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Abstract. In this paper we have considered a nonautonomous predaprrpodel
with time delay due to gestation, in which a disease that cantrnsmitted by
contact spreads among the prey only. Here, we have estafblisome sufficient
conditions on the permanence of the system by using ingguailialytical technique.
By Lyapunov functional method, we have also obtained sonffecgunt conditions for
global asymptotic stability of this model. We have obsertreat the time delay has no
effect on the permanence of the system but it has an effech@mlbbal asymptotic
stability of this model. The aim of the analysis of this modetb identify the parameters
of interest for further study, with a view to informing andsasing policy-makers in
targeting prevention and treatment resources for maxinftentereness.

Keywords: ecoepidemiology, susceptible and infected prey, predgiermanence,
Lyapunov functional, global stability.

1 Introduction

The mathematical epidemic models have received much mitefiom researchers af-
ter the pioneering work of Kermack-McKendrick [1] on SIRSigseptible-infective-
removal-susceptible) systems, in which the evolution oisaake which gets transmitted
upon contact is described. Ecology and epidemiology aretajor and distinct fields of
research in their own right. Lotka [2] and Volterra [3] edisiired seminal works on the
mathematical modelling of predator-prey and competingiggan terms of simultaneous
non-linear differential equations, making the first bréa&tigh in modern mathematical
ecology. Ecoepidemiology is the study of interacting spean which a disease spreads.
The study of Ecoepidemiology has important ecologicalifiggmce. Ecoepidemiology
research is becoming important as it involves persistextiection threshold of each
population in systems of two or more interacting speciegesuiéd to parasitism [4-8].
In the natural world, however, species do not exist alondendpecies spreads disease,
it also competes with the other species for space or food, predated by other species.
Understanding how parasites affect biodiversity and estesy dynamics is an important
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guestion in conservation biology as infectious diseasebeaa factor in regulating host
population. On the other hand, successful invasion of asftarmto a host population
and resulting host-parasite dynamics can depend es$gntiadther members of a host's
community such as predators. Predation can dramaticallyesthe structures of commu-
nity and ecosystem and becomes particularly interestihg#t-parasite systems because
predation itself can strongly alter dynamics of hosts anégtes. Predators may also
prevent proper invasion of parasites into host populafidrerefore, it is very significant
biologically to consider the effect of interacting specidsen we study the dynamical
behaviours of epidemiological systems. Scientists have lpés of attention to merge
these two important areas of research [4-13].

Nonautonomous phenomenon often occurs in many realistiepgdemiological
models. The nonautonomous phenomenon occurs mainly dhe seasonal variations,
which make the population behave periodically. Pathogertad rate and infectivity
vary seasonally and is generally larger in spring and auttivan in summer and win-
ter. This seasonal pattern is related to moderate tempesain spring and autumn
which improves pathogen survival and favors high insedvi#gt Since biological and
environmental parameters are naturally subject to flutoah time, the effects of a
periodically varying environment are considered as inguarselective forces on systems
in a fluctuating environment. To investigate this kind of pbmenon, in the model,
the coefficients should be periodic functions, then theesyss called periodic system.
The nonautonomous ecoepidemiological models can be regasian extension of the
periodic ecoepidemiological models. Therefore, the metean the nonautonomous
ecoepidemiological dynamical models is also very impdrtan

Considering the above facts, in this paper we have consldergonautonomous
predator-prey model with time delay due to gestation, inolvls disease that can be trans-
mitted by contact spreads among the prey only. In the prapegstem, all the coefficients
are time-dependent, i.e., it is nonautonomous. Usuallgh systems do not have any
disease-free equilibrium and endemic equilibrium. Theeeraany methods to deal with
autonomous systems, but they may not be suitable to nonamtous systems. Therefore,
it is more difficult to study the dynamical behaviours in nottmomous case. Here, we
have established some sufficient conditions on the perntan@miformly persistent) of
the system by using inequality analytical technique. Bydw@ov functional method, we
have also obtained some sufficient conditions for the glalsgmptotic stability of this
system.

