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Abstract. In this paper we have considered a nonautonomous predator-prey model
with time delay due to gestation, in which a disease that can be transmitted by
contact spreads among the prey only. Here, we have established some sufficient
conditions on the permanence of the system by using inequality analytical technique.
By Lyapunov functional method, we have also obtained some sufficient conditions for
global asymptotic stability of this model. We have observedthat the time delay has no
effect on the permanence of the system but it has an effect on the global asymptotic
stability of this model. The aim of the analysis of this modelis to identify the parameters
of interest for further study, with a view to informing and assisting policy-makers in
targeting prevention and treatment resources for maximum effectiveness.

Keywords: ecoepidemiology, susceptible and infected prey, predator, permanence,
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1 Introduction

The mathematical epidemic models have received much attention from researchers af-
ter the pioneering work of Kermack-McKendrick [1] on SIRS (susceptible-infective-
removal-susceptible) systems, in which the evolution of a disease which gets transmitted
upon contact is described. Ecology and epidemiology are twomajor and distinct fields of
research in their own right. Lotka [2] and Volterra [3] established seminal works on the
mathematical modelling of predator-prey and competing species in terms of simultaneous
non-linear differential equations, making the first breakthrough in modern mathematical
ecology. Ecoepidemiology is the study of interacting species in which a disease spreads.
The study of Ecoepidemiology has important ecological significance. Ecoepidemiology
research is becoming important as it involves persistence-extinction threshold of each
population in systems of two or more interacting species subjected to parasitism [4–8].
In the natural world, however, species do not exist alone while species spreads disease,
it also competes with the other species for space or food, or is predated by other species.
Understanding how parasites affect biodiversity and ecosystem dynamics is an important
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question in conservation biology as infectious disease canbe a factor in regulating host
population. On the other hand, successful invasion of a parasite into a host population
and resulting host-parasite dynamics can depend essentially on other members of a host’s
community such as predators. Predation can dramatically shape the structures of commu-
nity and ecosystem and becomes particularly interesting inhost-parasite systems because
predation itself can strongly alter dynamics of hosts and parasites. Predators may also
prevent proper invasion of parasites into host population.Therefore, it is very significant
biologically to consider the effect of interacting specieswhen we study the dynamical
behaviours of epidemiological systems. Scientists have paid lots of attention to merge
these two important areas of research [4–13].

Nonautonomous phenomenon often occurs in many realistic ecoepidemiological
models. The nonautonomous phenomenon occurs mainly due to the seasonal variations,
which make the population behave periodically. Pathogen contact rate and infectivity
vary seasonally and is generally larger in spring and autumnthan in summer and win-
ter. This seasonal pattern is related to moderate temperatures in spring and autumn
which improves pathogen survival and favors high insect activity. Since biological and
environmental parameters are naturally subject to fluctuation in time, the effects of a
periodically varying environment are considered as important selective forces on systems
in a fluctuating environment. To investigate this kind of phenomenon, in the model,
the coefficients should be periodic functions, then the system is called periodic system.
The nonautonomous ecoepidemiological models can be regarded as an extension of the
periodic ecoepidemiological models. Therefore, the research on the nonautonomous
ecoepidemiological dynamical models is also very important.

Considering the above facts, in this paper we have considered a nonautonomous
predator-prey model with time delay due to gestation, in which a disease that can be trans-
mitted by contact spreads among the prey only. In the proposed system, all the coefficients
are time-dependent, i.e., it is nonautonomous. Usually, such systems do not have any
disease-free equilibrium and endemic equilibrium. There are many methods to deal with
autonomous systems, but they may not be suitable to nonautonomous systems. Therefore,
it is more difficult to study the dynamical behaviours in nonautonomous case. Here, we
have established some sufficient conditions on the permanence (uniformly persistent) of
the system by using inequality analytical technique. By Lyapunov functional method, we
have also obtained some sufficient conditions for the globalasymptotic stability of this
system.

