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Abstract. In this work, the homotopy analysis method is applied to wiihe unsteady

boundary-layer flow and heat transfer due to a stretchingtsii&ée analytic solutions of

the system of nonlinear ordinary differential equatiores@nstructed in the series form.
The convergence of the obtained series solutions is cirednhlyzed. The velocity

and temperature profiles are shown and the influence of moerdiional parameter on
the heat transfer is discussed in detail. The validity of salutions is verified by the

numerical results.
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1 Introduction

Nonlinear differential equations are usually arising frorathematical modeling of many
physical systems. Some of them are solved using numeridalbdg and some are solved
using the analytic methods such as perturbation [1, 2]. Ttrearical methods such as
Rung-Kutta method are based on discretization technicares they only permit us to
calculate the approximate solutions for some values of ame space variables, which
cause us to overlook some important phenomena, in addiidmet intensive computer
time required to solve the problem. Thus it is often costlg &#me consuming to get
a complete curve of results and so in these methods, syahild convergence should
be considered so as to avoid divergence or inappropriatdtsedNumerical difficulties
additionally appear if a nonlinear problem contains siagties or has multiple solutions.
Perturbation techniques are based on the existence oflsrgiparameters, the so-called
perturbation quantity. Unfortunately, many nonlineargems in science and engineering
do not contain such kind of perturbation quantities at alkm® nonperturbative tech-
nigues, such as the artificial small parameter method [8])#xpansion method [4] and
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the Adomian’s decomposition method [5], have been developédferent from perturba-
tion techniques, these nonperturbative methods are imdiepe upon small parameters.
However, both of the perturbation techniques and the naagmEtive methods themselves
cannot provide us with a simple way to adjust or control theveogence region and rate
of given approximate series.

In 1992, Liao [6] employed the basic ideas of the homotopypotogy to propose
a general analytic method for nonlinear problems, namemdtopy analysis method
(HAM), [7-11]. Based on homotopy of topology, the validitytbe HAM is independent
of whether or not there exist small parameters in the consilequation. Therefore, the
HAM can overcome the foregoing restrictions and limitaia@f perturbation methods
[12]. The HAM also avoids discretization and provides anceffit numerical solution
with high accuracy, minimal calculation and avoidance ofgitally unrealistic assump-
tions. Furthermore, the HAM always provides us with a fanofysolution expressions
in the auxiliary parametek the convergence region and rate of each solution might
be determined conveniently by the auxiliary paraméteBesides, the HAM is rather
general and contains the homotopy perturbation method (HRBM 12], the Adomian
decomposition method (ADM) [13] antexpansion method.

In recent years, the homotopy analysis method has beenssfictte employed
to solve many types of nonlinear problems such as the narlieguations arising in
heat transfer [14], the nonlinear model of diffusion ancctiga in porous catalysts [15],
the chaotic dynamical systems [16], the non-homogeneoasil& problem [17], the
generalized three-dimensional MHD flow over a porous stiatg sheet [18], the wire
coating analysis using MHD Oldroyd 8-constant fluid [19} #xisymmetric flow and
heat transfer of a second grade fluid past a stretching st@etlie MHD flow of a second
grade fluid in a porous channel [21], the generalized Cofiettg22], the squeezing flow
between two infinite plates [23], the Glauert-jet probled][2he Burger and regularized
long wave equations [25], the laminar viscous flow in a seorbps channel in the
presence of a uniform magnetic field [26], and other probleis of these successful
applications verified the validity, effectiveness and ity of the HAM.

The flow and heat transfer of a viscous and incompressibie ifhaiuced by a con-
tinuously moving or stretching surface in a resting fluidglevant to many manufacturing
processes such as polymers involves the cooling of contsstrips or filaments by
drawing them through a quiescent fluid [33]. Further, gldss/ing, continuous casting
of metals and spinning of fibers involve the flow due to a shieig surface. Crane [27]
was first to study the boundary-layer flow due to a stretchiméase in an ambient fluid
and applied a similarity transformation for the steady uarg-layer flow by stretching of
a sheet when its velocity varying linearly with the distafroen a fixed point. Carragher
and Crane [28] considered the influence of heat transferanfldw over a stretching
surface in the case when the temperature difference betineesurface and the ambient
fluid is proportional to a power of distance from the fixed p¢88]. Dutta [29], Grubka
and Bobba [30] studied the temperature field in the flow ovdreiching surface when
a uniform heat flux is exerted to the surface. Elbashbeshlyd8dsidered the case of
a stretching surface with a variable surface heat flux. Theaady flow filed and heat
transfer occur when a flat plat stretches suddenly or a stepgehof the temperature or
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heat flux of the sheet [33]. Elbashbeshy and Bazid [32] stuithe unsteady flow and
heat transfer over a stretching sheet.

