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Rich dynamics of an SIR epidemic model
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Abstract. This paper aims to study an SIR epidemic model with an asyticptly
homogeneous transmission function. The stability of trsease-free and the endemic
equilibrium is addressed. Numerical simulations are edrout. Implications of our
analytical and numerical findings are discussed critically
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1 Introduction

Over the past one hundred years, mathematics has been usedetistand and predict
the spread of diseases, relating important public-heal#stipns to basic transmission
parameters. From prehistory to the present day, diseaseslean a source of fear and
superstition. A comprehensive picture of disease dynamaigsires a variety of mathe-
matical tools, from model creation to solving differengagjuations to statistical analysis.
Although mathematics has been so far done quite well in nigalith epidemiology but
there is no denying that there are certain factors whichiatk proper mathematization.
Almost all mathematical models of diseases start from timeeshasic premise:
that the population can be subdivided into a set of distitagses, dependent upon their
experience with respect to the disease. One line of invastig classifies individuals as
one of susceptible, infectious or recovered. Such a modelrmed as an SIR model.
The first SIR model, which computes the theoretical numbéndi¥iduals infected with
a contagious illness in a closed population over time, wap@sed by Kermack and
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McKendrick in the year 1927 [1]. The Kermack-McKendrick nebds given by

ds

= _ I

I rSI,

dr

— =7rST =\ 1
o = TSI =AL 1)
dR

— =\

dt ’

whereS(t), R(t), I(t) represent the number of susceptible, infective, and reedvia-
dividuals at timet, respectively. The parametersand \ are called transmission rate
and recovery rate, respectively. The interpretation of thodel is straightforward. The
population of susceptible (healthy) individuals dimirgstthrough their interaction with
the infective ones, the number of which correspondinglyeéases through the mecha-
nism. On the other hand, the population of infective indidt$ diminishes since some
individuals are cured, and thus populate the class of reedveA detailed history of
mathematical epidemiology and basics of SIR epidemic nsodely be found in the
classical books of Bailey [2], Murray [3], and Anderson andyM4]. After Kermack—
McKendrick model, different epidemic models have been psag and studied in the
literature (see Capasso and Serio [5], Hethcote and Tudidri{6et al. [7, 8], Hethcote et
al. [9], Hethcote and van den Driessche [10], Derrick anddemDriessche [11], Beretta
and Takeuchi [12, 13], Beretta et al. [14], Ma et al. [15, BJan and Wang [17], Song
and Ma [18], Song et al. [19], D’Onofrio et al. [20], Xiao andi& [21], and references
cited there in).

Disease transmission is a dynamical process driven by teeaittion between the
susceptible and the infective. The behaviour of the SIR rsaale greatly affected by the
way in which transmission between infected and suscepitiloliziduals are modelled.
Many models of epidemiology are based on the so called “meatg=nd assumption for
transmission. During the last few decades, such assunsgtiave faced some questions
(see McCallam et al. [22], and references there in) and cpresely a number of realistic
transmission functions have become the focus of consitkeattention (Capasso and
Serio [9], Liu et al. [7, 8], Hethcote et al. [9], Hethcote arah den Driessche [10], Ruan
and Wang [17], Xiao and Ruan [21]). Usually, if the degreerdg&ctivity increases,
sociological, psychological, or other mechanisms oftemento the picture which have
a saturation effect (Busenberg and Cooke [23]). In recetitreaks of SARS, mask
wearing, quarantine, isolation, et cetera have been prtwduke effective (Gumel et
al. [24], Wang and Ruan [25]). Actual epidemics differ calesably from the idealized
model (as was shown by the SARS outbreak of 2002—2003) iiphbalth responses are
not taken into consideration (Brauer [26]). Isolating sitkldren and workers from the
rest of the population, the spread of the measles can be etheQuarantine and isolation
are very well known protective measures for certain diseableese are immensely useful
if a small pox outbreak occurred (Wallace [27]). Plague preion depends on the timely
implementation of preventive measures, including pultdliecation, applying insecticides
to kill fleas, using various personal protective measurgg,(@ommon insect repellents),
and avoidance of sick or dead animals (see report of CD@rewention of plaguén
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MMWR in the year 1996 [28]).