2 The basic mathematical model

Here, we have considered an ecoepidemiological systenistioigsof three species, na-
mely, the sound prey (which is susceptible), the infectexy gwhich becomes infective
by some viruses) and the predator population. Our mathealatiodel is formulated as
the following system of nonautonomous delay differentépla@tions:

dl‘l (f,)
dt

=21 (t) [r(t) — k1 (t) (1) + 22(1)) — ar(t)xs(t) — B(t)z2(t)], (1)
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dx;s(w = —d(t)ws(t) — b(t)23(t) + ex (st — T)ar(t —7)

+Cg(t)l‘3(t*7’)l‘2(t*7’). (1C)

Here, (21 (t), 22(t), x3(t)) are the densities of the sound prey (which is susceptilfie), t
infected prey (which becomes infective by some viruses) thedpredator population,
respectively at time.

(A1)

(A2)

(A3)

The model is derived under following assumptions.
The quantities(t), b(t), k1 (), k2(t), d(t), B(t), a1 (t), az(t), c1(t), c2(t) are:

r(t): intrinsic birth rate function of the susceptible prey pagidn;

d(t): intrinsic death rate function of the predator population;

k1 (t): the rate of crowding effects on the susceptible prey pojmrat

ko(t): the rate of crowding effects on the infected prey population

b(t): the rate of crowding effects on the predator population;

B(t): the transmission rate function of infection when suscégtibey contact
with infected prey and the rate of transmission is of the form
B(t)z1(t)z2(t);

a1(t): the capturing rate function of susceptible prey by the piatla

as(t): the capturing rate function of infected prey by the predator

c1(t): the growth rate function of the predator due to predatiorustsptible
prey;

co(t): the growth rate function of the predator due to predatiomfedted prey.

We assume that only susceptible prayt) is capable of reproducing with logistic
law. The mortality terms for susceptible and infected preycd density dependence
[14], say, the raté; (¢) for the susceptible prey arid (¢) for the infected prey. The
infected preyes(t) is removed by death or by predation before having the pdigibi
of reproducing. However, the infected prey populatiorit) still contributes with
x1(t) to population growth toward the carrying capacity.

We assume that the disease spreads among the prey fiopolaly and the disease
is not genetically inherited. The infected prey populatéoes not recover nor
becomes immune. The incidence is assumed to be the simpk antisn form
B(t)xq1(t)x=2(t), wheres(t) is called the transmission rate function.

The predators hunt with possibly different predatiaterfunctions:; (¢) andas(t)
on susceptible and infected preys respectively. This isaoalance with the fact
that the infected individuals can be caught more easily.example, Peterson and
Page [15] have indicated that wolf attacks on moose are nitae successful if the
moose is heavily infected by “Echinococcus granucosug.) andcs (¢) denote the
growth rate functions of the predator due to predation ogesutible and infected
preys respectively; and the rate of growth are respectividiye forms:

cr(t)xs(t — )t — 1), ca(t)xs(t — 1)az(t — 1),
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7 > (s the fixed time delay due to gestation lag.

Here we assume that the functiong), b(t), k1 (t), k2(t), d(t), B(t), a1 (1), az(t),
c1(t), e2(t) are positive continuous bounded and have positive lowendsu
The initial conditions of (1) are given as

11(9) = 501(9)7 12(9) = 902(9% 1‘3(9) = 503(9)7 -7 <60<0, (2

wherep = (1, 92, 93)7 € C such thatp;(#) > 0 (i = 1,2,3), V0 € [-7,0], and
C denotes the Banach spacé/—, 0], R?) of continuous functions mapping the interval
[-7,0] into R® and denotes the norm of an element in C by
lell = sup_,<g<o{le1(0)], lp2(0)], |v3(8)]}. For a biological meaning, we further
assume thap;(0) > 0, i = 1,2, 3.