The main goal of the present study is to find the totally amalyplution for un-
steady boundary-layer flow and heat transfer due to a singtsheet by homotopy anal-
ysis method. This problem studied first by Sharidan [33] i6@8nd exerted the similarity
solution. Liao and Pop [34] applied the HAM to solve a steadyridary-layer flow due
to a stretching sheet. In this way, the Letter has been argdras follows. In Section 2,
the flow analysis and mathematical formulation are preskenite Section 3, we extend
the application of the HAM to construct the approximate sohs for the governing
equations. The convergence of the obtained series satuttonarefully analyzed in
Section 4. Section 5 contains the results and discussiomcadihclusions are summarized
in Section 6.

2 Flow analysis and mathematical formulation

Fig. 1 shows the unsteady flow and heat transfer of a viscodisrmompressible fluid
past a semi-infinite stretching sheet in the regjor 0. Keeping the origin fixed, two
equal and opposite forces are suddenly applied along-deas. These forces stretch the
sheet and the flow is generated. The wall temperdfufe:, t) of the sheet is suddenly
raised fronil’s, to T, (¢, ) > T or there is suddenly imposed a heat fiuxt, =) at the
wall [34].

T, (t,x) or q,(1,x)

» X

>

——— 0 —>—>—»

Fig. 1. Geometry of the problem.

With these assumptions, the governing equations for theeadg boundary-layer
flow due to the stretching sheet are given as follow
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and the boundary conditions are
u=uy(t,2), v=0, at y =0,
T :
T =T,(t,z) (VWT) or (Z-_ - —W (VHF) (4)
Y

u—0, T—Ty at y — oo,

wheret is the time,u andv are the velocity components along theandy-axes respec-
tively, 7" is the temperaturey is the thermal diffusivityy is the kinematic viscosity and
k is the thermal conductivity.

The velocity of the sheet,, (¢, x) the sheet temperatu#®, (¢, ) and the heat flux
quw (t, z) are defined

CT &
R R W —
T Lwta) T (1 =

3/2
Quy [ € 1
w t7 = - 1 _\90
4u(t; ) 222 (1/) (1 —~t)2

wherec is the stretching rate being a positive constanis a positive constant, which
measures the unsteadiness apglis a characteristic heat transfer quantity [33]. Sharidan
[33] introduced the following similarity transforms

/ c cv
n= mya Y= 177t$f(77),
c

U (t7 x) =

(5)

2ur2(1 — ~t)3/2

Qg C
T=Tet+dn ¢ 4 VHF),
T 2ua2(1 — yt)3/2 () (VHF)

where is the stream function and is definedw@s= 0v/0y andv = —0y/0x. The
governing equations are reduced by using (6) as follow
prar s gt a( e gar) o ™
i " / n l N
PTH +fO+2f0 2A(39+n0)f0, (8)

with boundary conditions

f(O) =0, fl(o) =1, fl(oo) =0,

6(0) =1 (VWT) or 6(0)=1 (VHF), 6(c0) =0, ®)

wherePr is the Prandtl number = ~/cis a non-dimensional constant which measures
the flow and heat transfer unsteadiness and primes denadéfgrentiation with respect
to the similarity variable) [33].
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The skin friction coefficienC’; and the local Nusselt numbsiu,, are the important
physical quantities in this problem and are defined as

Tw Lquw
I= oz M T T T,y

(10)

where the skin frictior,, and the heat transfer from the shegtare given by

Tw = M(@) o Qu = _k(a_T) ) (11)
y y=0 y y=0

andy is the dynamic viscosity. By using equations (5) and (6} tilbvious to get

/ Nug 1
=00 (WD, 55 = g5y (VR (42

Nuy,

CyRey/? = f"(0), o2

whereRe, = u,,z/v is the local Reynolds number.

