonlinear systems with
a ratio of odd integers power. By extending the adding a pémtegrator technique and
choosing an appropriate Lyapunov function, a linear smetdte-feedback controller is
explicitly constructed to render the system globally astotigally stable in probability.
Furthermore, we address the problem of state-feedbacksenaptimal stabilization in
probability. A simulation example is provided to show théeefiveness of the proposed
approach.

Keywords: stochastic high-order nonlinear systems, state-feedicackrol, inverse
optimal stabilization.

1 Introduction
Consider the following stochastic high-order nonlineatsyns described by:

de; = (di(O)afy + fi(@) dt + ¢i(7) dw, i=1,...,n—1,
T

1

dzy, = (dn(t)u” + fo(2)) dt + ¢y (2)" dw, @
wherex = (z1,...,7,)7 € R® andu € R are the system state, and control input,

respectively.z; = (z1,...,2;)", i =1,...,n, T, =z. 71 € R* £ {g € R: ¢ > 1,

q = - > 1 with positive odd integers, m}. w is anm-dimensional standard Wiener
process defined on a complete probability spdzeF, P) with 2 being a sample space,
F being a filtration, andP being a probability measuré; : R? — R, andg; : R? — R™,

*This work was supported by National Natural Science Fouodatf China (No.60774010, 10971256,
60974028), Natural Science Foundation of Jiangsu Prov{hte BK2009083), Program for Fundamental
Research of Natural Sciences in Universities of Jiangswiftce (No.07KJB510114), Shandong Provincial
Natural Science Foundation of China.
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i = 1,...,n, are assumed to be at least functions with f;(0) = 0 and¢;(0) = 0.

d;(t) (i = 1,...,n)is aC! function of timet, which represents an unknown time-varying
parameter.
Whenr = dy = ... = d, = 1, system (1) reduces to the well-known normal

form, whose design of globally asymptotically stable sfatedback controller was firstly
given by [1]. Since then, by adopting different approachassh research work has been
focused on the state-feedback for more general stochastimear systems under various
structures or growth conditions, e.g., [2—8] and refersrtberein.

In the case of being positive odd integer and > 1, similar to its deterministic
counterpart in [9] and the related papers, some intere$iayures of (1) are that the
Jacobian linearization of the system is neither contrédlaor feedback linearizable, so
the existing design tools are hardly applicable to (1). R#ége[10] addressed state-
feedback stabilization for high-order stochastic nordirgystems with stochastic inverse
dynamics for the first time, [11-13] considered respedfitie¢ state-feedback stabiliza-
tion problem for more general systems with different sysstmctures. All the existing
results on state-feedback stabilization are achievedruhdeassumption that the power
of stochastic nonlinear system is positive odd integer. [8ior more general stochastic
high-order nonlinear system in which system’s power is @gtio of odd integers (i.e.
r € R*), to the best of authors’ knowledge, the problem of stageiiack stabilization
has not yet been considered.

In this paper, by extending the adding a power integratdmtegie and choosing an
appropriate Lyapunov function, we develop a systematimdesgorithm that achieves a
smooth state-feedback controller, which ensures thatdbdilerium at the origin of the
closed-loop system is globally asymptotically stable iolability. Furthermore, we also
address the problem of state-feedback inverse optimaligtgion in probability.

Notations. The following notations will be used throughout the pager. denotes the
set of all nonnegative real numbers dR@ denotes the real-dimensional space. For a
given vector or matrixX, X’ denotes its transpos&r{X} denotes its trace whek is
square, andlX | is the Euclidean norm of a vectof. C* denotes the set of all functions
with continuousith partial derivatives.C denotes the set of all function® 1 — R,
which are continuous, strictly increasing and vanishingeab; K, denotes the set of
all functions which are of clas& and unbounded{ L denotes the set of all functions
B(s,t): Ry xRy — Ry, which are oflC for each fixed, and decrease to zerotas> co

for each fixeds. For a classC,, function~ whose derivative exists and is also a class
Ko function, ., denotes the transfority,(s)=s(%) " (s)—v((%)~*(s)), where(¥)~1(s)

stands for the inverse function 65!{;(5—5) for any variables, LV (z) £ % ().

