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Abstract. Discrete numerical methods with finite time-steps represent a practical
technique to solve initial-value problems involving nonlinear differential equations.
These methods seem particularly useful to the study of chaossince no analytical chaotic
solution is currently available. Using the well-known Lorenz equations as an example,
it is demonstrated that numerically computed results and their associated statistical
properties are time-step dependent. There are two reasons for this behavior. First, chaotic
differential equations are unstable so that any small erroris amplified exponentially
near an unstable manifold. The more serious and lesser-known reason is that stable
and unstable manifolds of singular points associated with differential equations can
form virtual separatrices. The existence of a virtual separatrix presents the possibility
of a computed trajectory actually “jumping” through it due to the finite time-steps of
discrete numerical methods. Such behavior violates the uniqueness theory of differential
equations and amplifies the numerical errorsexplosively. These reasons imply that, even
if computed results are bounded, their independence on time-step should be established
before accepting them as useful numerical approximations to the true solution of the
differential equations. However, due to these exponentialand explosive amplifications of
numerical errors, no computed chaotic solutions of differential equations independent of
integration-time step have been found.Thus, reports of computed non-periodic solutions
of chaotic differential equations are simply consequencesof unstably amplified truncation
errors, and are not approximate solutions of the associateddifferential equations.

Keywords: chaos, turbulence, numerical solutions, computation, non-linear differential
equations.

1 Introduction

In spite of numerous attempts, a convincing proof of the existence of the geometric Lorenz
attractor for the Lorenz’s differential equations was not achieved until recently. Tucker [1]
provided a solution to this problem, which is the 14th of the 18 challenging mathematical
problems defined by Smale [2]. Viana [3], in a review of the historical advancement
of structural stability theories, explained the difficulties that Tucker had to overcome to
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complete his proof. The next step in the progression of this important research topic is the
construction of an existing solution. Without proof of the existence of chaotic solutions of
nonlinear differential equations, Tucker’s solution is only valid for algebraic mappings.
Equivalently, a non-periodic structure associated with Smale’s horseshoe is for algebraic
mappings only, as is explained in Section 5 when we discuss the Lorenz attractors.

A possible approach to this issue is direct numerical integration, which is a pow-
erful, popular, and convenient tool for solving initial-value problems for nonlinear dif-
ferential equations arising in science and engineering. The use of such tools introduces
truncation and rounding errors that often have a major impact on the quality of “com-
puted results”, which are the product of an application of a certain algorithm in a certain
computing environment.The major goal of this paper is to demonstrate why approximate
chaotic solutions cannot be constructed by the current generation of such methods.The
important consequence is that the existence of chaotic solutions of differential equations
has never been adequately demonstrated in spite of reports to the contrary.

In all specific cases reported in this paper, “computed results” fail to provide an
approximate solution in any sense to the original initial-value problem. These ideas
are studied for a particular chaotic system based on the well-known Lorenz equations
for variablesx(t), y(t), andz(t). It is demonstrated that the numerical integration of
this chaotic system is extremely sensitive to the integration time-step. Coupled with this
behavior is the fact that different integration time-stepsyield both “computed results” and
computed statistical properties of the associated attractors that are dramatically different.
These statistical properties can often be associated with physical quantities of interest in
applications from science and engineering.Of course, any “computed results” whose
statistical properties are sensitive to integration time-steps are not useful.

The Rössler equations [4, pp. 532–533] display a sensitivity of “computed results”
to integration time-steps. Rössler himself noted, in the fall of 1975 [5, p. 213], the
important role-played by integration time-steps in his system. However, there was no
attempt to connect this sensitivity to the statistical properties of the “similar” attractors
shown in Fig. 7.1 of [4], and no explanations for these observations were provided.
The sensitivity of “computed results” to integration time-steps has also been studied
for the one-dimensional Kuramoto-Sivashinsky equation, anonlinear partial differential
equation [6].

