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Abstract. A numerical investigation of unsteady magnetohydrodynamic free convection
in an inclined square cavity filled with a fluid-saturated porous medium and with internal
heat generation has been performed. A uniform magnetic fieldinclined with the same
angle of the inclination of the cavity is applied. The governing equations are formulated
and solved by a direct explicit finite-difference method subject to appropriate initial and
boundary conditions. Two cases were considered, the first case when all the cavity walls
are cooled and the second case when the cavity vertical wallsare kept adiabatic. A pa-
rametric study illustrating the influence of the Hartmann number, Rayliegh number, the
inclination angle of the cavity and the dimensionless time parameter on the flow and
heat transfer characteristics such as the streamlines, isotherms and the average Nusselt
number is performed. The velocity components at mid sectionof the cavity as well as the
temperature profiles are reported graphically. The values of average Nusselt number for
various parametric conditions are presented in tabular form.
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1 Introduction

The study of flow of an electrically-conducting fluid has manyapplications in engineering
problems such as magnetohydrodynamics (MHD) generators, plasma studies, nuclear
reactors, geothermal energy extraction and the boundary layer control in the field of
aerodynamics [1,2]. Specifically, Bejan and Khair [1] reported on the natural convection
boundary layer flow in a saturated porous medium with combined heat and mass transfer.
Lai and Kulacki [2] extended the problem of Bejan and Khair [1] to include wall fluid
injection effects. Chamkha and Khaled [3] considered magnetic field and wall mass
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transfer effects on coupled heat and mass transfer by natural convection from a vertical
semi-infinite plate maintained at a constant heat flux.

Heat and fluid flows in a cavity that experiences convective heating or cooling at the
surface are found in a wide variety of applications including lakes and geothermal reser-
voirs, underground water flow, solar collector, etc. [4]. Associated industrial applications
include secondary and tertiary oil recovery, growth of crystals [5], heating and drying
process [6–8], solidification of casting, sterilization, etc. Natural or free convection in
a porous medium has been studied extensively. Cheng [9] provides a comprehensive
review of the literature on free convection in fluid saturated porous media with a focus on
geothermal systems. Oosthuizen and Patrick [10] performednumerical studies of natural
convection in an inclined square enclosure with part of one wall heated to a uniform
temperature and with the opposite wall uniformly cooled to alower temperature and
with the remaining wall portions. The enclosure is partially filled with a fluid and partly
filled with a porous medium, which is saturated with the same fluid. The main results
considered were the mean heat transfer rate a cross the enclosure. Nithiarasu et al. [11]
examined the effects of variable porosity on convective flowpatterns in side a porous
cavity. The flow is triggered by sustaining a temperature gradient between isothermal
lateral walls. It was found that the variation in porosity significantly affects natural flow
convective pattern. Khanafer and Chamkha [12] performed numerical study of mixed
convection flow in a lid driven cavity filled with a fluid-saturated porous media. In this
study, the influence of the Richardson number, Darcy number and the Rayleigh number
played an important role on mixed convection flow inside a square cavity filled with a
fluid-saturated porous media. Nithiarasu et al. [13] examined effects of applied heat
transfer coefficient on the cold wall of the cavity up on flow and heat transfer inside a
porous medium. The differences between the Darcy and non-Darcy flow regime were
clearly investigated for different Darcy, Rayleigh and Biot numbers and aspect ratio.
Grosan et al. [14] discussed the effects of magnetic field andinternal heat generation on
the free convection in a rectangular cavity filled with a porous medium. The problem of
effects of non-uniform porosity on double diffusive natural convection in a porous cavity
with partially permeable wall was analyzed by Akbala and Bayta [15].

The main objective of this paper is to study the effects of an inclined magnetic
field on the unsteady natural convection in an inclined cavity filled with a fluid saturated
porous medium with heat source in the solid phase. The magnetic field is inclined on
the cavity bottom with the same inclination angle of the cavity on the horizontal plane.
The finite-difference method is employed to solve this problem. The present results are
validated by favorable comparisons with previously published results. The streamline and
isotherm shapes in the cavity for different values of the problem parameters are plotted
and discussed. In addition, the velocity components inX andY directions as well as the
temperature profiles are illustrated and discussed.

2 Mathematical formulation

Consider unsteady laminar natural convection flow in inclined cavities with an electrically-
conducting fluid-saturated porous medium with internal heat generation. In this problem,
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the following assumptions have been made:

1. The cavity walls are kept to a constant temperatureT0 or the cavity vertical walls
are adiabatic.

2. Properties of the fluid and the porous medium are isotropicand homogeneous
everywhere.

3. The enclosure is permeated by a uniform inclined magneticfield.

4. The angle of inclination of the magnetic fieldB on the cavity bottom is the same
angle of inclination of the cavity on the horizontal plane.