2 The basic mathematical model

Here, we have considered an ecoepidemiological system consisting of three species, na-
mely, the sound prey (which is susceptible), the infected prey (which becomes infective
by some viruses) and the predator population. Our mathematical model is formulated as
the following system of nonautonomous delay differential equations:

dx1(t)

dt
= x1(t)

[

r(t) − k1(t)
(

x1(t) + x2(t)
)

− a1(t)x3(t) − β(t)x2(t)
]

, (1a)
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dx2(t)

dt
= x2(t)

[

β(t)x1(t) − k2(t)
(

x1(t) + x2(t)
)

− a2(t)x3(t)
]

, (1b)

dx3(t)

dt
= −d(t)x3(t) − b(t)x2

3(t) + c1(t)x3(t − τ)x1(t − τ)

+ c2(t)x3(t − τ)x2(t − τ). (1c)

Here,(x1(t), x2(t), x3(t)) are the densities of the sound prey (which is susceptible), the
infected prey (which becomes infective by some viruses) andthe predator population,
respectively at timet.

The model is derived under following assumptions.
The quantitiesr(t), b(t), k1(t), k2(t), d(t), β(t), a1(t), a2(t), c1(t), c2(t) are:

r(t) : intrinsic birth rate function of the susceptible prey population;
d(t) : intrinsic death rate function of the predator population;
k1(t) : the rate of crowding effects on the susceptible prey population;
k2(t) : the rate of crowding effects on the infected prey population;
b(t) : the rate of crowding effects on the predator population;
β(t) : the transmission rate function of infection when susceptible prey contact

with infected prey and the rate of transmission is of the form
β(t)x1(t)x2(t);

a1(t) : the capturing rate function of susceptible prey by the predator;
a2(t) : the capturing rate function of infected prey by the predator;
c1(t) : the growth rate function of the predator due to predation of susceptible

prey;
c2(t) : the growth rate function of the predator due to predation of infected prey.

(A1) We assume that only susceptible preyx1(t) is capable of reproducing with logistic
law. The mortality terms for susceptible and infected prey are of density dependence
[14], say, the ratek1(t) for the susceptible prey andk2(t) for the infected prey. The
infected preyx2(t) is removed by death or by predation before having the possibility
of reproducing. However, the infected prey populationx2(t) still contributes with
x1(t) to population growth toward the carrying capacity.

(A2) We assume that the disease spreads among the prey population only and the disease
is not genetically inherited. The infected prey populationdoes not recover nor
becomes immune. The incidence is assumed to be the simple mass action form
β(t)x1(t)x2(t), whereβ(t) is called the transmission rate function.

(A3) The predators hunt with possibly different predation rate functionsa1(t) anda2(t)
on susceptible and infected preys respectively. This is in accordance with the fact
that the infected individuals can be caught more easily. Forexample, Peterson and
Page [15] have indicated that wolf attacks on moose are more often successful if the
moose is heavily infected by “Echinococcus granucosus”.c1(t) andc2(t) denote the
growth rate functions of the predator due to predation on susceptible and infected
preys respectively; and the rate of growth are respectivelyof the forms:

c1(t)x3(t − τ)x1(t − τ), c2(t)x3(t − τ)x2(t − τ),
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τ > 0 is the fixed time delay due to gestation lag.

Here we assume that the functionsr(t), b(t), k1(t), k2(t), d(t), β(t), a1(t), a2(t),
c1(t), c2(t) are positive continuous bounded and have positive lower bounds.

The initial conditions of (1) are given as

x1(θ) = ϕ1(θ), x2(θ) = ϕ2(θ), x3(θ) = ϕ3(θ), −τ ≤ θ ≤ 0, (2)

whereϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C such thatϕi(θ) ≥ 0 (i = 1, 2, 3), ∀ θ ∈ [−τ, 0], and

C denotes the Banach spaceC([−τ, 0], R3) of continuous functions mapping the interval
[−τ, 0] into R

3 and denotes the norm of an elementϕ in C by
‖ϕ‖ = sup−τ≤θ≤0{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|}. For a biological meaning, we further
assume thatϕi(0) > 0, i = 1, 2, 3.

