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Abstract. A numerical investigation of unsteady magnetohydrodywaiinge convection
in an inclined square cavity filled with a fluid-saturatedgaes medium and with internal
heat generation has been performed. A uniform magnetic ifielthed with the same
angle of the inclination of the cavity is applied. The govegnequations are formulated
and solved by a direct explicit finite-difference methodjeabto appropriate initial and
boundary conditions. Two cases were considered, the fisstwaen all the cavity walls
are cooled and the second case when the cavity vertical ar@lkept adiabatic. A pa-
rametric study illustrating the influence of the Hartmanmiber, Rayliegh nhumber, the
inclination angle of the cavity and the dimensionless tiraeameter on the flow and
heat transfer characteristics such as the streamlingbeisos and the average Nusselt
number is performed. The velocity components at mid sedidhe cavity as well as the
temperature profiles are reported graphically. The valfieserage Nusselt number for
various parametric conditions are presented in tabulan.for

Keywords: natural convection, inclined cavity, porous medium, MHBahgeneration.

1 Introduction

The study of flow of an electrically-conducting fluid has mayplications in engineering
problems such as magnetohydrodynamics (MHD) generattasm@a studies, nuclear
reactors, geothermal energy extraction and the boundggr lkeontrol in the field of
aerodynamics [1, 2]. Specifically, Bejan and Khair [1] répdron the natural convection
boundary layer flow in a saturated porous medium with comblresat and mass transfer.
Lai and Kulacki [2] extended the problem of Bejan and KhairtfLinclude wall fluid
injection effects. Chamkha and Khaled [3] considered magrield and wall mass
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transfer effects on coupled heat and mass transfer by hatmaection from a vertical
semi-infinite plate maintained at a constant heat flux.

Heat and fluid flows in a cavity that experiences convectiwihg or cooling at the
surface are found in a wide variety of applications inclgdizmkes and geothermal reser-
voirs, underground water flow, solar collector, etc. [4]sBsiated industrial applications
include secondary and tertiary oil recovery, growth of taiss[5], heating and drying
process [6-8], solidification of casting, sterilizatiomg.eNatural or free convection in
a porous medium has been studied extensively. Cheng [9jda®wa comprehensive
review of the literature on free convection in fluid satudgperous media with a focus on
geothermal systems. Oosthuizen and Patrick [10] performetkrical studies of natural
convection in an inclined square enclosure with part of oad weated to a uniform
temperature and with the opposite wall uniformly cooled tmwaer temperature and
with the remaining wall portions. The enclosure is panidilled with a fluid and partly
filled with a porous medium, which is saturated with the samiel fl The main results
considered were the mean heat transfer rate a cross theserecldNithiarasu et al. [11]
examined the effects of variable porosity on convective fimtterns in side a porous
cavity. The flow is triggered by sustaining a temperaturaligrat between isothermal
lateral walls. It was found that the variation in porositgrgficantly affects natural flow
convective pattern. Khanafer and Chamkha [12] performederical study of mixed
convection flow in a lid driven cavity filled with a fluid-satated porous media. In this
study, the influence of the Richardson number, Darcy numbertlze Rayleigh number
played an important role on mixed convection flow inside aasgtcavity filled with a
fluid-saturated porous media. Nithiarasu et al. [13] ex@uieffects of applied heat
transfer coefficient on the cold wall of the cavity up on flonddreat transfer inside a
porous medium. The differences between the Darcy and nooyDw regime were
clearly investigated for different Darcy, Rayleigh and Brmmbers and aspect ratio.
Grosan et al. [14] discussed the effects of magnetic fieldictednal heat generation on
the free convection in a rectangular cavity filled with a paronedium. The problem of
effects of non-uniform porosity on double diffusive nafwranvection in a porous cavity
with partially permeable wall was analyzed by Akbala andtB4¥5].

The main objective of this paper is to study the effects ofraslined magnetic
field on the unsteady natural convection in an inclined gdilled with a fluid saturated
porous medium with heat source in the solid phase. The miagint is inclined on
the cavity bottom with the same inclination angle of the gawn the horizontal plane.
The finite-difference method is employed to solve this peahl The present results are
validated by favorable comparisons with previously putgigresults. The streamline and
isotherm shapes in the cavity for different values of thebfgm parameters are plotted
and discussed. In addition, the velocity componentX iandY” directions as well as the
temperature profiles are illustrated and discussed.