Theorem 1. Every solution of systeifd) with initial conditions(2) exists and is unique
in the interval[0, co) andxy (t) > 0, z2(t) > 0, z3(t) > 0, forall t > 0.

Proof. Since the right hand side of system (1) is completely cowtisuand locally
Lipschitzian onC, the solution(x; (¢), z2(t), z3(t)) of (1) with initial conditions (2)
exists and is unique off), «), where0 < a < +oo [16, Chapter 2]. Now, from the
first two equations of system (1), we have

21(t) =210 exp [ [1(5) = a(5) (22(5) + 22(5))
° a1(s)zs(s) — B(s)za(s)] ds >0, Vt >0,

t

x2(t) = x2(0) exp/ [ﬁ(s)xl (s) — kg(s)(acl(s) + xg(s))

0
— az(s)w3(s)] ds >0, Vvt =>0.

Next, we prove thats(¢) > 0 forall ¢ > 0.

If not, then there exists & > 0, such thatzs(¢1) = 0, andxzs(t) > 0, V¢ €
[—7,t1]. Furthermore,

d%(“ > —d(t)as(t) — b(t)a2(t), Vit € [0, ).

Then

t

zs5(t) > 23(0) exp / [—d(s) — bs)es(s)] ds > 0, vt € [0,t1],

0
t1

= aa(t) 2 a0 exp [[-d(s) = bs)aa(s)) ds > 0,

which is a contradiction. Henceg(¢) > 0, for all ¢ > 0. This completes the proof. O
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3 Permanence of systenl)

Here we wish to discuss the permanence (uniformly pergjstéisystem (1) with initial
conditions (2), which demonstrates how this system will b&armly persistent, this
means that the long-term survival (i.e., will not vanishime) of all components of the
system (1) with initial conditions (2), under some condiioLetf! = inf;>q f(t), f* =
sup,~q f(t), for a continuous and bounded functi¢(r) defined on0, +c0).

Definition 1. System (1) is said to be uniformly persistent, i.e., the {ergn survival
(will not vanish in time) of all components of the system (fijhere are positive constants
v; andw; (i = 1,2, 3) such that:

vy < liminf z(¢) < limsup 21 () < wy,
t—o0 t—o00

vy < htrgg}f 2o(t) < limsup zo(t) < wo,

t—o0

vy < 1itnii£f 23(t) <limsup z3(t) < ws,

t—oo

hold for any solutionz (), z2(¢), 23(t)) of (1) with initial conditions (2). Here; and
w; (i = 1,2,3) are independent of (2).

Theorem 2([17]). Consider the following equation:
@(t) = ax(t — 1) — ba(t) — ca®(t),
wherea, b, ¢, > 0; z(t) > 0, for—7 <t < 0. We have
(i) ifa> b, thenlim; . x(t) = ‘LT_(’;
(i) if a < b, thenlim; . z(t) = 0.

Theorem 3. Let X (¢) = (z1(t), 22(t), x3(¢)) denote any solution of systeft) and (2).
Suppose syste(t) satisfies

(c1 4 ¢2)"M* —d" >0, where M* = max { (;—l), (%) (7];—1) } 3)
1 2 1

Thend a T3 > 0 such that
x1(t), 21(t) < M3 and z3(t) < My, Vit>Ts, (4)
whereM; > M* and M, > %ﬂ”’dl

Proof. Let, M > (%). From (1a),

@1(t) < @1 ()[r(t) — ka(t)a1 ()] < 21 (W) — ko (1)].

Therefore, ifz1(0) < M, thenzy(t) < My, forallt > 0.
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If 21(0) > My, and let—a; = M;(r* — ki My),a1 > 0, thend ane; > 0, s.t. if
t €10,e1),x(t) > My, and we have: (t) < —ay < 0. /

Therefore3 aTy > 0s.t.zy(t) < M, ¥Vt > Ty, whereM; > (4r).

From (1b) we haveis(t) < z2(t)[8“ M1 — kbaa(t)], ¥Vt > 1.