The sensitivity to initial conditions has been studied for hyperbolic systems [7]
and is an active topic for nearly hyperbolic systems [3, 8–10]. In particular, the meth-
ods of shadowing for hyperbolic systems have shown that trajectories may belocally
sensitive to initial conditions while beingglobally insensitive since true trajectories with
adjusted initial conditions exist. Such trajectories are called shadowing trajectories, and
lie very close to the long-time computed trajectories. However, systems of differential
equations arising from physical applications are not hyperbolic systems. If the attractor is
transitive(ergodic), all trajectories are inside the attractor so they are generallybelieved
to be solutions of the underlying differential equations whatever the initial conditions.
Little is known about systems, which are not transitive (non-ergodic). Do and Lai [11]
have provided a comprehensive review of previous work, and discussed the fundamental
dynamical process indicating that a long-time shadowing ofnon-hyperbolic systems is
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not possible.
Two important facts about the computation of numerical chaotic solutions of differ-

ential equations, which are not commonly known, are:

1. No computed chaotic solution of the Lorenz system, which is independent of the
integration time-step, exists. The same conclusion can be extended to other chaotic
situations, including the direct numerical simulation of turbulence through the Na-
vier–Stokes equations.

2. A sensitivity-to-initial-condition is frequently viewed as anecessaryandsufficient
condition for the existence of chaos by most readers. However, this property is
also noted in the solutions of all nonlinear differential equations when the values
of their governing parameters are larger than appropriate critical values [6,12–17].
Consequently, it cannot be argued that this sensitivity is asufficient condition for
chaos. It is worthwhile to note that the sensitivity to initial conditions associated
with a set of nonlinear differential equations is a reflection of a characteristic of
a physical system; on the other hand, integration time-stepis an artificial com-
putational quantity. That a discrete numerical computation must not be time-step
dependent in order to be considered as an approximate solution was first put forward
by Von Neumann [18–21].

In this paper, I discuss the first of these issues in detail, showing that it is a consequence of
unavoidable numerical errors, and briefly consider the second. In the next section, I show
that such “computed results” as well as a corresponding long-time averaged statistical cor-
relation display a sensitive dependence on integration time-steps. A systematic decrease
in the magnitude of the time steps does not lead to a convergent pattern; rather irregularly
fluctuating results are noted due to instabilities. Differences between different samples
can be small in a suitable sense, but never demonstrate convergence, indicating that the
bounded “computed results” are contaminated by numerical errors. Consequently, there
is no guarantee that any of such “solutions” is close to the correct one.

Section 3 contains a demonstration of the exponential amplification of a small dif-
ference between two trajectories, which involve differentintegration time-steps, occurring
when they move in the direction of an unstable manifold (thex-axis for the specific cases
treated here). When two different, as just mentioned, trajectories move in the direction
of a stable manifold, their difference becomes smaller. This difference depends on the
initial error introduced by the different time-steps, and prevents the determination of an
approximate computed solution by any discretized numerical method.

In Section 4, I show that a significant amplification of numerical errors occurs when
a trajectory, in violation of theoretical expectations, jumps through a two-dimensional vir-
tual separatrix. In contrast to the behavior noted in Section 3, this behavior is independent
of the differences induced by the integration time-steps before amplification.

Section 5 shows that “computed results” can be used to construct a strange attractor,
even though they are time-step dependent. Each integrationtime-step generates its own
algebraic mapping. For such algebraic mappings, the computed trajectory seems to visit
the edges of the attractor less frequently. This observation agrees with the finding by
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Tucker [1] that the stretching rate near the edge of the attractor is smaller than
√

2, the
required minimum value to ensure its transitivity [3]. Numerical computed results do not
demonstrated the property of topological transitivity so they are not ergodic. Amazingly,
it can be shown by following Tucker’s computer assisted method that attractors generated
with different time-steps and contaminated by truncation errors satisfy the properties of
Smale’s horseshoe.

Conclusions are discussed in the final section.