2 Preliminary results and useful lemmas
Consider the following stochastic nonlinear system

de = f(x)dt + g(z)Tdw, 2(0) = 29 € R", 2)
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wherez € R” is the state of the system,is anm-dimensional standard Wiener process
defined on the complete probability spaée F, P). The Borel measurable functions
f:R®™ — R™andg”: R® — R™*™ are locally Lipschitz inc € R”.

The following definitions and lemmas will be used throughthetpaper.

Definition 1 ([14]). For any givenl/ (z) € C? associated with stochastic system (2), the
differential operatol is defined as:

V@) 2 521w + 5 {0 G o) | 3)

Definition 2 ( [14]). For the stochastic system (2) with(0) = 0, g(0) = 0, the
equilibriumz(t) = 0 of (2) is globally asymptotically stable (GAS) in probabyjlif
for anye > 0, there exists a clag§ L function3(-, -) such thatP{|z(t)| < B(|zol,t)} >
1—e¢foranyt >0 andzg € R™\ {0}.

Lemma 1([15]). Forz € R,y € R, andp > 1 is a constant, the following inequality
hold:

|z 4yl < 2°7 2P + 4P,
if p e R*, then
|z — y|P < 2P aP — 7).

Lemma 2 ( [15]). Letc, d be positive constants, given any positive numper 0, the
following inequality holds:

|c+d'

C _c
|2[y|* < H—dleI”d + |y

H—dV
Lemma 3([16]). Letzy,...,x,,p be positive real numbers, then

(z1+ ...+ 2,)? <max{nP~ ' 1} (2] +... +2P).
Lemma 4([15]). Letp € R* andz, y be real-valued functions, then for a constant 0

2P — yP| < plo —y|(aP"t +4771)
<o —ylllz -y +y".

Lemma 5 ( [14]). Consider the stochastic systé®), if there exist a2 functionV (z),
classK functionsa; andas, constantg; > 0 ande; > 0, and a nonnegative function
W (z) such that

ar(|z]) < V(z) < a(lz]), LV < —aW(z)+ c2

then
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(i) For (2), there exists an almost surely unique solutiorf@mo);

(i) Whency = 0, f(0) = 0, g(0) = 0, and W(z) = as(|z|), where as(-)
is a class £ function, the equilibriumxz = 0 is GAS in probability and
P{lim;_, |z(t)] =0} = 1.

Consider the following stochastic nonlinear system

dz = f(2)dt + g1(z) dw + go(z)u"dt, zp € R", 4)

wherez andw have the same definitions as those in (2) R™ — R", §; : R" — R*m
andg.: R™ — R™ are some locally Lipschitz Borel measurable functions, asl the
input. We give the result on the problem of inverse optimab#ization in probability.

Lemma 6. Consider the control law

N|=

el = [R(x)‘l(LQQV)TM'(Lé?V)R(:c -

W=

D] .
|(Lg. V)R () } ’ ©

whereV (z) is a Lyapunov function candidate(-) is a class, function whose deriva-
tive exists and is also a cla$s., function, andR(x) = R(z)” > 0 is a matrix-valued
function. If the control law(5) achieves GAS in probability fd¢) with respect td/ (),
then the control law

| 2

=

W =a*(e) = | R (L)

() ((Lg,V)R(x)~
|(Lg,V)R(z)~ 2|

solves the problem of inverse optimal stabilization in @doitity for (4) by minimizing the
cost function

() E{]O[l(:c)JrﬂQ'y(% |R(x)%u’“|>} dT}, )

0

”]’) 8>2 (6

where

1) = 28] (Lo V)R 3]~ LV - %Tr{@mx)ﬂ;v;%(x)}]

1

+B(8 = 2),(|(Lg, V) R(z) "2 |).

Proof. Choosingu = «", (4) becomes the same form as (3.66) in Theorem 3.9 of [14],
hence this lemma can be proved easily. O

3 Controller design and analysis

The objective of this paper is to design a state-feedbackalter for system (1) such
that the closed-loop system is GAS in probability at the iarand the controller is also
optimal in probability.

In this paper, we need the following Assumptions.

42



State-feedback stabilization for stochastic high-oraetinear systems

Assumption 1. For eachd;(t), i = 1,...,n, there are positive real numbeps and y;
such that

0< )\ < dl(t) < .