2 Mathematical formulation

Consider unsteady laminar natural convection flow in iredinavities with an electrically-
conducting fluid-saturated porous medium with internatigeaeration. In this problem,
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the following assumptions have been made:

1. The cavity walls are kept to a constant temperaiyrer the cavity vertical walls
are adiabatic.

2. Properties of the fluid and the porous medium are isotrapit homogeneous
everywhere.

3. The enclosure is permeated by a uniform inclined magfieta:

4. The angle of inclination of the magnetic fiel®lon the cavity bottom is the same
angle of inclination of the cavity on the horizontal plane.

5. A uniform source of heat generation in the flow region witmstant volumetric
rate is considered.

6. The viscous, radiation and Joule heating effects areentsyl.

7. The density is assumed to be a linear function of temperatu
(p=po(1 = B(T —Tp))).
The geometric and the Cartesian coordinate system are sticaity shown in Fig. 1.

Porous
medium

Fig. 1. Physical model of the problem.

Under the above assumptions, the governing equationseed1s]):
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The continuity equation is considered by defining a streamtfany(z, y), so that
equation (2) can be written as

o P _gBkToT o OT e
ox2  oy2 v |0y Ox
2192 2 2
%{%sinQQJrQaigysinacosaJr%COSQOL, 4)

whereu = 9v/9y andv = —9v/0x andj, is the magnitude oB.
In this study, the following dimensionless variables aredufor equations (3)
and (4):

vV ox_Z oyo¥ gL, ovo L,

Qm l l Qm O (5)
7T*T‘0 7(](7)”42 704777,
0 = AT AT = kl, T = Z2t.

Using these variables, the stream function and energy ieqgah non-dimensional form
can be written as:

v 0w ron o0
ox2 T gz = Ro|gy sina— g5 cosa
0? 2 0w
g7 2 .9 . 2
Ha [5‘}/2 sin 04—}—28)(8}/,smozcosoz—i—aX2 cos“al, (6)
o ovos owon] o 00 -
“or Tovox oxay| ox2  oy? ’

whereRa = (kgBIAT)/(va) is the Rayleigh numbeta = ook32/p is the Hartmann
number for the porous medium aad= (s(pcp)s + (1 — €)(pcp)s)/(pcp) ¢ 1s the heat
capacity ratio.

The initial and boundary conditions for equations (6) andafe as follows:

7=0: V=0, =0 everywhere

0
T>0: \I/:0,9:00raa—Y:OatX:0andX:1,0§Y§1, (8)
7>0: V=0,=0atY=0andY =1, 0< X <1.

It should be noted that, in the second case with non-incloae@ity corresponds to Grosan
et al. [14] case.

Once we know the temperature, we can obtain the rate of heeatfar at the right
wall, which are given in terms of the average Nusselt num¥aemwhich is defined as:

1
— 00
0
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3 Solution technique

The numerical algorithm used to solve the dimensionlessiging equations (6) and (7)
with the boundary conditions (8) is based on the finite déffexe methodology. Central
difference quotients were used to approximate the secomiatiees in both
the X- and Y-directions. The obtained discretized equations are tlodred using a
suitable algorithm. The numerical computations were edrout for(61 x 61) grid nodal
points with a time step af0—®. The iteration process was terminated under the following
condition:

max |)\"+1 )\”]‘ <1075, (10)

where) is the general dependent variable which can stant’fof, ¥ andé. This method
was found to be suitable and gave results that are very ctofleetnumerical results
obtained Grosan et al. [14]. From Figs. 2, we can observe egllent agreement between
our results and the results obtained by Grosan et al. [14% fatiorable comparison lends
confidence in the numerical results to be reported subsdéguen

Present results Grosan et al. [14]
Vinas = 3.5 Vinaz = 3.53
\ m l
|
Omaz = 0.085 Omaz = 0.097

35

Fig. 2. Comparison between our results and Grosan et al. [14]
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4 Results and discussion

In this section, numerical results for the contours of theashlines and isotherms as well
as selected velocity and temperature profiles at mid seofitive cavity for various values
of the cavity and magnetic field inclination angleare presented. In addition, represen-
tative results for the average Nusselt number for various conditions are presented in
tabulated form and discussed. In all of these resuligs fixed at a value df.6.

