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Rich dynamics of an SIR epidemic model
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Abstract. This paper aims to study an SIR epidemic model with an asymptotically
homogeneous transmission function. The stability of the disease-free and the endemic
equilibrium is addressed. Numerical simulations are carried out. Implications of our
analytical and numerical findings are discussed critically.
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1 Introduction

Over the past one hundred years, mathematics has been used tounderstand and predict
the spread of diseases, relating important public-health questions to basic transmission
parameters. From prehistory to the present day, diseases have been a source of fear and
superstition. A comprehensive picture of disease dynamicsrequires a variety of mathe-
matical tools, from model creation to solving differentialequations to statistical analysis.
Although mathematics has been so far done quite well in dealing with epidemiology but
there is no denying that there are certain factors which still lack proper mathematization.

Almost all mathematical models of diseases start from the same basic premise:
that the population can be subdivided into a set of distinct classes, dependent upon their
experience with respect to the disease. One line of investigation classifies individuals as
one of susceptible, infectious or recovered. Such a model istermed as an SIR model.
The first SIR model, which computes the theoretical number ofindividuals infected with
a contagious illness in a closed population over time, was proposed by Kermack and
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McKendrick in the year 1927 [1]. The Kermack-McKendrick model is given by

dS

dt
= −rSI,

dI

dt
= rSI − λI, (1)

dR

dt
= λI,

whereS(t), R(t), I(t) represent the number of susceptible, infective, and recovered in-
dividuals at timet, respectively. The parametersr andλ are called transmission rate
and recovery rate, respectively. The interpretation of this model is straightforward. The
population of susceptible (healthy) individuals diminishes through their interaction with
the infective ones, the number of which correspondingly increases through the mecha-
nism. On the other hand, the population of infective individuals diminishes since some
individuals are cured, and thus populate the class of recovered. A detailed history of
mathematical epidemiology and basics of SIR epidemic models may be found in the
classical books of Bailey [2], Murray [3], and Anderson and May [4]. After Kermack–
McKendrick model, different epidemic models have been proposed and studied in the
literature (see Capasso and Serio [5], Hethcote and Tudor [6], Liu et al. [7,8], Hethcote et
al. [9], Hethcote and van den Driessche [10], Derrick and vanden Driessche [11], Beretta
and Takeuchi [12, 13], Beretta et al. [14], Ma et al. [15, 16],Ruan and Wang [17], Song
and Ma [18], Song et al. [19], D’Onofrio et al. [20], Xiao and Ruan [21], and references
cited there in).

Disease transmission is a dynamical process driven by the interaction between the
susceptible and the infective. The behaviour of the SIR models are greatly affected by the
way in which transmission between infected and susceptibleindividuals are modelled.
Many models of epidemiology are based on the so called “mass action” assumption for
transmission. During the last few decades, such assumptions have faced some questions
(see McCallam et al. [22], and references there in) and consequently a number of realistic
transmission functions have become the focus of considerable attention (Capasso and
Serio [5], Liu et al. [7,8], Hethcote et al. [9], Hethcote andvan den Driessche [10], Ruan
and Wang [17], Xiao and Ruan [21]). Usually, if the degree of infectivity increases,
sociological, psychological, or other mechanisms often come into the picture which have
a saturation effect (Busenberg and Cooke [23]). In recent outbreaks of SARS, mask
wearing, quarantine, isolation, et cetera have been provedto be effective (Gumel et
al. [24], Wang and Ruan [25]). Actual epidemics differ considerably from the idealized
model (as was shown by the SARS outbreak of 2002–2003) if public health responses are
not taken into consideration (Brauer [26]). Isolating sickchildren and workers from the
rest of the population, the spread of the measles can be checked. Quarantine and isolation
are very well known protective measures for certain diseases. These are immensely useful
if a small pox outbreak occurred (Wallace [27]). Plague prevention depends on the timely
implementation of preventive measures, including public education, applying insecticides
to kill fleas, using various personal protective measures (e.g., common insect repellents),
and avoidance of sick or dead animals (see report of CDC onprevention of plaguein
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MMWR in the year 1996 [28]).
One fundamental parameter governs the spread of diseases, and is also related to

the long term behaviours and the level of vaccination necessary for eradication. This
parameter is called the “basic reproduction number”,R0. R0 is defined by epidemiolo-
gists as “the average number of secondary cases caused by an infectious individual in a
totally susceptible population”. WhenR0 > 1, the disease can enter a totally susceptible
population and the number of cases will increase, whereas whenR0 < 1, the disease will
always fail to spread. Therefore, in its simplest formR0 tells us whether a population is
at risk from a given disease. Nowadays, the results of many epidemiological research are
presented in terms of basic reproduction number.