Theorem 1. Every solution of system(1) with initial conditions(2) exists and is unique
in the interval[0,∞) andx1(t) > 0, x2(t) > 0, x3(t) > 0, for all t ≥ 0.

Proof. Since the right hand side of system (1) is completely continuous and locally
Lipschitzian onC, the solution(x1(t), x2(t), x3(t)) of (1) with initial conditions (2)
exists and is unique on[0, α), where0 < α ≤ +∞ [16, Chapter 2]. Now, from the
first two equations of system (1), we have

x1(t) = x1(0) exp

t
∫

0

[

r(s) − k1(s)
(

x1(s) + x2(s)
)

− a1(s)x3(s) − β(s)x2(s)
]

ds > 0, ∀t ≥ 0,

x2(t) = x2(0) exp

t
∫

0

[

β(s)x1(s) − k2(s)
(

x1(s) + x2(s)
)

− a2(s)x3(s)
]

ds > 0, ∀t ≥ 0.

Next, we prove thatx3(t) > 0 for all t ≥ 0.
If not, then there exists at1 > 0, such thatx3(t1) = 0, andx3(t) ≥ 0, ∀ t ∈

[−τ, t1]. Furthermore,

dx3(t)

dt
≥ −d(t)x3(t) − b(t)x2

3(t), ∀t ∈ [0, t1].

Then

x3(t) ≥ x3(0) exp

t
∫

0

[−d(s) − b(s)x3(s)] ds > 0, ∀t ∈ [0, t1],

⇒ x3(t1) ≥ x3(0) exp

t1
∫

0

[−d(s) − b(s)x3(s)] ds > 0,

which is a contradiction. Hence,x3(t) > 0, for all t ≥ 0. This completes the proof.
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3 Permanence of system(1)

Here we wish to discuss the permanence (uniformly persistent) of system (1) with initial
conditions (2), which demonstrates how this system will be uniformly persistent, this
means that the long-term survival (i.e., will not vanish in time) of all components of the
system (1) with initial conditions (2), under some conditions. Letf l = inft≥0 f(t), fu =
supt≥0 f(t), for a continuous and bounded functionf(t) defined on[0, +∞).

Definition 1. System (1) is said to be uniformly persistent, i.e., the long-term survival
(will not vanish in time) of all components of the system (1),if there are positive constants
vi andwi (i = 1, 2, 3) such that:

v1 ≤ lim inf
t→∞

x1(t) ≤ lim sup
t→∞

x1(t) ≤ w1,

v2 ≤ lim inf
t→∞

x2(t) ≤ lim sup
t→∞

x2(t) ≤ w2,

v3 ≤ lim inf
t→∞

x3(t) ≤ lim sup
t→∞

x3(t) ≤ w3,

hold for any solution(x1(t), x2(t), x3(t)) of (1) with initial conditions (2). Herevi and
wi (i = 1, 2, 3) are independent of (2).

Theorem 2([17]). Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t),

wherea, b, c, τ > 0; x(t) > 0, for −τ ≤ t ≤ 0. We have

(i) if a > b, then limt→∞ x(t) = a−b
c

;

(ii) if a < b, then limt→∞ x(t) = 0.

Theorem 3. Let X(t) = (x1(t), x2(t), x3(t)) denote any solution of system(1) and (2).
Suppose system(1) satisfies

(c1 + c2)
uM∗ − dl > 0, where M∗ = max

{(

ru

kl
1

)

,

(

βu

kl
2

)(

ru

kl
1

)}

. (3)

Then∃ a T3 > 0 such that

x1(t), x1(t) ≤ M3 and x3(t) ≤ M4, ∀ t ≥ T3, (4)

whereM3 > M∗ andM4 >
(c1+c2)

uM∗−dl

bl .