One fundamental parameter governs the spread of diseaskss also related to
the long term behaviours and the level of vaccination necgd®r eradication. This
parameter is called the “basic reproduction numb&y’, Ry is defined by epidemiolo-
gists as “the average number of secondary cases caused bfeatious individual in a
totally susceptible population”. WheR, > 1, the disease can enter a totally susceptible
population and the number of cases will increase, whereasaih < 1, the disease will
always fail to spread. Therefore, in its simplest foRm tells us whether a population is
at risk from a given disease. Nowadays, the results of maiteepological research are
presented in terms of basic reproduction number.

In this paper, we have considered an SIR epidemic model withsgmptotically
homogeneous transmission function (i.e., for large pdpmriaizes the transmission rate
will be approximately proportional to the fraction of infees in the total population).
The paper is organized as follows. In the next section, wegurethe model and derive the
disease-free equilibrium and the endemic equilibrium.himthird section, we carry out
a qualitative analysis of the model. Stability conditions the disease-free equilibrium
and the endemic equilibrium are derived. The fourth seqti@sents different computer
simulations of the system. In the last section, the biolalgggnificance of our analytical
and numerical findings are discussed.

2 Thebasic mathematical model

The model we analyze in this paper is considered under theefrerk of the following
nonlinear ordinary differential equations:

ds kST

E:b_d5_1+aS+BI+VR’

dI kST

- T 2
dt  1+aS+p1 (d+ml, )
dR

=l -

3 =M - ([d+)ER,

whereS(t), R(t), I(t) represent the number of susceptible, infective, and reedviadi-
viduals at timel, respectivelyb is the recruitment rate of the populatiehis the natural
death rate of the populatioh,is the proportionality constant; is the natural recovery
rate of the infective individualsy is the rate at which recovered individuals lose immunity
and return to the susceptible classandj are the parameters which measure the effects
of sociological, psychological or other mechanisms.

The transmission rate = kI /(1+aS+5I) displays a saturation effect accounting
for the fact that the number of contacts an individual readtane maximal value due to
spatial or social distribution of the population. The trassion function considered by
Diekmann and Kretzschmar [29], and Zegeling and Kooij [304 particular case (when
«a = ) of the transmission rate considered here.
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Because of the biological meaning of the componé§ts), R(t), I(¢)), we focus
on the model in the first octant &2. We first consider the existence of equilibria of
system (2). For any values of parameters, model (2) alwaya kdisease-free equilibrium
Ey = (b/d,0,0). To find the positive equilibria, set

b—dS —kSI[1+aS+ I +~vR =0,

ESI[1+ oS+ BI — (d+ p)I =0, 3)

ul —(d+~v)R=0.

Define the basic reproduction number as follows:
R — bk — ba(d + p)

O T d(d + p)
Theorem 1. From the systerfy) it follows that

(4)

(i) if Ry <1,then thereis no positive equilibrium;
(i) if Ry > 1, then there is a unique positive equilibriufy (S*, I*, R*) of the sys-
tem(2), called the “endemic equilibrium”, given by
g (@ m+pD)
k—ald+p) ’
(d+ )bk — (d + p)(ba + d)]

= Bd(d + p)(d +7) +d(d + p+7)(k — a(d+ p))’
oM
(d+7)

3 Mathematical analysis

Lemma 1. The planeS + I + R = b/d is a manifold of syster2), which is attracting
in the first octant.
Proof. Summing up the three equations in (2) and denoli{g) = S(¢) + I(t) + R(t),
we have

dnN

— =b—dN. 5
I (%)

Itis clear thatV (t) = b/d is a solution of equation (5) and for a®y(¢y) > 0, the
general solution of equation (5) is

N(t) = 2 [b— (b~ dN(t0))e )]

Thus,
. b
tlirgoN(t) T d
which implies the conclusion. O
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It is clear that the limit set of system (2) is on the plathe- I + R = b/d. Thus,
we focus on the reduced system

dr dkI b B
EZ:m+am+wamf(MR(E_I_R)_W+WI:P“R%(®
dR

Theorem 2. Systen{6) does not have nontrivial periodic orbits if
(2d + v+ p)(B — @) > pov.