Case 1: The cavity walls are kept to a constant temperaturdy

Fig. 3 presents steady-state contours for the streamlimeesatherms for various values
of the cavity and magnetic field inclination angle(0.0, 7 /4, 7/3, 7/2) for a Rayleigh
numberRa = 500 and a Hartmann numbdia = 0.5 when all the cavity walls are
cooled. In general, forr = 0 (non-inclined cavity), two vertically stretched sepacate
recirculating cells or vortices in the whole enclosure £xX4s the cavity inclination angle
increases, these two cells tend to stretch along the inidimdine for« = /4 and

a = 7/3 until they become stretched horizontally when= =/2. In addition, the
streamlines become crowded not only at the left wall but alsthe right wall of the
cavity which means that the velocity of the fluid increasethimimmediate vicinity of
these walls. It is observed that tilting the cavity 4 increases the flow movement and
the maximum value of stream function increases to bec@mg, = 0.75. However,
further tilting of the cavity yields a reduction in the fluiéhocity. It is also observed from
Fig. 3 that the isotherms form a single anti-clockwise tatatcell through the whole
cavity. This is an interesting behavior because this mdzatshe walls of the cavity are
hotter than any other region in the cavity. In addition, a&sitftlination anglex increases,
the temperature of the fluid decreases.

Fig. 4 displays steady-state contours for the streamlinddsotherms for various
values ofa (0.0, /4, 7 /2) with Ra = 1000 andHa = 0.5. By comparison of Fig. 4 with
Fig. 3, one can understand the effect of increasing the Reyteimber on the streamline
and isotherm contours. This comparison shows that as thieigaynumber increases,
stronger convective clockwise and anti-clockwise motakes place in the cavity and the
temperature gradient gets crowded at the walls of the cawvitse than the previous case
(Ra = 500). This, in general, causes reduction in the fluid tempeegtuofiles.

Figs. 5 and 6 show comparison between the steady-stateursiito the streamlines
and isotherms far = 7 /4 with Ra = 5x10% in the presence and absence of the magnetic
field force. From this comparison, we can conclude that tteniity of the convection in
the core of the cavity is considerably affected by the magfiield. A weak convective
motion is observed in the case of the presence of the madieticso we can say that,
the absence of the magnetic force tends to accelerate tdenfloiion inside the cavity.
However, the absence of the magnetic field leads to decraabe temperature of the
fluid.

Fig. 7 illustrates the effects of the Hartmann numBberand Rayleigh numbeRa
on the profiles of theX-component of velocity at mid-section of the cavity for difént
values of inclination angle. The results show that increasing the values of the Rayleigh
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a=m/4

Viaz = 5.0 Omae = 0.021

© @

Fig. 6. Streamlines and isotherms 8t = 5000 and Ha = 0.

Ra=5000, 2000

Fig. 7. Effects of Hartmann numbéfa and Rayleigh numbeRa on X -component of
velocity at cavity mid-section for different values of aagl.
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numberRa results in an increase in the fluikl-component of velocity whereas theé-
component of velocity can be reduced by increasing of therkmn numbeiH/a. The
same behavior is observed when we studied these effecteqrdfiles of the fluidy -
component of velocity, see Fig. 8.

The temperature profiles at mid-section of the cavity fofiedént values of angle
are depicted in Fig. 9. In this figure, the temperature of thid flecrease by increasing the
Rayleigh number as well as it takes the same behavior whemalgaetic field increases.

The effects of the inclination of the cavity, presence of n&tg field force and
the Rayleigh number on the average Nusselt number for uwhstead steady states are
displayed in Tables 1-3. It is clear from these tables tha&mnihe inclination angle of the
cavity and Hartmann number increase, the values of the gedtasselt number increase.
Also, the same behavior is observed when the dimensioritagsparameter increases.
However, the opposite effect or behavior is predicted winetiee average Nusselt number
decreases when the Rayleigh number increases. These dwshang clearly depicted in
Tables 1-3.

Ra=5000, 2000

A
£

£ £ Ra=5000,2000

1 1 1 1 3 1 1 1 1
0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10

RaZSOOO

30F o=m/2

1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. Effects of Hartmann numbéfa and Rayleigh numbeRa on Y -component of
velocity at cavity mid-section for different values of aagl.
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Fig. 9. Effects of Hartmann numbédia and Rayleigh numbeRa on temperature
profiles at cavity mid-section for different values of angle

Table 1. Values of average Nusselt number at the right waltlififerent values ofx
andr whenRa = 5 x 10°, Ha = 0.5.

oY T Nu

0 0.001 0.0147391
0.005 0.0292422
0.1 0.0622076

Steady state 0.0622483
w/4 0.001 0.0147396
0.05 0.0652462
0.1 0.0670606

Steady state 0.0671578
/2 0.001 0.0147415
0.05 0.0785632
0.1 0.0905655

Steady state 0.0916340
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Table 2. Values of average Nusselt number at the right walllififerent values ofHa
andr whenRa = 5 x 10°, a = 7 /4.