Proof. Let, M1 > ( ru

kl

1

). From (1a),

ẋ1(t) ≤ x1(t)[r(t) − k1(t)x1(t)] ≤ x1(t)[r
u − kl

1x1(t)].

Therefore, ifx1(0) ≤ M1, thenx1(t) ≤ M1, for all t ≥ 0.
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If x1(0) > M1, and let−α1 = M1(r
u − kl

1M1), α1 > 0, then∃ anǫ1 > 0, s.t. if
t ∈ [0, ǫ1), x(t) > M1, and we havėx1(t) < −α1 < 0.

Therefore,∃ aT1 > 0 s.t.x1(t) ≤ M1, ∀ t ≥ T1, whereM1 > ( ru

kl

1

).

From (1b) we have,̇x2(t) ≤ x2(t)[β
uM1 − kl

2x2(t)], ∀ t ≥ T1.

Therefore,∃ aT2 ≥ T1 > 0 s.t.x2(t) ≤ M2, ∀ t ≥ T2, whereM2 > (βu

kl

2

)( ru

kl

1

); M1

can be chosen sufficiently close to( ru

kl

1

). Hence,x1(t), x2(t) ≤ M3, whereM3 > M∗ =

max{( ru

kl

1

), (βu

kl

2

)( ru

kl

1

)}, ∀ t ≥ T2. In addition, from (1c) we obtain

ẋ3(t) ≤ −dlx3(t) − blx2
3(t) + (c1 + c2)

uM3x3(t − τ), ∀t ≥ T2 + τ.

By condition (3) and Theorem 2, we conclude that

∃ aT3 ≥ T2 + τ s.t. x3(t) ≤ M4, ∀ t ≥ T3, where M4 >
(c1 + c2)

uM∗ − dl

bl
,

sinceM3 can be chosen sufficiently close toM∗.
This completes the proof.

Theorem 4. Suppose that system(1) and(2) satisfies the following conditions:

dl

(c1 + c2)u
< M∗ = max

{(

ru

kl
1

)

,

(

βu

kl
2

)(

ru

kl
1

)}

< min

{

blrl + au
1dl − (

ku

1
dubl

(c1+c2)l )

(k1 + β)ubl + au
1 (c1 + c2)u

,

βlblrl + au
2dlku

1 + au
1βldl − (

ku

1
ku

2
dubl

(c1+c2)l )

βl{(k1 + β)ubl + au
1 (c1 + c2)u} + blku

1 ku
2 + ku

1 au
2 (c1 + c2)u

}

. (5)

Then system(1) and (2) is uniformly persistent.

Proof. SupposeX(t) = (x1(t), x2(t), x3(t)) be a solution of (1) and (2). Therefore,

ẋ1(t) ≥ x1(t)[r
l − {(k1 + β)uM3 + au

1M4} − ku
1 x1(t)], ∀ t ≥ T3,

(using Theorem 3 andT3 is defined there). By condition (5), we have

blrl − M∗
{

(k1 + β)ubl + au
1 (c1 + c2)

u
}

+ au
1dl > 0

⇒ rl −

{

(k1 + β)uM∗ + au
1

(c1 + c2)
uM∗ − dl

bl

}

> 0

⇒ rl −
{

(k1 + β)uM3 + au
1M4

}

> 0, (6)
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sinceM3 can be chosen sufficiently close toM∗ andM4 can be chosen sufficiently close

to (c1+c2)
uM∗−dl

bl . Let us choosem1 in such a way that,

0 < m1 <
rl − {(k1 + β)uM3 + au

1M4}

ku
1

⇒ rl −
{

(k1 + β)uM3 + au
1M4

}

− ku
1 m1 > 0. (7)