ThereforedaTy > Ty > 0s.t.aa(t) < My, YVt > Ty, whereM, > (27)(5r); M,

2 1
can be chosen sufficiently close(tg}). Hencex:(t), z2(t) < Ms, whereMs > M* =
1

max{ (%), (i—;)(;—?)}, V ¢t > Ty. In addition, from (1c) we obtain
ig(t) < —dlmg(t) — blmg(t) + (Cl + Cg)uMgmg(t — T), Yt > T + 7.
By condition (3) and Theorem 2, we conclude that

(c1 + co)"M* — d'

JaTs > To+ 71 st ag(t) < My, YVt >T;, where My > 7 ,

sinceM3 can be chosen sufficiently close id*.
This completes the proof. O

Theorem 4. Suppose that systefh) and (2) satisfies the following conditions:

dl . U ﬂu U
e < =e{ () () ()}

Ll 4 qugl ki d“b!
< min vy aid 7((614_7”)1)
(ki + B) b + af(cr + c2)*

w ol w kY kY dubt
BH{(k1 + B)"b + at(c1 + c2)"} + blkYky + kiag(c1 + c2)®

Then syster{il) and (2) is uniformly persistent.

Proof. SupposeX (t) = (x1(t), z2(t), x3(t)) be a solution of (1) and (2). Therefore,
@1 () > o (8)[r' — {(ky + B)“Ms + a¥ My} — kiaq(t)], Vit>Ts,

(using Theorem 3 ands is defined there). By condition (5), we have
bt — M*{(ky + B)"b" + al(c1 + e2)"} + afd > 0
= rl- {(kl +B)"M* +a7f(cl Jch);M* — dl} >0

= 7t —{(k1 + B)“M;z + a{' My} > 0, (6)
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sinceM 3 can be chosen sufficiently closeé* and M, can be chosen sufficiently close
u * gl .
to (ke M —d ) et us choosen; in such a way that,

1 ur u L
O<m1<T {(kl—i-ﬁ)l 3+ at My}
kY
= v = {(ky + B)" Ms + a} My} — ki'ma > 0. (7)

If ¢ (Ts) > myq, then:cl(t) > my, Vit > Ts. If £E1(T3) < mgq, and |etu1 =1 (Ts){rl —
{(k1 + B)"“Ms3 + at* My} — k¥mq} > 0,thendane; > 0, s.t. z1(t) < my, and
Z1(t) > p1 > 0, Vt € [T3,T5 + €1). Therefore,

da T, > T3 > 0, s.t. xl(t) > my, Yt > Ty. (8)
From the second equation of system (1) and using Theorem Bavweio (t) > o (t) X

[B'my — (kY Ms + a¥My) — k¥x4(t)], V¢ > Ty, using (8). By condition (5), after some
simplifications, we have

B'my — (kY Ms + ay My) > 0, 9
sincem; can be chosen sufficiently close ’Elo’{(lirﬁ),;,M““?M“} and M3, My can be
chosen sufficiently close tbf*, %ﬂ”’dl respectively. Let us choose, in such a
way that,

0 — (k¥ M- wM
0<m2<ﬂm1 (k3 M3 + a3 My)
ky
= flmy — (¥ Ms + a¥My) — kY¥mgy > 0. (10)

If xg(T4) > Mo, thenxg(t) > ma, Yt > Ty. If xg(T4) < Mma, and |etM2 = J)Q(T4)X
{B'my — (kM3 + a¥My) — k¥mso} > 0, thenF anex > 0, s.t. x9(t) < ma, and
Zo(t) > po > 0, Vt € [Ty, Ty + €2. Therefore,

daTs >Ty > 0, s.t L]S‘Q(t) > mao, vVt > Tk. (11)
Hence,
l‘l(t), l‘g(t) > mg, Vt > Tk, Wheremg <m* = min{ml, mg}. (12)

From the third equation of (1), we have
Zd(t) Z 7du£65(t) — bul'%(t) + (01 + Cg)lmgxg(t — ’7'), Vt Z T5 + 7.