Assumption 2. Givenr defined in(1), there are nonnegative constants and a, such
that

+

i i

147

|fi(z:)] < ax E lTm |, [0i(T)] < az E || 2.
m=1 m=1

Remark 1. Assumption 2 is similar to Assumption 1 in [13], whose sigrafice and
necessity is illustrated in that paper.

DefineA £ min{\y,..., A\ }, = max{u1,...,u,}. We give the design proce-
dure of controller as follows.

Step 1. Introducingé; = 27 and constructing the first Lyapunov functiéfi(xz;) =
iklfj*, wherek; > 0 is a constant, with the help of (1), (3) and Assumption 2, it ba
verified that

LVI = k& (da(t)ah + fi(1)) + %klffTr{% (@1)¢1(21)" }
= (k&g + RE ) + Skl (o)
< k163 (di(t)xh — Aas") 4+ M &l ay” + <a1 + ;ag) k&t (8)

Choosing the first smooth virtual controller

+ (a1 + 3ad)ki \ 7
Z; = 7b1§17 bl - (CLI (a;k 2a2) 1) ) C1,1 > 0; (9)
1
and noting that-&3z5" > 0,0 < X < d;(t) < p, One gets
LVi < —ern& + k€ (di(t)ah — Axs")
< —enn& 7+ kada (€] (2 — 237)
< —e &1+ pka |6 |2 — 237, (10)
Step 2.Defineéy = zo — x5 = x5 + byz1. From (1) it follows that
dés = (do(t)zh + bidi ()2 + fo(T2) + by f1(21))dt
+ ((bg(.fg) + b1¢1 (ml))wa. (11)
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Choosing Lyanunov functiob (z1, z2) = Vi (z1) + ikzgg, wherek, > 0 is a constant,
by (3), (10) and (11), one has

LVo < — 1 1 &8 4 do () ko &3l + puka |61 2|2l — 257 | + bydy () ka3 )
) 3
+ kol (fo(Z2) + b1 fr(21)) + §k2§§ |2 (Z2) + big (a1)]? . (12)

Using Lemmas 1, 2, 4, Assumptions 1, 2, one obtains

pkalén |l — 57|

< pekr |6 fe — @5 (xg — 23)" " + a5

< pekr |6 [€a]” + peka b€ PTG

< (b2 +b221)E T + p2a ST, (13)
bids (t)k2€52%

< pbika|&2?|€ — bi&|”

<27 biko |6 (|&]” + [1&a ")

= 2" ki PTG [T|€2® 4+ 27 by koS

< b1 o&8TT 4 ponbtT, (14)
ko &3 (f2(Z2) + by fi(21))

< kol ((ar + arbr)&1]” + ar]a2|")

< k:2|§2|3((a1 +arby + 2" Lar b)) & + 2T_1a1|€2|r)

= arks (1 + b1 + 277107 |&1]7 &) + 2" Lay ko3t

< by 3887 4 po st (15)
~ 1a162(32) + bit (20)]?

< 3kat3 (63(72) + 0167 (21))

< 3koa3&3 ((2+b3)&H +225™)

< 3k2a§§§ ((2 + b? + 21+Tb}+r)€%+7‘ + 21+T£%+r)

= 8hoaz (2407 + 27T )G + 3 2 T haan T

< by 4l 4 poa&s T (16)

whereps 1, p2.2, 2.3, p2.4, b2,1.1, b2,2.1, b2,1,2, b21.3, b2 1,4 are some designed positive
constants. One substitutes (13)—(16) into (12) yields

LVa < —con&§M + kol (da(t)z — Mey”) + Mol + pat5t, (17)
whereps = pa1+p2.2+p23+p24, 21 =c11—b21,1—b221—b212—b213—b214 >0,
which together with the smooth virtual controller

. et )"
Ty = —byla, b2 = (QQTQW) , €22 >0, (18)
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and—&x3" > 0,0 < A < da(t) < p, leads to
LV < —02,1519’“ — 02,2§S+T + ko3 (d2(t)$§ - )\x?)
—o 1 &1 — o283 + koda(t)E5 (xf — 2%T)

<
< =& — o0& + pkin| &P | — 23T (19)

Stepi (¢ = 3,...,n). Suppose that at step- 1, there exist a set of virtual controllers
x7,...,z; defined by