3 HAM solution

To investigate the explicit and totally analytic solutimfsequations (7) and (8) by using
HAM, we choose

foln) =1—¢7", (13)
bo(n) = e, (14)

as initial approximations of (n) and 6(n) which satisfy the boundary conditions (9).
Besides, we select the auxiliary linear operaloysf) andLy(6) as

Li(f)=f"+1", (15)
Lo(0) = 0" + ¢, (16)

satisfying the following properties

Li(cre™ "+ can+c3) =0, (17)
La(cse™ +¢5) = 0, (18)

wherec;, ¢ = 1-5 are arbitrary constants. fe [0, 1] is an embedding parametéy, and
he are auxiliary nonzero parameters dfg(n) andHy(n) are auxiliary functions, then
the zeroth-order deformation equations are of the follgWorm

o~

[F(n:p) — fo(n)] = phyHy )Ny [f(n;p)], (19)
[0(n; f 7

(1-p) -
p) — 0o(n)] = pheHa(n)Na [ f(1;p),0(n; p)], (20)

— )Ly
(1 —p)L2

—~
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subject to the boundary conditions

o~

fo:p)=0, f(0:p)=1, f(oo;p) =0,

0(0;p) =1 (VWT) or & (0;p) = —1 (VHF), 8(c0;p) =0, D
in which we define the nonlinear operatdfs andN, as
N, 832573;;9) + Fonp) a?é;@m B <af(g;7;p>>2
A<afg777;p) +%n82§7772;p)>7 22)
N, = P%%:;p) + f;p) aagj;p) +2 afgz;p) 6(n; p)
- % A(3§(n;p) +n %ﬁ;p)) : (23)

Forp = 0 andp = 1, we have
Fi0) = foln),  Flns1) = f(n). 0(p;0) =6o(n), B(p:1) =0(n).  (24)

As p increases fronf to 1, f(n;p) and §(n;p) vary from fy(n) to f(n) andf(n). By
Taylor's theorem and equations (24) one obtains

+o0
Fip) = fo)) + > fn(m)p™, (25)
m=1
9(77 p = 90 + Z em ", (26)
where
19" f(n;p) ~1.9™8(;p)
fm(n) = mlopm | Om(n) = o Ly (27)

p=0

As pointed by Liao [7], the convergence of the series (25)(@6) strongly depend upon
auxiliary parameter; andhy. Assume thafiy andhy are selected such that the series
(25) and (26) are convergentjat= 1 then due to equation (24) we have

+oo
n) + Z (), (28)
= 0o(n) + Z O, (29)
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For themth-order deformation equations, we differentiate equmestid9) and (20)
m times with respect tp divide by m! and then sep = 0. The resulting deformation
equations at theuth-order are

L1 [fn (1) = X Srm—1(0)] = BgHyp () R (1), (30)
Lo [am (77) - X'rnem—l(n)] = hgHg (77)R2,m (77)a (31)

with the following boundary conditions

0, (0) =0 (VWT) or 6,,(0) =0 (VHF), 6,,(c0) =0,
where
_ P 0 frn1-n(n) | Ofn(n) Ofm-1-n(n)
o ==+ = <f"(n) aF oy an )
0 fm-1(n) L 0%fm-1(n)
—A( )y e ) (33)
1 0?0,m—1(n) — m—1-n(n) Afn(n)
00—
- % (97;@—1(77) + 7787771(77)) ) (34)
and
0, m<1,
X:{L m>1. (35)

According to the rule of solution expression, the rule offfioent ergodicity and
the rule of solution existence as discussed by Liao [7], wepshk auxiliary functions as
follow

Hy(n) =e™", (36)

Hy (77) = 6*77’ (37)
and use the symbolic software MATHEMATICA to solve the systef linear equations,
equations (30) and (31), with the boundary conditions éqongB2), and successively
obtain

fi(n) = 0.125Ah; — 0.125ARse™" — 0.125Ahsne 2", (38)

01(n) = 0.5hge 3" — 0.5hge™ 2" — 0.375Ahge %" — 1.110223 - 10~ *Chge ™"

0.5hge 2" ~ 0.5hge”"

—2n
e B+ 025ARge . (39)

+ 0.375Ahge™ T +
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4 Convergence of HAM solution

Note that the two series (28) and (28) contain the auxili@mameter:y andfy which
influences the convergentrate and region of the two ser@sn3ure that these two series
converge, we first focus on how to choose proper valuds gindfy. To see the range
of admissible values of these parameters, the curvég ahdrny are plotted in Figs. 2—4
for the 20th-order of approximation.

Fig. 2. Thehs-curves off” (0) obtained by Fig. 3. Thehy-curves of9’(0) (VWT case)
the 20th-order approximation of the HAM obtained by the20th-order approximation
for different values ofA. of the HAM for different values ofd, when
Pr =1.

[ I
ol v
-1.5 -0.5

Fig. 4. Thehy-curves off(0) (VHF case)

obtained by the20th-order approximation

of the HAM for different values of4, when
Pr=1.