By using condition (5) and after some simplifications, weéhéy + cp)lms > dv.
Therefore by Theorem 2, we conclude that

da T > T5 + 7 S.t. $3(t) > my, Vt>Tg, (13)
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mg—d"

wherem, < (@tealma—d"

From the above discussions, we conclude that; > 0 s.t. every solution of
system (1) and (2) eventually enters and remains in the me@ie= {(x1,z2,23)|m <
x; <M, i=1,2,3}, Vit > Ts, wherem = min{ms, ms} andM = max{Ms, My}.
This completes the proof. O

4 Global asymptotic stability

In this section, we derive sufficient conditions for globsyaptotic stability of system (1)
with initial conditions of type (2). We now state a definitiohglobal asymptotic stability
of solutions of system (1).

Definition 2. System (1) with initial conditions (2) is said to be globadigymptotically
stable if

lim |z1(t) —u1(t)] =0, lim |z2(t) —ue(t)] =0, lim |z3(t) —us(t)] =0,

t—o0 t—o0 t—o0

hold for any two solutiongxy (), z2(t), x3(t)) and(uy (t), ua(t), us(t)) of (1) with initial
conditions of type (2).

Theorem 5. If there exist; > 0, a3 > 0 andas > 0 such that the functionB; (t) (i =
1,2,3) are nonnegative o0, oo) and for any interval sequence;, f;]}3°, le:, fi] N
lej, fi] = gbandfz—ei = fj—e > 0, foralli,j = 1,2,...andi # j, one
has >, o lf B;(t)dt = oo, then systen{l) with initial condmons (2) is globally
asymptoﬂcaﬁy stable Here,
Bi(t) = anki(t) — azlke(t) — B(t)| — asMer(t + 1),
BQ(t):OLQkQ( )7@1([171(15) ( ))7@3M02(t+7')
Bg(t) = Q3 (d( + me(t)
— agM(01 (t+7)

) — oqal( — Oégag(t) (14)

+ ot + T))
wherem, M are given in Theorem.

Proof. Assume thatx;(t), z2(t), x3(t)) and(uq(t), u2(t), us(t)) are any two solutions
of system (1) with initial conditions of type (2).

DefineVi(t) = |Inzq(t) — Inwui(t)], Va(t) = [Inaa(t ) Inwus(t)| andVs(t) =
|zs(t) — ug(t)|. Then the right-upper derivative df; (¢), V2(t) and V3(t) along the
solution of system (1) and (2) are given below:

Z1(t) ul(t)

DY) = < - (t)>sgn(z1<t> ()

< —ky(t)|z1(t) — ur ()] + (kult) + B(t)) w2 (t) — ua(t)]
+ a1 (t)|z3(t) — us(t)], (15)
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DT Vy(t) = (x EE) qut )Sgﬂ(IQ(t) — uz(t))
< |ka2(t) = BO)[w1(t) — ua(t)] — k2(t)|22(t) — ua(t)]
+ az(t)|zs(t) — us(t)], (16)
DT V3(t) :( 3(t) — U3(t) n(acg —usg(t )
< —d(t)]zs(t) — us(t)] = b(t) (w3(t) + us(t))ws(t) — us(t)|
+a()fas(t = 7)|z(t = 7) —ua(t — 7)
+up(t —7)|z3(t —7) —ug(t — 1)}
+ ea(t){ws(t — 7)|x2(t — 7) — u2(t — 7)|
+ug(t — 7)|ws(t — 7) —uz(t — 7)|}. a7
Define

Va(t) = / c1(s+ 1)zs(s)|z1(s) —ui(s)|ds

+ / c1(s+ mur(s)|as(s) —usz(s)|ds

+ / ca(s+ m)ws(s)|x2(s) — ua(s)|ds
+ / co(s+ T)ua(s)|zs(s) — us(s)|ds. (18)