2] =0, & =21 — 2] =21,
vy = —bk—18k—1, S =Tk — T =k +bp—1§k—1, kK =2,...,4, (20)

such that théi — 1)th Lyapunov function candidaté _, (z1,...,2;—1) = 42 kjg;l
satisfies

LV < *Cifl,lfliprr - Ci71,2§g+r — . T G141 fjf
+ pki— &1 Plal — 277, (21)
whereby, ..., b;—1 > 0are designed parametets,; ;, k;, (j = 1,...,i—1) are positive

constants. In the sequel, we will prove that (21) still hdlsthe ith Lyapunov function
candidate

1
V;(l'lw-';l'i):V;fl(xlw”axifl)JFZkif?- (22)
By (20) and (1), one has
Si=xi+bi1xi 1+ +bi1.. . b, (23)
and

i—1
dgl ( z+1+z bt 1- bkdk )xk+1+ft T; +sz 1- -bkfk(xk)>dt

k=1

T

( z; +th 1-.-brpou xk)) dw. (24)

From (21), (22) and (24), one gets

i—1
LV <= i & + di(Oki&laly g + pkioa | Pla] — 2}
j=1
i—1
+ k& th 1o bidi (D)2 + & (f, Z; +Zbl 1. bkfk(%))
k=1
2
+35 k§ +Zb¢ 1 bron(Tr) (25)
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We concentrate on the last four terms in (25). Using (20), toas 1-4 and Assump-
tions 1, 2, one gets

*7‘|

pki—1|&aPla] — @
< puckia |&a PG [ (2 — @) 2!
S (bz i—1,1 + b’L 7, 1)§3+T + Pi,1 §3+T7 (26)

kfszbz L brdy ()T

< k& Zbiq o b1 — brr|”
k=
i-1

<27 k| Z bit - b (1&kt|" + [brel")

= 2" ki &P (Bir - bab T & " + (Bi - b1+ b1 b3by T G
+ ...+ ( i— 1bi 2+bl+r)|§z 1|T+bz 1|€z| )
< b1 o8t A b1 26T 2T (27)

k§z< +sz 1 bk fr xk))
;i k
< ark;&| <Z|xm| +sz 1 kaij|T>
j=1

m=1

= alki|§z| ( ialz]” + dz,2,1|$2|r st diioialxia|” + |$Cz|r)

< a1ki|€i|3((di,1,1 + 2T_1di,2,1b71‘) €] + 27 (di,2,1 + di,3,1b§) [€2]"
2N (diim1g ) G|+ 16T

< bz-,ms?” A+ bii13E0 + pis€l (28)

2

e oula +Zb~ RNEN)

< 3k;&? <|¢)z (sz 1. below :ck)|> )

< 3kia3El (dip otV diopxy™ + .+ dim1pml T + iz )

< 3k;a36l ((di2 + 2Tdi,2,251+r)§%+r +27(dj 22 + diz byt )T
+...+2" (dii 1,2 + ibl"'r)fl+7 + 2%51-{-7«)

b a8 b1 a8 il (29)

Wherep; 1, pi,2, Pi,3, Pidr Dii—1,1, bii1s bi1,25 - bii—1,2, 051,35 -+ bijiz1,3, 01,45 - - -
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bi i—1,4 are positive constants with

Ci,1 = Ci—1,1 — bi,1,2 - bi,1,3 - bi,1,4 > 0,

Cii—2 = Ci—1,i—2 — bz’,i72,2 - bz’,i72,3 - bi,zez,zi >0,
Ciim1 = Ci—1,i—1 —bii—1,1 —bii1 —bii—1,2 —bii—1,3 —bii—1,4 >0, (30)

anddi71’1 = 1+Z;€_=11 bi—1...bp, di72’1 = 1+Z;€_=12 bi_1... _bk; ey di,ifl,l = 1+b;_q,
dino=(i—1) 0 k(b1 .. b))% 44, digo = (i—1) 4 b k(bi1...bg)>+i,...,
di;i—1,2 = (i—1)?b?_, +4. Substituting (26)—(30) into (25) and noting thag?x;7, > 0
and0 < A < d;(t) < u, the virtual controller