As pointed by Liao [7], the valid region df; andhy is a horizontal line segment.

For better presentation, we listed these valid regions ieTd. A wide valid zone
is evident in these figures ensuring convergence of thesstieboth VWT and VHF
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cases. Table 2 show several best values obtained for thksayixiarameterd; and iy
for the VWT and VHF cases for different values of the non-digienal constant. This
figure elucidates that the size of the valid region stronglyehds on the non-dimensional
constant. In fact, the interval for admissible valueg pfand’y shrinks towards zero by
increasing the non-dimensional constant.

Table 1. The admissible values bf and hy for different values ofA when

Pr=1
A
Series solution 0.8 1.2 2
f(n) —1.6<h;<-02 —14<h;<-02 —12<h;<-02
O(n) (VWT)  —1.7<hy<—-02 —16<hg<—-02 —14<hy<-02
0(n) (VHF)  —17<hy < —05 —17<hg<—-05 —13<hy<-0.2

Table 2. The best values 6f and#, for different values ofA whenPr = 1

A hy he (VWT)  he (VHE)
0.8 ~08 —13 1.2
1.2 —-0.8 -1.0 -1.0
2 —0.7 -0.7 -0.8

5 Results and discussion

Equations (7) and (8) with the boundary conditions (9) ateesbusing HAM for some
values of the parametet. The rate of convergence fgi’(0), 6’(0) (VWT case) and
6(0) (VHF case) at some values df are shown in Tables 3-5, respectively. The results
obtained from HAM solution are compared with results of &tear [34]. The results
show that HAM gives an analytical solution with high orderafcuracy with a few
iterations.

Table 3. The rate of convergence fff(0) at some values ofl

A 5th-order  10th-order  15th-order  20th-order  Sharidan [34]
0.8 —1.261088 —1.261063 —1.261048 —1.261042 —1.261042
1.2 —1.377594 —1.377647 —1.377710 —1.377721 —1.377722
2.0 —1.587983 —1.587347 —1.587382 —1.587360 —1.587362

Table 4. The rate of convergence #(0) (VWT case) at some values df

A 5th-order 10th-order  15th-order  20th-order  Sharidan [34]
0.8 —0.472381 —0.471278 —0.471195 —0.471190  —0.471190
1.2 —0.787782 —0.787869 —0.788142 —0.788169  —0.788173
2.0 —1.247413 —1.243933 —1.243792 —1.243739 —1.243741
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The profilesf(n) and f’(n) obtained by th&0th-order approximation of the HAM
are shown in Figs. 5 and 6 for different valuesAfFigs. 7 and 8 show the effect of the
non-dimensional parametet, on the temperature profiles for both the VWT and VHF
cases.

Table 5. The rate of convergence for (VHF case) at some values

A b5th-order 10th-order 15th-order 20th-order  Sharidan [34]
0.8 2.099092  2.121981 2.122792 2.122869 2.122870
1.2 1.269349  1.269058  1.268772  1.268760 1.268756
2.0 0.802819 0.803925  0.804006  0.804021 0.804026

b4
o
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%
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>
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n
0
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n

Fig. 5. The profilef(n) obtained by the Fig. 6. The profilef’(n) obtained by the
20th-order approximation of the HAM for 20th-order approximation of the HAM for
different values ofA. different values ofA.

0.9 fr

0.8F

0.7

I

0.6

0.

=

0.

i

0.

0.

(n)
T T T

Fig. 7. The profiled(n) for VWT obtained Fig. 8. The profiled(n) for VHF obtained

by the 20th-order approximation of the by the 20th-order approximation of the

HAM for different values of A, when HAM for different values of A, when
Pr=1. Pr=1.
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6 Conclusions

In this Letter, the homotopy analysis method (HAM) was usedfinding the totally
analytic solutions of the system of nonlinear ordinaryetiéintial equations derived from
similarity transform for unsteady boundary-layer flow ae@ttransfer due to a stretching
sheet. The validity of our solutions is verified by the nuroafresults. We analyzed the
convergence of the obtained series solutions, carefullyikel perturbation methods, the
HAM does not depend on any small physical parameters. Thissalid for both weakly
and strongly nonlinear problems. Besides, different frdnother analytic methods, the
HAM provides us a simple way to adjust and control the corseog region of the series
solution by means of auxiliary parameter Thus the auxiliary parametér plays an
important role within the frame of the HAM which can be detared by the so-called
h-curves. The solution obtained by means of the HAM is an itdipiower series for
appropriate initial approximation, which can be, in tunxpressed in a closed form.
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