Proof. Consider system (6) fof > 0 and R > 0. Take a Dulac function (Perko [31],
Strogatz [32], Wiggins [33])

(d+ab) + (8 —a)dl — adR

D(I,R) = i
Notice that
d(DP) 9(DQ) (d+~)(d+ab) 1
St e =l 2 l(2d v+ p)(8 — @) —pa] <0

(2d + v+ p)(B — @) > pov.
Hence, the conclusion follows. O

In order to study the properties of the disease-free eqiuitib £y, and the endemic
equilibrium £*, we rescale (6) by

k k
=—1, =—R, = (d+~)t.
v d+~ 4 d+~ = )

Then we obtain

dz px
e R W
dr 1+q:cfry( T —y) —mz,

7
dy (7)
ar Y
where
__d _dydB-a) _ ald+y)d
P=avab 17 (drabk T d+ab)k
bk _d+p s M

)

dd+~) T d+q
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The trivial equilibrium(0,0) of system (7) is the disease-free equilibriuty of
model (2) and the unique positive equilibriufa*, y*) of system (7) is the endemic
equilibrium £* of model (2) if and only ifAp — m > 0 andq — rs > 0, where

B Ap—m
p(1+s8)+m(qg—rs)’

*

X

*

y* = sx*.

We first determine the stability and topological type(6f0). The Jacobian matrix of
system (7) at0,0) is

Ap—m 0
Mo[ o _J.

If Ap —m = 0, then there exists a small neighbourhalig of (0,0) such that the
dynamics of system (7) are equivalent to that of

dz
d_ = *pr + O((l‘,y)2>,
r (8)
dy _
dr v
Theorem 3. The disease-free equilibriufd, 0) of systen(7) is
(i) astable hyperbolic node ifn — Ap > 0;
(i) asaddle-nodeifm — Ap = 0;
(iif) ahyperbolic saddle ifm — Ap < 0.

Whenm — Ap < 0, we discuss the stability and topological type of the endemi
equilibrium(z*, y*). The Jacobian matrix of the system (7) at, y*) is

plsa”(rtq)=(1+Aq)]  pl(Ar—1)—a"(g+r)]
M, = (1+qx*—rsz*)? (1+qx*71rsz*)2
s _

We have that

p[l+ s+ (g —rs)]

det(M;y) = .
et(Mn) (1+ gx* —rsax*)?

Sinceq > rs, it follows that det)M;) > 0 and(x*,y*) is a node or a focus or a center.
Furthermore, we have the following result on the stabilityo", y*).

Theorem 4. Supposen — Ap < 0, then there is a unique endemic equilibridat, y*)
of model(7), which is a stable node.
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Proof.

ps(r+q)a” —p(1+ Ag) — [e*(rs —q) — 1]*

tr(My) =
x(My) (14 ga* — rsx*)?

The sign of t{ M) is determined by
S1=ps(r+q)z" —p(l + Ag).

. * Ap—m : H : :
ﬁubs’ututlngx = m into S; and using a straightforward calculation, we
ave

p[—A(p +mq)(q — rs) — (mgs + mq+ p + ps)] .

o= p(L+ 5) + mig —rs)

Sinceq > rs, [p(1 + s) + m(q —rs)] > 0and[—A(p + mq)(qg — rs) — (mgs + mq +
p + ps)] < 0, hence,S; < 0. However, whenn — Ap < 0, we have ttM;) < 0. This
completes the proof. O

In terms of the basic reproduction number, the above resulgtability are sum-
marized below.

Theorem 5. Let Ry be defined by4).

(i) If Ry < 1, then mode(2) has a unique disease-free equilibriuty = (b/d, 0,0),
which is a global attractor in the first octant.

(i) If Ry = 1,then mode(2) has a unique disease-free equilibriutig = (b/d, 0, 0),
which attracts all orbits in the interior of the first octant.