1
i = —bi&, b= <“TPZ) . G >0, (31)
7
leads to

LV; < —cin§Gt — =i & = i+ k& (di(t)xyy, — Aafly)

< —in& = =i & — i+ kidi (€D (2], — 2f)

i
< - Z Ci,jf?JrT + puks | &P |y — 234 (32)
j=1

wherep; = p; 1 + pi2 + pis + pia is a positive real number.
Wheni = n, by choosing the actual control law

1
* Cn,n + Pn "

u = l‘n+1 = *bngn; bn = <Tn> y Cn,n > 0, (33)
one has

LV, <= enildt, (34)

1=1
where
1 n

V;L(mla---;l‘n) = Zzlktgf (35)

andc, ;(i = 1,...,n) are positive real numbers.

Remark 2. For general systems, in the design procedure of contraliecan only give
the existence op; 1, pi2, pi3, andp; 4 (i = 2,...,n) obtained by using Lemmas 1-4
rather than their explicit definitions. While for a practiexample, by appropriately
choosing design parameteys,:, p; 2. pi3, andp; 4 (i = 2,...,n) can be concretely
obtained, so the state-feedback controller (33) can beeimghted, see Section 4 for the
details.
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We are now in a position to state the main result in this paper.

Theorem 1. If Assumptiond, 2 hold for the stochastic nonlinear syste@3, under the
smooth state-feedback controli&3), then

(i) The closed-loop system consistingdf, (9), (18), (20), (31)and(33)has an almost
surely unigue solution off), co) for any initial valuez;

(ii) The equilibrium at the origin of the closed-loop system isSG probability and
the states can be regulated to the origin almost surely, moeisely,

p{g&§;mmno}h

(i) Specially, whew;(t) = 1,i=1,...,n, the control law

w6 (T5m) L s (36)

guarantees that the equilibrium at the origin of the closedp system is GAS in
probability and also minimizes the cost functional

J(u) = E{/ |:l(x) +knb;3ﬁ2r«:3 (7“—3%3)_7(%) Tuv-+3]dr}, (37)
0

wherel(x) is defined in Lemmé&.

Proof. Using (1), (20), (34), (35) and Lemma 5, it is obvious thagfiy (ii) hold.
Now, we prove conclusion (iii). By (1), one gets

zy + fi(z1) o1 (21)T 0
de — : dt + : dw+ | ] wrat
IZ + fnfl(i'n71> Qﬁnfl(i'nfl)T 0
2 f(x)dt + g1 (z) dw + go(z)u” dt. (38)

Using (5), (35) and (38), one has

A
L.@z Vo = O g2 = kngiv (39)

and

1
r

w=—(k 1620, (ka3 R(x) "2 ])) 7, (40)
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whereR(z) > 0 is a scalar-valued function. Choosing

T r+3

’Y(S> = ’I“—i-BST’ (41)

one getg4)~!(s) = s"/3, which one substitutes into the definition/f(s) to obtain

r r r+3 3 r+3

— gg3 — 3 = 3 . 42
ly(s) = ss 13 3" (42)
Choosing
—is
R(z) = (’ ;?’kw> , 43)

by (40), (42), one has

B )
7+3T+3
< r—i—3g b”)

= - ngnv (44)

which has exactly the same form as (33). Since (44) achiex¢si@ probability, by (6),
(39), (41) and (43), one can get the inverse optimal comir¢86). From (7), (41) and
(43), one can obtain the cost function (37)1

Remark 3. Let us compare the main contributions in this paper with [{t8n the
following aspects: (i) We further to address the problematiesfeedback inverse optimal
stabilization in probability, which was not considered B]. (ii) The system’s power

in this paper is a ratio of odd integers, which is more gentahp, = ... = p, = p

in [13], wherep is a positive odd integer. (iii) All inequalities in [13] amnly suitable
for the case of being positive integer, while far being any positive real number, these
inequalities need to be reproved. (iv) Compared with [1B§ operations of most of
inequalities in the design procedure of controller, whos&qrs involve more operations
between fraction and integer, are much more complicated.