If x1(T3) ≥ m1, thenx1(t) ≥ m1, ∀t ≥ T3. If x1(T3) < m1, and letµ1 = x1(T3){r
l −

{(k1 + β)uM3 + au
1M4} − ku

1 m1} > 0, then∃ an ǫ1 > 0, s.t. x1(t) < m1, and
ẋ1(t) > µ1 > 0, ∀t ∈ [T3, T3 + ǫ1). Therefore,

∃ a T4 > T3 > 0, s.t. x1(t) ≥ m1, ∀t ≥ T4. (8)

From the second equation of system (1) and using Theorem 3, wehaveẋ2(t) ≥ x2(t)×
[βlm1 − (ku

2 M3 + au
2M4) − ku

2 x2(t)], ∀t ≥ T4, using (8). By condition (5), after some
simplifications, we have

βlm1 − (ku
2 M3 + au

2M4) > 0, (9)

sincem1 can be chosen sufficiently close torl−{(k1+β)uM3+au

1
M4}

ku

1

andM3, M4 can be

chosen sufficiently close toM∗, (c1+c2)
uM∗−dl

bl respectively. Let us choosem2 in such a
way that,

0 < m2 <
βlm1 − (ku

2 M3 + au
2M4)

ku
2

⇒ βlm1 − (ku
2 M3 + au

2M4) − ku
2 m2 > 0. (10)

If x2(T4) ≥ m2, thenx2(t) ≥ m2, ∀t ≥ T4. If x2(T4) < m2, and letµ2 = x2(T4)×
{βlm1 − (ku

2 M3 + au
2M4) − ku

2 m2} > 0, then∃ an ǫ2 > 0, s.t. x2(t) < m2, and
ẋ2(t) > µ2 > 0, ∀t ∈ [T4, T4 + ǫ2. Therefore,

∃ a T5 > T4 > 0, s.t. x2(t) ≥ m2, ∀t ≥ T5. (11)

Hence,

x1(t), x2(t) ≥ m3, ∀t ≥ T5, wherem3 < m∗ = min{m1, m2}. (12)

From the third equation of (1), we have

ẋ3(t) ≥ −dux3(t) − bux2
3(t) + (c1 + c2)

lm3x3(t − τ), ∀t ≥ T5 + τ.

By using condition (5) and after some simplifications, we have (c1 + c2)
lm3 > du.

Therefore by Theorem 2, we conclude that

∃ a T6 ≥ T5 + τ s.t. x3(t) ≥ m4, ∀t ≥ T6, (13)
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wherem4 <
(c1+c2)

lm3−du

bu .
From the above discussions, we conclude that∃ T6 > 0 s.t. every solution of

system (1) and (2) eventually enters and remains in the region Ω = {(x1, x2, x3)|m ≤
xi ≤ M, i = 1, 2, 3}, ∀ t ≥ T6, wherem = min{m3, m4} andM = max{M3, M4}.
This completes the proof.

4 Global asymptotic stability

In this section, we derive sufficient conditions for global asymptotic stability of system (1)
with initial conditions of type (2). We now state a definitionof global asymptotic stability
of solutions of system (1).

Definition 2. System (1) with initial conditions (2) is said to be globallyasymptotically
stable if

lim
t→∞

|x1(t) − u1(t)| = 0, lim
t→∞

|x2(t) − u2(t)| = 0, lim
t→∞

|x3(t) − u3(t)| = 0,

hold for any two solutions(x1(t), x2(t), x3(t)) and(u1(t), u2(t), u3(t)) of (1) with initial
conditions of type (2).