2 Time-step sensitive numerical solution

I use the Lorenz equations,

x′ = −sx + sy,

y′ = rx − y − xz,

z′ = −bz + xy,

(1)

with the widely used values of the parameters,s = 10, r = 28, b = 8/3, as the basis
for showing that the “computed results” are time-step dependent and do not converge for
large time. The initial conditions arex = 1, y = −1, z = 10. All results presented are
generated by an explicit, second-order accurate Adams–Bashforth method. The time his-
tory of x is plotted in Fig. 1 for three different time steps, clearly showing the divergence
of the “computed results”. Similar behavior was noted with Adams–Bashforth methods
up to the fifth order; an implicit Crank–Nicholson method; second-order and forth-order

Fig. 1. Plots of the time history ofx for three different time-steps showing that the
“computed results” for a time-step of0.0001 start to diverge from the other two at

approximatelyt = 20. They all become different aftert = 30.
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Runge–Kutta methods; adaptive methods; and compact time-difference schemes. In no
case was a convergent solution obtained fort ≥ 20.

The trajectory for one of the cases of Fig. 1 (∆t = 0.0001) is shown in three
projections in Fig. 2 for the first300, 000 computational time steps. This figure is useful
as a geometric aid to identifying the location (and reasons)for the observed divergence.
Initially, the trajectory moves smoothly around the two singular points (reverse spiral),
and from one singular point to the other. However, at a certain time identified by an arrow
in the figure, the computed trajectory diverges. This behavior signals the “break-down”
of the computation; it will be discussed in greater detail inSection 4.

Fig. 2. Plots of three projections for the first300, 000 computed points with a time-step
of 0.0001. An arrow marks the location where the computed trajectory starts to deviate
from those for other time-steps. This divergence occurs at time slightly smaller then20.

The apparent random behavior in Fig. 1 is consistent with thecommon expectation
that it is impossible to repeat the time histories of chaoticdifferent equations due to their
extreme sensitivity. On the other hand, in order to be usefulin scientific or engineering
applications, the statistical properties of a chaotic “computed result”, which can be of
physical significance, must not be sensitive to the integration time-step. As an example,
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Fig. 3 displays the time-averagedL2 norms corresponding to the “computed results” of
Fig. 1,

Fig. 3. The autocorrelations of computedx(t) for three different time-steps showing
that they are all different. Extending the computation tot = 2000 did not improve
the convergence, and shows thatE(x) continuously fluctuates and does not show any

tendency to approach a constant.

E(t) =
1

t

t
∫

0

∣

∣x2
∣

∣ dt,

whereL2 norm is mathematical terminology. In statistics, it is known as an autocorrela-
tion while it is turbulent kinetic energy in fluid mechanics.It is an important statistical
quantity to identify random functions.

They also strongly depend on the integration time-step. Computations for much
longer times than the ones shown in the figure reveal that the variousE(t) continue to be
dependent on the integration time-step and do not converge.For long time,E(t) can be
interpreted as the moment of inertia of the numerical Lorenzattractor aboutx = 0 since
the attractor is assumed topologically transitive. SinceE(t) is an important statistical and
geometric property of the attractor, differentE(t) implies different attractors. The geo-
metric properties of the “computed results” will be examined in the next section to show
that the sensitivity to integration time-steps is the consequence of repeated amplification
of numerical errors.

3 Exponential growth of numerical errors

The following discussion is based on the normal form of the Lorenz system [1,3].
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With s = 10, b = 8/3, andr = 28, these equations are

x′ = 11.8x− 0.29(x + y)z,

y′ = −22.8y + 0.29(x + y)z,

z′ = −2.67z + (x + y)(2.2x − 1.3y).