Ha

T

Nu

0

0.5

1.0

0.001
0.05
0.1
Steady state
0.001
0.05
0.1
Steady state
0.001
0.05
0.1
Steady state

0.0147409
0.0713141
0.0769137
0.0776113
0.0147409
0.0718361
0.0780096
0.0788913
0.0147410
0.0730152
0.0805914
0.0820411

Table 3. Values of average Nusselt number at the right wallliiterent values ofRa
andr whenHa = 0.5, « = 7/4.

Ra

T

Nu

1000

2000

5000

0.001
0.05
0.1
Steady state
0.001
0.05
0.1
Steady state
0.001
0.05
0.1
Steady state

0.0147414
0.0746656
0.0846579

0.0847942

0.0147409
0.0718361
0.0780096

0.0788913

0.0147396
0.0652462
0.0670606

0.0671578

Case 2: The cavity vertical walls are adiabatic

To complete our discussion, we investigated the case whepnhblosure vertical walls
are adiabatic. From Fig. 10, we can observe the shapes afrdires and isotherms
contours for different values of the dimensionless timeapsterr when Ra = 1000,

a = 7w/4andHa = 0.5. Itis clear that the fluid moves from the core of the enclosure
to the vertical walls forming two symmetrical clockwise aamti-clockwise circular cells
with maximum value?,,,,, = 0.65 at7 = 0.05. As the dimensionless time parameter
increases, the clockwise contours increase and the maxivalune of stream function
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increases until it reaches the fixed vallag, .. = 2.0 at the steady-state condition. Also,
the constant temperature lines or isotherms turn from jghtedes with maximum value
Omaz = 0.017 atT = 0.05 to curves with maximum value,,... = 0.042 at steady state.

Figs. 11-13 display the effect of the dimensionless timaipaterr on the velocity
components in th& - andY -directions and the temperature profiles at the enclosude mi
sectionwherRa = 5x 103, o = 7w/4 andHa = 0.5. Itis found that, as the dimensionless
time parameter increases, the velocity componentsand V' increase until they reach
fixed values at the steady state condition. Also, the sameaviais are observed for
the temperature distributions. In addition, the valueshefdaverage Nusselt number for
the unsteady and steady-state conditions are shown in Falifeom this table, we can
observe that as the dimensionless time parameter incrahseemverage Nusselt number
decreases until it reaches the minimum value at steady state

7=0.05

Vinaz = 0.65

Omaz = 0.034
Steady state
Uonaz = 2.0 ' Omaz = 0.042

L/

Fig. 10. Streamlines and isotherms 8« = 1000, o = w/4 and Ha = 0.5.
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Steady state
A\ h

750 o=w4 Steady state
a=n/4

w=0.05,0.1

4 2.5
2.0
1.5F
© 1.0f
05
8 L L L L 0.0 L L L L
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Y Y

Fig. 11. Effects of the dimensionless time Fig. 12. Effects of the dimensionless time
parameter- on X-component of velocity at  parameterr on Y-component of velocity at
cavity mid-section. cavity mid-section.

o=1/4

Steady state-__

0.035 1=0.05, 0.1
= 0.030 |
0.025 |

0.020

0.015 -

0.010 L L L L
0.0

Fig. 13. Effects of the dimensionless time
parametet on temperature profiles at cavity
mid-section.

Table 4. Values of average Nusselt number at the right waltliiferent values ofx
andr whenRa = 5 x 10°, Ha = 0.5.

o T Nu
/4 0.001 0.0003385
0.005 0.0003094
0.05 0.0001513
0.1 0.0000536
Steady state 0.0
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5 Conclusions

In the present paper, we have studied the transient MHD alatanvection in an inclined
cavity filled with a fluid saturated porous medium by inclugliie effects of presence
both of an inclined magnetic field and heat source in the swimse. We have examined
the effects of Rayliegh number, Hartmann number as well esaf inclination angel of
the cavity, various values of the dimensionless time patansnd magnetic field on the
flow and heat transfer characteristics for the case of cawittycooled walls and the case
of cavity with adiabatic vertical walls. From this investigpn, we can draw the following
conclusion:

1. In general, we can increase the temperature of the fluichdrgasing both of the
magnetic field force and the inclination angle

2. The various values of the inclination angleaffect on the streamline counters.
These counters rotate and crowded at different walls byasing ofu.

3. A faster motion is considered when Rayleigh number irsggavhereas it causing
in the decreasing of the temperature.

4. The average Nusselt number must be affected by the pieeétice magnetic field,
it takes a large value in case of the presence of magnetic field

5. When the vertical walls were considered adiabatic, thigigcof the fluid and heat
transfer characteristics increases by increasing therdimeless time parameter.
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