Theorem 5. If there existα1 > 0, α2 > 0 andα3 > 0 such that the functionsBi(t) (i =
1, 2, 3) are nonnegative on[0,∞) and for any interval sequence{[ei, fi]}

∞
1 , [ei, fi] ∩

[ej , fj] = φ and fi − ei = fj − ej > 0, for all i, j = 1, 2, . . . and i 6= j, one

has
∑∞

k=1

∫ fk

ek

Bi(t)dt = ∞, then system(1) with initial conditions (2) is globally
asymptotically stable. Here,

B1(t) = α1k1(t) − α2|k2(t) − β(t)| − α3Mc1(t + τ),

B2(t) = α2k2(t) − α1(k1(t) + β(t)) − α3Mc2(t + τ),

B3(t) = α3

(

d(t) + 2mb(t)
)

− α1a1(t) − α2a2(t)

− α3M
(

c1(t + τ) + c2(t + τ)
)

,

(14)

wherem, M are given in Theorem4.

Proof. Assume that(x1(t), x2(t), x3(t)) and(u1(t), u2(t), u3(t)) are any two solutions
of system (1) with initial conditions of type (2).

DefineV1(t) = | lnx1(t) − lnu1(t)|, V2(t) = | lnx2(t) − lnu2(t)| andV3(t) =
|x3(t) − u3(t)|. Then the right-upper derivative ofV1(t), V2(t) and V3(t) along the
solution of system (1) and (2) are given below:

D+V1(t) =

(

ẋ1(t)

x1(t)
−

u̇1(t)

u1(t)

)

sgn
(

x1(t) − u1(t)
)

≤ −k1(t)|x1(t) − u1(t)| +
(

k1(t) + β(t)
)

|x2(t) − u2(t)|

+ a1(t)|x3(t) − u3(t)|, (15)
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D+V2(t) =

(

ẋ2(t)

x2(t)
−

u̇2(t)

u2(t)

)

sgn
(

x2(t) − u2(t)
)

≤ |k2(t) − β(t)||x1(t) − u1(t)| − k2(t)|x2(t) − u2(t)|

+ a2(t)|x3(t) − u3(t)|, (16)

D+V3(t) =
(

ẋ3(t) − u̇3(t)
)

sgn
(

x3(t) − u3(t)
)

≤ −d(t)|x3(t) − u3(t)| − b(t)
(

x3(t) + u3(t)
)

|x3(t) − u3(t)|

+ c1(t){x3(t − τ)|x1(t − τ) − u1(t − τ)|

+ u1(t − τ)|x3(t − τ) − u3(t − τ)|}

+ c2(t){x3(t − τ)|x2(t − τ) − u2(t − τ)|

+ u2(t − τ)|x3(t − τ) − u3(t − τ)|}. (17)

Define

V4(t) =

t
∫

t−τ

c1(s + τ)x3(s)|x1(s) − u1(s)| ds

+

t
∫

t−τ

c1(s + τ)u1(s)|x3(s) − u3(s)| ds

+

t
∫

t−τ

c2(s + τ)x3(s)|x2(s) − u2(s)| ds

+

t
∫

t−τ

c2(s + τ)u2(s)|x3(s) − u3(s)| ds. (18)

Calculating the right-upper derivative ofV4(t) along the solution of system (1) and (2),
we have

D+V4(t)

= c1(t+τ)x3(t)|x1(t)−u1(t)|−c1(t)x3(t−τ)|x1(t−τ)−u1(t−τ)|

+c1(t+τ)u1(t)|x3(t)−u3(t)|−c1(t)u1(t−τ)|x3(t−τ)−u3(t−τ)|

+c2(t+τ)x3(t)|x2(t)−u2(t)|−c2(t)x3(t−τ)|x2(t−τ)−u2(t−τ)|

+c2(t+τ)u2(t)|x3(t)−u3(t)|−c2(t)u2(t−τ)|x3(t−τ)−u3(t−τ)|. (19)

Let V (t) = α1V1(t) + α2V2(t) + α3(V3(t) + V4(t)), then by using (15)–(19), we
have