4 A simulation example

Consider the following system

4

dml—mQ dt + — 10 7 dw,

5 1 3 1
dag = <(6 + cost)us + g:cf’) dt + 20%2 sin xo dw, (45)
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Wheredl( ) =1 dg( ) = 6 + cost, fl(wl) =0, ¢1(I1) = %xéf/s, fg(.fg) = éxi’/s,
$2(T2) = 20:52 sinxy. Obviously,\; = pu1 = 1, Ao = 5, uo = 6. Next, we need to
prove the following inequality:

4

1
.3 4
< 10352 (46)

— Xy sinxy| <
‘20 2 2

4/3 g sinxg

When|z,| = 0, one hagos 2o sin x| = 10

;when0 < |z2| < 1, 0ne ha$2 | <

L <l< 10|ac2|“ SO| ks sinwo| < s 4/3 ;when|zz| > 1, one hagk o, smx2| <
1
55|72 < 5122l

From (46), we getr; = 5,a0 = in Assumption 2.

Next, we apply the above deS|gn procedure to (45). Introtp€i = =1 — zf
with 27 = 0 and choosing/; (x1) = ikzlgf, it is easy to deduce from (45) théf; <
L 3, 8 - .
—c1&® + klff(aﬁ —xy? ) with 2 = —b1&; = *(k—i + 230) z7.
Next, definety = zy — 25 = :cg + byz1, obviously,dés = ((6 + cost)u 5/3 4

L% 4 by2)/®) dt + (L zo sinas + %at/?) dw. By lemmas 1,2,4, one obtains

20 1()

k€3 (a3 — 23°)

5 9 5k1 co 311 o 101, 2

£ (dy +d2)&® + p2,1§;7

“lp

14
3 14
3

&

1
9

Mol

))

+ 23b1k2>§

[

1 9/ 5 \* 8
< dsg® + (ﬂ <m> <k2 <2%bi§ "
3

NS 5
= d3&® + 2,285,

2
1 4

3
$2 Slnl'g 10 xq

< 0.03k2§§((25b1§ +02)e) +2%¢

k2§2

N cojoo

14 3/ 4 3 5. 8 oy L 5\ 14
§d4§13 + ?(E) (003k2(2§b13 +b1))3 + 0.03ky - 23 523

5 g™ 4 g et
= da&y® + p2,38y° -
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ChoosingVa(z1,x2) = Vi(x1) + ikggg, a direct calculation leads to

5 %2 - 5 1 2 3
LV < - a1y + ki€l (a 5x23)+k2£§<(6+cost)u3+5xf+b1x5>

2
4

by
k2§2 mg sin xo + E

14

<—(cy—dy —dy —ds — d4)gF + (64 cost)ka&3us (47)

+ (p2,1 + p2,2 + p2, 3)52 ; (48)

whereky, ko, dy, ds, ds, d4 are positive design constants. In simulation, we chegse
2,c5 = di = dy = dy = 0.25,d3 = 1, k1 = ky = 0.1 to obtainb; = 6.0369,
p2,1 = 22.7717, pa o = 36.9291, ps 3 = 2.2228, and the control law

U= —bofy = —18.0627(6.0369z1 + x2). (49)

Substituting (49) into (48) leads 1BV, < — (¢, +&7).

In simulation, we choose the initial values(0) = —0.3 andz»(0) = 1.6. Fig. 1
gives the response of the closed-loop system (45) and (48igchwdemonstrates the
effectiveness of the control scheme.

PR Xl
1.5 — X 4
(%]
Q
8 ar .
%]
5
» 05 i
>
)
of - - - —————————
_05 1 1 1 1 1
0 1 2 3 4 5 6
Time(Sec)
) =
3r i
5 2f =
Q.
£
3 1f 1
€
o
O 0of
_1 L K_/ -
Y Il Il Il Il Il
0 1 2 3 4 5 6
Time(Sec)

Fig. 1. The response of the closed-loop system (45) and (49).
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Conclusions

This paper deals with the state-feedback stabilizatiomlero for a class of stochastic
nonlinear systems with a ratio of odd integers power for thet fime. The designed
smooth state-feedback controller ensures that the equitibat the origin of the closed-
loop system is GAS in probability and the states can be régaif the origin almost

surely. Furthermore, the problem of inverse optimal sizddilon in probability is also

solved.

Some issues under currentinvestigation are how to geretalk result in this paper

to more general class of stochastic nonlinear systems wili@of odd integers power;
how to design an output-feedback controller for system (1).
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