In this paper, we have considered an SIR epidemic model with an asymptotically
homogeneous transmission function (i.e., for large population sizes the transmission rate
will be approximately proportional to the fraction of infectives in the total population).
The paper is organized as follows. In the next section, we present the model and derive the
disease-free equilibrium and the endemic equilibrium. In the third section, we carry out
a qualitative analysis of the model. Stability conditions for the disease-free equilibrium
and the endemic equilibrium are derived. The fourth sectionpresents different computer
simulations of the system. In the last section, the biological significance of our analytical
and numerical findings are discussed.

2 The basic mathematical model

The model we analyze in this paper is considered under the framework of the following
nonlinear ordinary differential equations:

dS

dt
= b − dS −

kSI

1 + αS + βI
+ γR,

dI

dt
=

kSI

1 + αS + βI
− (d + µ)I, (2)

dR

dt
= µI − (d + γ)R,

whereS(t), R(t), I(t) represent the number of susceptible, infective, and recovered indi-
viduals at timet, respectively.b is the recruitment rate of the population,d is the natural
death rate of the population,k is the proportionality constant,µ is the natural recovery
rate of the infective individuals,γ is the rate at which recovered individuals lose immunity
and return to the susceptible class,α andβ are the parameters which measure the effects
of sociological, psychological or other mechanisms.

The transmission rateφ = kI/(1+αS+βI) displays a saturation effect accounting
for the fact that the number of contacts an individual reaches some maximal value due to
spatial or social distribution of the population. The transmission function considered by
Diekmann and Kretzschmar [29], and Zegeling and Kooij [30] is a particular case (when
α = β) of the transmission rate considered here.
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Because of the biological meaning of the components(S(t), R(t), I(t)), we focus
on the model in the first octant ofR3. We first consider the existence of equilibria of
system (2). For any values of parameters, model (2) always has a disease-free equilibrium
E0 = (b/d, 0, 0). To find the positive equilibria, set

b − dS − kSI[1 + αS + βI] + γR = 0,

kSI[1 + αS + βI] − (d + µ)I = 0, (3)

µI − (d + γ)R = 0.

Define the basic reproduction number as follows:

R0 =
bk − bα(d + µ)

d(d + µ)
. (4)

Theorem 1. From the system(4) it follows that

(i) if R0 ≤ 1, then there is no positive equilibrium;

(ii) if R0 > 1, then there is a unique positive equilibriumE∗(S∗, I∗, R∗) of the sys-
tem(2), called the “endemic equilibrium”, given by

S∗ =
(d + µ)(1 + βI)

k − α(d + µ)
,

I∗ =
(d + γ)[bk − (d + µ)(bα + d)]

βd(d + µ)(d + γ) + d(d + µ + γ)(k − α(d + µ))
,

R∗ =
µI

(d + γ)
.

3 Mathematical analysis

Lemma 1. The planeS + I + R = b/d is a manifold of system(2), which is attracting
in the first octant.

Proof. Summing up the three equations in (2) and denotingN(t) = S(t) + I(t) + R(t),
we have

dN

dt
= b − dN. (5)

It is clear thatN(t) = b/d is a solution of equation (5) and for anyN(t0) ≥ 0, the
general solution of equation (5) is

N(t) =
1

d

[

b −
(

b − dN(t0)
)

e−d(t−t0)
]

.

Thus,

lim
t→∞

N(t) =
b

d
,

which implies the conclusion.
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It is clear that the limit set of system (2) is on the planeS + I + R = b/d. Thus,
we focus on the reduced system

dI

dt
=

dkI

(d + αb) + (β − α)dI − αdR

(

b

d
− I − R

)

− (d + µ)I ≡ P (I, R),

dR

dt
= µI − (d + γ)R ≡ Q(I, R).