D+V (t) ≤ −B1(t)|x1(t) − u1(t)| − B2(t)|x2(t) − u2(t)|

− B3(t)|x3(t) − u3(t)|, ∀t ≥ T6, (20)

whereT6 is defined in Theorem 4 andBi(t), (i = 1, 2, 3) are defined in (14).
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Integrating (20) fromT6 to t, we have

t
∫

T6

{B1(t)|x1(t) − u1(t)| + B2(t)|x2(t) − u2(t)|

+ B3(t)|x3(t) − u3(t)|} dt ≤ V (T6) − V (t)

⇒

t
∫

T6

{B1(t)|x1(t) − u1(t)|

+ B2(t)|x2(t) − u2(t)| + B3(t)|x3(t) − u3(t)| dt < ∞. (21)

By assumptions (14) aboutBi(t), (i = 1, 2, 3) and the boundedness of(x1(t), x2(t),
x3(t)) and(u1(t), u2(t), u3(t)) on [0,∞), we obtain from system (1) that|x1(t)−u1(t)|,
|x2(t) − u2(t)| and|x3(t) − u3(t)| are bounded and uniformly continuous on[0,∞). It
follows from (21) that,

lim
t→∞

|x1(t) − u1(t)| = 0, lim
t→∞

|x2(t) − u2(t)| = 0, lim
t→∞

|x3(t) − u3(t)| = 0.

This shows that system (1) with initial conditions (2) is globally asymptotically stable.
This completes the proof.

Corollary 1. If there existα1 > 0, α2 > 0 andα3 > 0 such that

lim inf
t→∞

{α1k1(t) − α2|k2(t) − β(t)| − α3Mc1(t + τ)} > 0,

lim inf
t→∞

{α2k2(t) − α1(k1(t) + β(t)) − α3Mc2(t + τ)} > 0,

lim inf
t→∞

{

α3

(

d(t) + 2mb(t)
)

− α1a1(t) − α2a2(t)

− α3M
(

c1(t + τ) + c2(t + τ)
)}

> 0,

then system(1) with initial conditions(2) is globally asymptotically stable.

Assume that system (1) isω-periodic, i.e. all coefficients areω-periodic functions.
Then system (1) has a positiveω-periodic solution if system (1) is uniformly persistent
[18]. Thus, we have the following corollary.

Corollary 2. If system(1) is ω-periodic and conditions in Theorems4 and 5 are valid,
then there exists a unique positiveω-periodic solution which is globally asymptotically
stable.

5 Conclusions

In this paper we have considered a nonautonomous predator-prey model with time delay
due to gestation, in which a disease that can be transmitted by contact spreads among
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the prey only. The most basic and important questions to ask for biological systems in
the theory of mathematical epidemiology are the persistence, extinctions, the existence
of periodic solutions, global stability, etc. [1, 19–23]. Here, we have established some
sufficient conditions for the permanence (uniformly persistent) of the above system by
using inequality analytical technique. By Lyapunov functional method, we have also
obtained some sufficient conditions for the global asymptotic stability of this model. We
have observed that the time delay has no effect on the permanence of the system but it has
an effect on the global asymptotic stability of this model. The aim of the analysis of this
model is to identify the parameters of interest for further study, with a view to informing
and assisting policy-makers in targeting prevention and treatment resources for maximum
effectiveness.

Acknowledgement

I am very grateful to the anonymous referees and Journal Secretary (Dr. Romas Baronas)
for their careful reading, valuable comments and helpful suggestions, which have helped
me to improve the presentation of this work significantly. I am grateful to Prof. A. Dvure-
censkij, Dr. I. Vrto, Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slo-
vak Republic and Dr. D.N. Garain, P.G. Department of Mathematics, S.K.M. University,
Dumka-814101, Jharkhand, India for their helps and encouragements. I am thankful to
Slovak Academic Information Agency (SAIA), Bratislava, Slovak Republic for financial
support.