5. A uniform source of heat generation in the flow region with constant volumetric
rate is considered.

6. The viscous, radiation and Joule heating effects are neglected.

7. The density is assumed to be a linear function of temperature
(ρ = ρ0(1 − β(T − T0))).

The geometric and the Cartesian coordinate system are schematically shown in Fig. 1.

Fig. 1. Physical model of the problem.

Under the above assumptions, the governing equations are (see [15]):
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The continuity equation is considered by defining a stream functionψ(x, y), so that
equation (2) can be written as
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whereu = ∂ψ/∂y andv = −∂ψ/∂x andβ0 is the magnitude ofB.
In this study, the following dimensionless variables are used for equations (3)

and (4):
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Using these variables, the stream function and energy equations in non-dimensional form
can be written as:
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whereRa = (kgβl∆T )/(να) is the Rayleigh number,Ha = σ0kβ
2
0/µ is the Hartmann

number for the porous medium andσ = (ε(ρcp)f + (1 − ε)(ρcp)s)/(ρcp)f is the heat
capacity ratio.

The initial and boundary conditions for equations (6) and (7) are as follows:

τ = 0: Ψ = 0, θ = 0 everywhere,

τ > 0: Ψ = 0, θ = 0 or
∂θ

∂Y
= 0 at X = 0 and X = 1, 0 ≤ Y ≤ 1, (8)

τ > 0: Ψ = 0, θ = 0 at Y = 0 and Y = 1, 0 ≤ X ≤ 1.

It should be noted that, in the second case with non-inclinedcavity corresponds to Grosan
et al. [14] case.

Once we know the temperature, we can obtain the rate of heat transfer at the right
wall, which are given in terms of the average Nusselt numberNu which is defined as:

Nu = −

1
∫

0

(

∂θ

∂X

)

dy. (9)

58



MHD natural convection in an inclined cavity

3 Solution technique

The numerical algorithm used to solve the dimensionless governing equations (6) and (7)
with the boundary conditions (8) is based on the finite difference methodology. Central
difference quotients were used to approximate the second derivatives in both
theX- andY -directions. The obtained discretized equations are then solved using a
suitable algorithm. The numerical computations were carried out for(61×61) grid nodal
points with a time step of10−5. The iteration process was terminated under the following
condition:

max
∣

∣λn+1

i,j − λn
i,j

∣

∣ ≤ 10−5, (10)

whereλ is the general dependent variable which can stand forU, V,Ψ andθ. This method
was found to be suitable and gave results that are very close to the numerical results
obtained Grosan et al. [14]. From Figs. 2, we can observe an excellent agreement between
our results and the results obtained by Grosan et al. [14]. This favorable comparison lends
confidence in the numerical results to be reported subsequently.

Present results Grosan et al. [14]

Ψmax = 3.5 Ψmax = 3.53

θmax = 0.085 θmax = 0.097

Fig. 2. Comparison between our results and Grosan et al. [14].
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4 Results and discussion

In this section, numerical results for the contours of the streamlines and isotherms as well
as selected velocity and temperature profiles at mid sectionof the cavity for various values
of the cavity and magnetic field inclination angleα are presented. In addition, represen-
tative results for the average Nusselt numberNu for various conditions are presented in
tabulated form and discussed. In all of these results,ε was fixed at a value of0.6.

Case 1: The cavity walls are kept to a constant temperatureT0

Fig. 3 presents steady-state contours for the streamlines and isotherms for various values
of the cavity and magnetic field inclination angleα (0.0, π/4, π/3, π/2) for a Rayleigh
numberRa = 500 and a Hartmann numberHa = 0.5 when all the cavity walls are
cooled. In general, forα = 0 (non-inclined cavity), two vertically stretched separated
recirculating cells or vortices in the whole enclosure exist. As the cavity inclination angle
increases, these two cells tend to stretch along the inclination line for α = π/4 and
α = π/3 until they become stretched horizontally whenα = π/2. In addition, the
streamlines become crowded not only at the left wall but alsoat the right wall of the
cavity which means that the velocity of the fluid increases inthe immediate vicinity of
these walls. It is observed that tilting the cavity byπ/4 increases the flow movement and
the maximum value of stream function increases to becomeΨmax = 0.75. However,
further tilting of the cavity yields a reduction in the fluid velocity. It is also observed from
Fig. 3 that the isotherms form a single anti-clockwise rotating cell through the whole
cavity. This is an interesting behavior because this means that the walls of the cavity are
hotter than any other region in the cavity. In addition, as the inclination angleα increases,
the temperature of the fluid decreases.