Calculating the right-upper derivative & (¢) along the solution of system (1) and (2),
we have

DVy(t)
= c1(t+7)zs(t) |21 (t) —ur(t)|— 1 (t x3(t—7) |z (t—7)— ul(t 7)|
+er(t+7)ur ()| zs () —us(t)|—cr(H)ur (E—7)|xg(t—7) —ug(t—7)]
tea(t+7)as(t)|w2(t) —ua(t)| —co(t)as(t—7)|z2(t—7) —ua(t—7)|
+ea(t+T)us( () —us(t)|—ca(®)ua(t—7)|z3(t—7)—us(t—7)|.  (19)
LetV(t) = a1 Vi (t) + aaVa(t) + as(Va(t) + Va(t)), then by using (15)—(19), we
have
DTV (t) < =Bi(t)|z1(t) — ui(t)| — Ba(t)]z2(t) — ua(t)]
— B3(t)|z3(t) — us(t)|, Vt>Tg, (20)

whereTy is defined in Theorem 4 anl; (t), (¢ = 1,2, 3) are defined in (14).
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Integrating (20) froni to ¢, we have

/ (B (t)]r1 (1) — 1 ()] + Ba(t)]a(t) — ua(t)]

oy Bs(t)|z3(t) — us ()|} dt < V(Ts) — V(1)

= / (By(®)](t) — un (8)]
T

6

+ By(t)|za(t) — ua(t)] + Bs(t)|z3(t) — us(t)] dt < oo. (21)

By assumptions (14) aboud;(t), (¢ = 1,2,3) and the boundedness 0f; (t), z2(t),
x3(t)) and(uq(t), ua(t), us(t)) on[0, oo), we obtain from system (1) that; (t) —uy (¢)],
|z2(t) — ua(t)] and|xs(t) — us(t)| are bounded and uniformly continuous [Bnoo). It
follows from (21) that,

tlim |21 (t) —ui(t)| =0, tlim |x2(t) —ua2(t)| =0, tlim |x3(t) —usz(t)| = 0.
— 00 — 00 — 00

This shows that system (1) with initial conditions (2) is logdly asymptotically stable.
This completes the proof. O

Corollary 1. If there existv; > 0, s > 0 andagz > 0 such that
hg(i)gf{alkl(t) — aglka(t) — B(t)| — asMei(t+ 1)} > 0,
litrgglf{agkg(t) —ai(k1(t) + 6(t)) —asMcea(t +7)} >0,
litrgglf {ag(d(t) +2mb(t)) — aray(t) — azas(t)

—agM(c1(t+7)+e2(t+7))} >0,

then systenfil) with initial conditions(2) is globally asymptotically stable.

Assume that system (1) is-periodic, i.e. all coefficients are-periodic functions.
Then system (1) has a positiveperiodic solution if system (1) is uniformly persistent
[18]. Thus, we have the following corollary.

Corollary 2. If system(1) is w-periodic and conditions in Theorerdsand 5 are valid,
then there exists a unique positiveperiodic solution which is globally asymptotically
stable.

5 Conclusions

In this paper we have considered a nonautonomous predapnrmdel with time delay
due to gestation, in which a disease that can be transmiftexbiftact spreads among
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the prey only. The most basic and important questions to @skiblogical systems in
the theory of mathematical epidemiology are the persigteegtinctions, the existence
of periodic solutions, global stability, etc. [1,19-23].etd, we have established some
sufficient conditions for the permanence (uniformly peesi) of the above system by
using inequality analytical technique. By Lyapunov fuonotl method, we have also
obtained some sufficient conditions for the global asympgiability of this model. We
have observed that the time delay has no effect on the pemoaéthe system but it has
an effect on the global asymptotic stability of this modeheTaim of the analysis of this
model is to identify the parameters of interest for furthedy, with a view to informing
and assisting policy-makers in targeting prevention agattment resources for maximum
effectiveness.
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