References

1. W.O. Kermark, A.G. Mckendrick, Contributions to the Mathematical Theory of Epidemics,
Part I,Proc. R. Soc. A, 115(5), pp. 700–721, 1927.

2. A. Lotka,Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.

3. V. Volterra, Variazioni e fluttuazioni del numero di individui in specie animali conviventi,Mem.
Accad. Lincei, 2, pp. 31–113, 1926.

4. K.P. Hadeler, H.I. Freedman, Predator-prey population with parasite infection,J. Math. Biol,
27, pp. 609–631, 1989.

5. E. Beltrami, T.O. Carroll, Modelling the role of viral disease in recurrent phytoplankton
blooms,J. Math. Biol, 32, pp. 857–863, 1994.

6. E. Venturino, Epidemics in predator-prey model: diseasein the prey, in: Mathematical
Population Dynamics: Analysis of Heterogeneity, Vol.1, O. Arino, O. Axelrod, M. Kimmel,
M. Langlais (Eds.), pp. 381–393, 1995.

7. J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey,Nonlinear
Analysis, 36, pp. 747–766, 1999.

8. X. Zhou, X. Shi, X. Song, Analysis of a delay prey-predatormodel with disease in the prey
species only,J. Korean Math. Soc., 46, pp. 713–731, 2009.

107



G.P. Samanta

9. Y. Xiao, L. Chen, Modeling and analysis of a predator-preymodel with disease in the prey,
Math. Biosci., 171, pp. 59–82, 2001.

10. Y. Xiao, L. Chen, Analysis of a three species eco-epidemiological model,J. Math. Anal. Appl.,
258, pp. 733–754, 2001.

11. Y. Xiao, L. Chen, A ratio-dependent predator-prey modelwith disease in the prey,Appl. Math.
Comput., 131, pp. 397–414, 2002.

12. H.W. Hethcote, W. Wang, L. Han, Z. Ma, A predator-prey model with infected prey,Theor.
Pop. Biol., 66, pp. 259–268, 2004.

13. M. Haque, J. Zhen, E. Venturino, An ecoepidemiological predator-prey model with standard
disease incidence,Mathematical Methods in the Applied Sciences, 32, pp. 875–898, 2009.

14. Y. Xiao, F.V.D. Bosch, The dynamics of an eco-epidemic model with biological control,Ecol.
Model., 168, pp. 203–214, 2003.

15. R.O. Peterson, R.E. Page, Wolf density as a predictor of predation rate,Swedish Wildlife
Research Suppl., 1, pp. 771–773, 1987.

16. J. Hale,Theory of functional differential equations, Springer-Verlag, Heidelberg, 1977.

17. X.Y. Song, L.S Chen, Optimal harvesting and stability with stage-structure for a two species
competitive system,Math. Biosci., 170, pp. 173–186, 2001.

18. Z. Teng, L. Chen, The positive periodic solutions of periodic Kolmogorov type systems with
delays,Acta Math. Appl. Sin., 22, pp. 446–456, 1999.

19. R.M. Anderson, R.M. May, Population Biology of Infectious Diseases, Part I,Nature, 280,
pp. 361–367, 1979.

20. V. Capasso,Mathematical Structures of Epidemic Systems, Lectures Notes in Biomathematics,
Vol. 97, Springer-Verlag, Berlin, 1993.

21. O. Diekmann, J.A.P. Heesterbeek,Mathematical Epidemiology of Infectious Diseases: Model
Building Analysis, and Interpretation, John Wiley and Sons Ltd., Chichester, New York, 2000.

22. Z. Ma, Y. Zhou, W. Wang, Z. Jin,Mathematical Modelling and Research of Epidemic
Dynamical Systems, Science Press, Beijing, 2004.

23. X. Meng, L. Chen, H. Cheng, Two profitless delays for the SEIRS epidemic disease model with
nonlinear incidence and pulse vaccination,Appl. Math. Comput., 186, pp. 516–529, 2007.

108