(2)

Their three equilibrium points are(0, 0, 0) and (±5.5929,±2.8981,±26.8698). The
coefficients of the linear terms in (2) are eigenvalues and represent the growth rates of
x, y, andz, respectively. The non-linear terms lead to energy transfers amongx, y, and
z [13]. Far away from the three equilibrium points, the net effect is attracting since the
sum of the eigenvalues is negative. Once a trajectory moves close to the three equilibrium
points, it is trapped in a complex attractor due to the competition between attraction and
repulsion of the three equilibrium points. This shows that the Lorenz attractor is inside a
large attracting open set; hence, it isrobust[3].

The Euler method is used to integrate equations (2). The initial conditions are the
same as those used in Section 2. An explicit, second-order-accurate Adams–Bashforth
method was also used, and showed that the results were not dependent on these two “low-
accuracy” numerical methods. These results, when properlyinterpreted, identify two
mechanisms that contribute to the sensitivity of the “computed results” to the integration
time-step. The first of these mechanisms will be discussed inthe following material, the
second in Section 4. This conclusion is insensitive to any particular numerical method as
long as it involves truncation errors since the computations have been repeated with high-
order and higher-level finite-difference methods, interval methods, and series methods.

The first mechanism is associated with the movement of the trajectory toward the
z-axis (Fig. 4).

(a) (b)

Fig. 4. (a) “Computed results” for two different time-stepswith identical initial condi-
tions showing the exponential growth of the numerical errors. The arrow marks
the starting location of dramatic error amplification; (b) athree-dimensional view of

Fig. 4(a).
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Equations (2) shows that, as the value of(x+y) becomes small, the value of the non-
linear terms in thez equation decreases to near zero. This causesz to move exponentially
towardz = 0, but the time required to reachz = 0 is infinite. Simultaneously, the value
of x increases exponentially so that the trajectory turns sharply toward the direction of
increasingx since thex-axis is the unstable manifold. In order to show the sensitivity to
the integration time-steps, two different time steps, but the same initial conditions, were
used to integrate equations (2). The results show that the errors accumulated before the
trajectory reaches thez-axis are amplified exponentially along thex direction and cause
substantial numerical errors in the computation. It is clear that this amplification begins
near thez-axis. The differences between the two trajectories for different integration time-
steps decrease as they approach thez axis (along the direction of the stable manifold), but
start to increase exponentially as they turn toward the direction of the unstable manifold.
This is a typical example for a positive Lyapunov exponent, and also is a hint about
the existence of Smale’s horseshoe. As the “computed results” repeatedly pass through
the region just described, the corresponding trajectoriesmove further apart. The study
of whether such trajectories are shadowable for nearly-hyperbolic systems is a current
research topic [1, 9, 10]. Even though it might be shadowable, its statistical properties,
which have practical interest, cannot be determined[8]. Why should one take the effort to
solve chaotic differential equations when no statistical properties of the computed results
can be determined?

4 Explosive amplification of numerical errors

The second mechanism occurs close to thez-axis where the trajectory can turn in two
opposite directions depending on whether the trajectory arrives at positive or negative
x (Fig. 5) since thez-axis is the intersection of stable and unstable manifolds.This
means that a small numerical error can be “explosively” amplified. The breakdown
of the computed results presented in Fig. 2 belongs to this class. The reason for this
“unshadowable” amplification of numerical errors is explained below.

It will be demonstrated in Section 5 that the trajectory frequently visits the neigh-
borhood of thez-axis (0 ≤ z ≤ 15), where the values ofx andy are small. It is clear from
equations (2) that, if the trajectory starts on thez-axis, it will stay on it forever so that the
z-axis is an invariant set for the saddle at the origin. A trajectory in theinsetof a limit
point will approach the limit point asymptotically. The inset of an attractor is called its
basin. The separatrix is defined as the complement of the basins of attraction. The initial
state of a trajectory must belong to a separatrix if its future (ω) limit set is not an attractor.
Therefore, a separatrix consists of the insets of the non-attractive (or exceptional) limit
sets. Anactual separatrix separates basins. However, if it does not actually separate
basins, it is called avirtual separatrix [22]. A computed trajectory cannot penetrate a
separatrix since that would violate the uniqueness theorem. Thus, a computed trajectory
that jumps through a separatrix means that the “computed results” violate the differential
equations.
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(a) (b)

(c)

Fig. 5. (a) “Computed results” for two different time-stepswith identical initial condi-
tions showing dramatic growth of the numerical errors. The trajectory associated with
time-step of0.001 jumps through the virtual separatrix; (b) a three-dimensional view of

Fig. 5(a); (c) amplified views of Figs. 5(a), 5(b).