(6)

Theorem 2. System(6) does not have nontrivial periodic orbits if

(2d + γ + µ)(β − α) > µα.

Proof. Consider system (6) forI > 0 andR > 0. Take a Dulac function (Perko [31],
Strogatz [32], Wiggins [33])

D(I, R) =
(d + αb) + (β − α)dI − αdR

dkI
.

Notice that

∂(DP )

∂I
+

∂(DQ)

∂R
=−1−

(d + γ)(d + αb)

dkI
−

1

k
[(2d + γ + µ)(β − α)−µα]<0

if

(2d + γ + µ)(β − α) > µα.

Hence, the conclusion follows.

In order to study the properties of the disease-free equilibrium E0 and the endemic
equilibriumE∗, we rescale (6) by

x =
k

d + γ
I, y =

k

d + γ
R, τ = (d + γ)t.

Then we obtain

dx

dτ
=

px

1 + qx − ry
(A − x − y) − mx,

dy

dτ
= sx − y,

(7)

where

p =
d

d + αb
, q =

(d + γ)d(β − α)

(d + αb)k
, r =

α(d + γ)d

(d + αb)k
,

A =
bk

d(d + γ)
, m =

d + µ

d + γ
, s =

µ

d + γ
.
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The trivial equilibrium(0, 0) of system (7) is the disease-free equilibriumE0 of
model (2) and the unique positive equilibrium(x∗, y∗) of system (7) is the endemic
equilibriumE∗ of model (2) if and only ifAp − m > 0 andq − rs > 0, where

x∗ =
Ap − m

p(1 + s) + m(q − rs)
, y∗ = sx∗.

We first determine the stability and topological type of(0, 0). The Jacobian matrix of
system (7) at(0, 0) is

M0 =

[

Ap − m 0
s −1

]

.

If Ap − m = 0, then there exists a small neighbourhoodN0 of (0, 0) such that the
dynamics of system (7) are equivalent to that of

dx

dτ
= −px2 + o((x, y)2),

dy

dτ
= sx − y.

(8)

Theorem 3. The disease-free equilibrium(0, 0) of system(7) is

(i) a stable hyperbolic node ifm − Ap > 0;

(ii) a saddle-node ifm − Ap = 0;

(iii) a hyperbolic saddle ifm − Ap < 0.

Whenm − Ap < 0, we discuss the stability and topological type of the endemic
equilibrium(x∗, y∗). The Jacobian matrix of the system (7) at(x∗, y∗) is

M1 =

[

p[sx∗(r+q)−(1+Aq)]
(1+qx∗−rsx∗)2

p[(Ar−1)−x∗(q+r)]
(1+qx∗−rsx∗)2

s −1

]

.

We have that

det(M1) =
p[1 + s + (q − rs)]

(1 + qx∗ − rsx∗)2
.

Sinceq > rs, it follows that det(M1) > 0 and(x∗, y∗) is a node or a focus or a center.
Furthermore, we have the following result on the stability of (x∗, y∗).

Theorem 4. Supposem − Ap < 0, then there is a unique endemic equilibrium(x∗, y∗)
of model(7), which is a stable node.
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Proof.

tr(M1) =
ps(r + q)x∗ − p(1 + Aq) − [x∗(rs − q) − 1]2

(1 + qx∗ − rsx∗)2
.

The sign of tr(M1) is determined by

S1 = ps(r + q)x∗
− p(1 + Aq).

Substitutingx∗ = Ap−m
p(1+s)+m(q−rs) into S1 and using a straightforward calculation, we

have

S1 =
p[−A(p + mq)(q − rs) − (mqs + mq + p + ps)]

p(1 + s) + m(q − rs)
.

Sinceq > rs, [p(1 + s) + m(q − rs)] > 0 and[−A(p + mq)(q − rs) − (mqs + mq +
p + ps)] < 0, hence,S1 < 0. However, whenm − Ap < 0, we have tr(M1) < 0. This
completes the proof.

In terms of the basic reproduction number, the above resultson stability are sum-
marized below.

Theorem 5. LetR0 be defined by(4).

(i) If R0 < 1, then model(2) has a unique disease-free equilibriumE0 = (b/d, 0, 0),
which is a global attractor in the first octant.