Fig. 4 displays steady-state contours for the streamlines and isotherms for various
values ofα (0.0, π/4, π/2) withRa = 1000 andHa = 0.5. By comparison of Fig. 4 with
Fig. 3, one can understand the effect of increasing the Rayleigh number on the streamline
and isotherm contours. This comparison shows that as the Rayleigh number increases,
stronger convective clockwise and anti-clockwise motion takes place in the cavity and the
temperature gradient gets crowded at the walls of the cavitymore than the previous case
(Ra = 500). This, in general, causes reduction in the fluid temperature profiles.

Figs. 5 and 6 show comparison between the steady-state contours for the streamlines
and isotherms forα = π/4 withRa = 5×103 in the presence and absence of the magnetic
field force. From this comparison, we can conclude that the intensity of the convection in
the core of the cavity is considerably affected by the magnetic field. A weak convective
motion is observed in the case of the presence of the magneticfield so we can say that,
the absence of the magnetic force tends to accelerate the fluid motion inside the cavity.
However, the absence of the magnetic field leads to decrease in the temperature of the
fluid.

Fig. 7 illustrates the effects of the Hartmann numberHa and Rayleigh numberRa
on the profiles of theX-component of velocity at mid-section of the cavity for different
values of inclination angleα. The results show that increasing the values of the Rayleigh
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α = 0

Ψmax = 0.7 θmax = 0.03

α = π/4

Ψmax = 0.75 θmax = 0.029

α = π/3

Ψmax = 0.75 θmax = 0.029

α = π/2

Ψmax = 0.75 θmax = 0.029

Fig. 3. Streamlines and isotherms forRa = 500 andHa = 0.5.
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α = 0

Ψmax = 1.3 θmax = 0.029

α = π/4
Ψmax = 1.4 θmax = 0.028

α = π/2
Ψmax = 1.3 θmax = 0.028

Fig. 4. Streamlines and isotherms forRa = 1000 andHa = 0.5.

α = π/4
Ψmax = 4.5 θmax = 0.022

Fig. 5. Streamlines and isotherms forRa = 5000 andHa = 0.5.
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α = π/4

Ψmax = 5.0 θmax = 0.021

Fig. 6. Streamlines and isotherms forRa = 5000 andHa = 0.

Fig. 7. Effects of Hartmann numberHa and Rayleigh numberRa onX-component of
velocity at cavity mid-section for different values of angle α.

63



M.A. Mansour, A.J. Chamkha, R.A. Mohamed, M.M. Abd El-Aziz,S.E. Ahmed

numberRa results in an increase in the fluidX-component of velocity whereas theX-
component of velocity can be reduced by increasing of the Hartmann numberHa. The
same behavior is observed when we studied these effects on the profiles of the fluidY -
component of velocity, see Fig. 8.

The temperature profiles at mid-section of the cavity for different values of angleα
are depicted in Fig. 9. In this figure, the temperature of the fluid decrease by increasing the
Rayleigh number as well as it takes the same behavior when themagnetic field increases.

The effects of the inclination of the cavity, presence of magnetic field force and
the Rayleigh number on the average Nusselt number for unsteady and steady states are
displayed in Tables 1–3. It is clear from these tables that when the inclination angle of the
cavity and Hartmann number increase, the values of the average Nusselt number increase.
Also, the same behavior is observed when the dimensionless time parameter increases.
However, the opposite effect or behavior is predicted whereby the average Nusselt number
decreases when the Rayleigh number increases. These behaviors are clearly depicted in
Tables 1–3.

Fig. 8. Effects of Hartmann numberHa and Rayleigh numberRa onY -component of
velocity at cavity mid-section for different values of angle α.
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Fig. 9. Effects of Hartmann numberHa and Rayleigh numberRa on temperature
profiles at cavity mid-section for different values of angleα.

Table 1. Values of average Nusselt number at the right wall for different values ofα
andτ whenRa = 5× 10

3, Ha = 0.5.

α τ N u

0 0.001 0.0147391
0.005 0.0292422
0.1 0.0622076

Steady state 0.0622483
π/4 0.001 0.0147396

0.05 0.0652462
0.1 0.0670606

Steady state 0.0671578
π/2 0.001 0.0147415

0.05 0.0785632
0.1 0.0905655

Steady state 0.0916340
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Table 2. Values of average Nusselt number at the right wall for different values ofHa
andτ whenRa = 5× 10

3, α = π/4.