(i) If Ry > 1, then model2) has two equilibria, a disease-free equilibriuBy =
(b/d,0,0) and an endemic equilibriunt* = (S*, I*, R*). The endemic equilib-
rium E£* is a global attractor in the interior.

4 Numerical simulation

In this section we present computer simulation of some mwigtof the system (2). From
practical point of view, numerical solutions are very imgaoit beside analytical study.
We take the parameters of the systemias 2.29, « = 3.1, § = 4.7, b = 3.1,
v =15k=9, u=0.19, (S(0),1(0), R(0)) = (4,1,1). ThenEy = (1.4104,0,0),
Ro = 0.7162 < 1. Therefore, by Theorem 1 is a global attractor in the first octant.
Fig. 1 shows thab(¢) approaches to its steady-state value whil® and R(t) approach
zero as time progresses, the disease dies out.
Now we take the parameters of the system as0.29, « = 3.1, 5 = 4.7, b = 3.1,
v =15k =6.5 u=0.19, (5(0),1(0),R(0)) = (4,1,1). ThenE*(S*,I*,R*) =
(3.1598,6.8073,0.72226) and Ry = 25.7167 > 1. Therefore, by Theorem 1, the
endemic equilibriun* is a global attractor in the interior of the first octant. FAgsghows
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that all three componentsy(t), I(¢) and R(t) approach to their steady-state values, the
disease becomes endemic.

Keeping other parameters fixed, if we change the valug,adt is seen that’*
decreases asincreases. It follows from Fig. 3.

Keeping other parameters fixed, if we change the value,at is seen that’*
increases aas dicreases. It follows from Fig. 4.

4 7 —

3.5 6 RN

3 1o

2.5 1l

2 1 /S(t)

1.5& S0 3y

L i 2

1 © ) RO |
0'5//'R(t) |

% 10 20 30 40 5;0 60 70 80 90 100

Fig. 1. HereS(0) = 4, I(0) = 1,

R(0)=1,d=2.29,a=3.1,08=4.T7,

b=31,~v=15% =9, u = 0.19,
Ro =0.7162 < 1.

% 10 20 30 40 E’;O 60 70 80 90 100

Fig. 2. HereS(0) = 4, I(0) = 1,

R(0)=1,d=10.29, a=3.1,0=47,

b=31+v=15k=6.5u=0.19,
Ro = 25.7167 > 1.
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Fig. 3. The dependence 6f on the para-
meter( keeping other parameters fixed.

5 Concluding remarks

o 2 4 6 s 1;0 12 14 16 18 20

Fig. 4. The dependence 6f on the para-
metera keeping other parameters fixed.

At present, the entire globe is concerned about many imfestdiseases which cause
fearful tolls in different communities. Even today they aften attributed to evil spirits or
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displeased gods. However, almost all the developing cmsttiave increasingly realized
the necessity of social consciousness in preventing tleasés. Also different protective
measures against diseases are found to be effective.

One main goal of mathematical epidemiology is to understeowd to control or
eradicate diseases. Mathematical models are used exbnisithe study of ecological
and epidemiological phenomena. We all know that one of thia msaue in the study of
behaviour of epidemics is the analysis of steady stateseafthdel and their stability. If
the trivial or zero equilibrium is globally asymptoticaliyable, then, the disease does not
persist, whatever the initial number of infectives in th@plation.

In this paper we have carried out the global qualitative ysislof a realistic SIR
model. In terms of the basic reproduction numBgrour main results indicate that when
Ry < 1, the disease-free equilibrium is globally attractive. Wlig& > 1, the endemic
equilibrium exists and is globally stable. Though the basfroduction numbeR, does
not depend o, numerical simulations indicate that when the disease demic, the
steady state valué* of the infectives decreases &sincreases. This implies that the
spread of disease decreases as the social or psychologitattve measures for the
infectives increases. From the steady state expressiorawesee that* approaches
zero asg tends to infinity. These results are in good agreement witlsehof Xiao
and Ruan [21]. From numerical simulations, we have also nzadgher interesting
observation that when the disease is enderficincreases as decreases. It implies
that if the social consciousness about the disease desraaseng the susceptibles, it
might encourage to increase the infection rate and to spheadisease rapidly.
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