(ii) If R0 = 1, then model(2) has a unique disease-free equilibriumE0 = (b/d, 0, 0),
which attracts all orbits in the interior of the first octant.

(iii) If R0 > 1, then model(2) has two equilibria, a disease-free equilibriumE0 =
(b/d, 0, 0) and an endemic equilibriumE∗ = (S∗, I∗, R∗). The endemic equilib-
rium E∗ is a global attractor in the interior.

4 Numerical simulation

In this section we present computer simulation of some solutions of the system (2). From
practical point of view, numerical solutions are very important beside analytical study.

We take the parameters of the system asd = 2.29, α = 3.1, β = 4.7, b = 3.1,
γ = 1.5, k = 9, µ = 0.19, (S(0), I(0), R(0)) = (4, 1, 1). ThenE0 = (1.4104, 0, 0),
R0 = 0.7162 < 1. Therefore, by Theorem 1,E0 is a global attractor in the first octant.
Fig. 1 shows thatS(t) approaches to its steady-state value whileI(t) andR(t) approach
zero as time progresses, the disease dies out.

Now we take the parameters of the system asd = 0.29, α = 3.1, β = 4.7, b = 3.1,
γ = 1.5, k = 6.5, µ = 0.19, (S(0), I(0), R(0)) = (4, 1, 1). ThenE∗(S∗, I∗, R∗) =
(3.1598, 6.8073, 0.72226) and R0 = 25.7167 > 1. Therefore, by Theorem 1, the
endemic equilibriumE∗ is a global attractor in the interior of the first octant. Fig.2 shows
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that all three components,S(t), I(t) andR(t) approach to their steady-state values, the
disease becomes endemic.

Keeping other parameters fixed, if we change the value ofβ, it is seen thatI∗

decreases asβ increases. It follows from Fig. 3.
Keeping other parameters fixed, if we change the value ofα, it is seen thatI∗

increases asα dicreases. It follows from Fig. 4.
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Fig. 1. HereS(0) = 4, I(0) = 1,
R(0) = 1, d = 2.29, α = 3.1, β = 4.7,
b = 3.1, γ = 1.5, k = 9, µ = 0.19,

R0 = 0.7162 < 1.
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Fig. 2. HereS(0) = 4, I(0) = 1,
R(0) = 1, d = 0.29, α = 3.1, β = 4.7,
b = 3.1, γ = 1.5, k = 6.5, µ = 0.19,

R0 = 25.7167 > 1.
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Fig. 3. The dependence ofI∗ on the para-
meterβ keeping other parameters fixed.
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Fig. 4. The dependence ofI∗ on the para-
meterα keeping other parameters fixed.

5 Concluding remarks

At present, the entire globe is concerned about many infectious diseases which cause
fearful tolls in different communities. Even today they areoften attributed to evil spirits or
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displeased gods. However, almost all the developing countries have increasingly realized
the necessity of social consciousness in preventing the diseases. Also different protective
measures against diseases are found to be effective.

One main goal of mathematical epidemiology is to understandhow to control or
eradicate diseases. Mathematical models are used extensively in the study of ecological
and epidemiological phenomena. We all know that one of the main issue in the study of
behaviour of epidemics is the analysis of steady states of the model and their stability. If
the trivial or zero equilibrium is globally asymptoticallystable, then, the disease does not
persist, whatever the initial number of infectives in the population.

In this paper we have carried out the global qualitative analysis of a realistic SIR
model. In terms of the basic reproduction numberR0 our main results indicate that when
R0 < 1, the disease-free equilibrium is globally attractive. When R0 > 1, the endemic
equilibrium exists and is globally stable. Though the basicreproduction numberR0 does
not depend onβ, numerical simulations indicate that when the disease is endemic, the
steady state valueI∗ of the infectives decreases asβ increases. This implies that the
spread of disease decreases as the social or psychological protective measures for the
infectives increases. From the steady state expression we can see thatI∗ approaches
zero asβ tends to infinity. These results are in good agreement with those of Xiao
and Ruan [21]. From numerical simulations, we have also madeanother interesting
observation that when the disease is endemic,I∗ increases asα decreases. It implies
that if the social consciousness about the disease decreases among the susceptibles, it
might encourage to increase the infection rate and to spreadthe disease rapidly.
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