Ha τ N u

0 0.001 0.0147409
0.05 0.0713141
0.1 0.0769137

Steady state 0.0776113
0.5 0.001 0.0147409

0.05 0.0718361
0.1 0.0780096

Steady state 0.0788913
1.0 0.001 0.0147410

0.05 0.0730152
0.1 0.0805914

Steady state 0.0820411

Table 3. Values of average Nusselt number at the right wall for different values ofRa
andτ whenHa = 0.5, α = π/4.

Ra τ N u

1000 0.001 0.0147414
0.05 0.0746656
0.1 0.0846579

Steady state 0.0847942
2000 0.001 0.0147409

0.05 0.0718361
0.1 0.0780096

Steady state 0.0788913
5000 0.001 0.0147396

0.05 0.0652462
0.1 0.0670606

Steady state 0.0671578

Case 2: The cavity vertical walls are adiabatic

To complete our discussion, we investigated the case when the enclosure vertical walls
are adiabatic. From Fig. 10, we can observe the shapes of streamlines and isotherms
contours for different values of the dimensionless time parameterτ whenRa = 1000,
α = π/4 andHa = 0.5. It is clear that the fluid moves from the core of the enclosure
to the vertical walls forming two symmetrical clockwise andanti-clockwise circular cells
with maximum valueΨmax = 0.65 at τ = 0.05. As the dimensionless time parameter
increases, the clockwise contours increase and the maximumvalue of stream function
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increases until it reaches the fixed valueΨmax = 2.0 at the steady-state condition. Also,
the constant temperature lines or isotherms turn from parallel lines with maximum value
θmax = 0.017 at τ = 0.05 to curves with maximum valueθmax = 0.042 at steady state.

Figs. 11–13 display the effect of the dimensionless time parameterτ on the velocity
components in theX- andY -directions and the temperature profiles at the enclosure mid-
section whenRa = 5×103,α = π/4 andHa = 0.5. It is found that, as the dimensionless
time parameterτ increases, the velocity componentsU andV increase until they reach
fixed values at the steady state condition. Also, the same behaviors are observed for
the temperature distributions. In addition, the values of the average Nusselt number for
the unsteady and steady-state conditions are shown in Table4. From this table, we can
observe that as the dimensionless time parameter increases, the average Nusselt number
decreases until it reaches the minimum value at steady state.

τ = 0.05
Ψmax = 0.65 θmax = 0.017

τ = 0.1
Ψmax = 1.0 θmax = 0.034

Steady state
Ψmax = 2.0 θmax = 0.042

Fig. 10. Streamlines and isotherms forRa = 1000, α = π/4 andHa = 0.5.
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Fig. 11. Effects of the dimensionless time
parameterτ on X-component of velocity at

cavity mid-section.

Fig. 12. Effects of the dimensionless time
parameterτ on Y -component of velocity at

cavity mid-section.

Fig. 13. Effects of the dimensionless time
parameterτ on temperature profiles at cavity

mid-section.

Table 4. Values of average Nusselt number at the right wall for different values ofα
andτ whenRa = 5× 10

3, Ha = 0.5.

α τ N u

π/4 0.001 0.0003385
0.005 0.0003094
0.05 0.0001513
0.1 0.0000536

Steady state 0.0
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5 Conclusions

In the present paper, we have studied the transient MHD natural convection in an inclined
cavity filled with a fluid saturated porous medium by including the effects of presence
both of an inclined magnetic field and heat source in the solidphase. We have examined
the effects of Rayliegh number, Hartmann number as well as values of inclination angel of
the cavity, various values of the dimensionless time parameter and magnetic field on the
flow and heat transfer characteristics for the case of cavitywith cooled walls and the case
of cavity with adiabatic vertical walls. From this investigation, we can draw the following
conclusion:

1. In general, we can increase the temperature of the fluid by increasing both of the
magnetic field force and the inclination angleα.

2. The various values of the inclination angleα affect on the streamline counters.
These counters rotate and crowded at different walls by increasing ofα.

3. A faster motion is considered when Rayleigh number increases whereas it causing
in the decreasing of the temperature.

4. The average Nusselt number must be affected by the presence of the magnetic field,
it takes a large value in case of the presence of magnetic field.

5. When the vertical walls were considered adiabatic, the activity of the fluid and heat
transfer characteristics increases by increasing the dimensionless time parameter.
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