The following linearized analysis shows that the inset of the saddle point at the
origin near thez-axis is a two-dimensional surface that includes thez-axis. This inset
is a virtual separatrix embedded in the attractor. The first-order linearized version of
equations (2) for smallx andy, that is, near thez-axis, are

x′ = 11.8x− 0.29(x + y)z,

y′ = −22.8y + 0.29(x + y)z,

z′ = −2.67z.

(3)
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The solution forz is simply

z = z0e
−2.67t, (4)

where0 ≤ z0 ≤ 15 is the initialz location inside the attractor. The trajectories that reach
thez-axis are found by setting

x = h(y, z) = A(z)y + O
(

y2
)

, (5)

whereh(0, z) = 0 andA(z) is a function to be determined. Equation (5) defines the local
stable and unstable manifolds near thez-axis. Using (5), the first two of equations (3)
become

x′ =
dh

dy
y′

=
dh

dy
y[−22.8y + 0.29(h + y)z]

= 11.8h− 0.29(h + y)z, (6)

whereh can be determined by solving (6) with (4). Comparison of the result with (5)
provides

A = B
[

1 ± (1 − B−2)1/2
]

,

B =
59.66

z
− 1,

(7)

where the minus sign is for trajectories approaching thez-axis (stable manifold), and the
plus sign is for the trajectories leaving it (unstable manifold). This shows that the local
stable manifold is a two-dimensional surface forming, withthe z-axis, the inset of the
saddle point at the origin. Moreover, this result shows thatthe local stable and unstable
manifolds approach they-axis andx-axis, respectively, as z decreases to zero. A trajectory
approaching thez-axis along the stable manifold can only move away along one branch
of the unstable manifold without jumping through the virtual separatrix. The computed
trajectories in Figs. 3, 4, and 5 display this behavior.

It is clear that the stable and unstable manifolds act as virtual separatrices and
roughly divide thex-y plane (Poincaŕe map) into four quadrants locally near thez-axis.
All meaningful trajectories should only travel in the first and third quadrants, but acom-
putedtrajectory may mistakenly move into the second and fourth quadrants, two forbid-
den zones, after jumping through the stable manifolds because of numerical errors intro-
duced by finite integration time-steps, as shown in Figs. 5(c) and 6(c). Such numerical
errors substantially alter the shape of the attractor; thismatter will be further discussed in
the next section. Once a computed trajectory moves into a forbidden zone, it can return to
its “proper” track only at the beginning of a period of “winding” away from one of the two
fixed points above the origin and by forming the “wing of a butterfly”. Dawson, Grebogi,
Sauer and Yorke [8] have pointed out that a continuous shadowing trajectory cannot exist
for such a trajectory, that is, it isunshadowable.
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The shortcoming of a discrete numerical method is that it cannot exactly reach a
surface of zero thickness. It is obvious that one of the two computed trajectories, shown
in Figs. 5 and 6, has passed through the two-dimensional inset of the saddle point at the
origin, thereby violating the uniqueness theorem. In Figs.6(a) and 6(b), four slightly
different integration time steps were used. The corresponding computed trajectories
moved closer to thez-axis within a circle of radius10−10. It is interesting to note that
the two computed trajectories (cases A and B), which did not jump through the virtual
separatrix, agree with each other, as do the two computed trajectories (cases C and D)
that jump through the virtual separatrix and violate the differential equations. However,
note that these two sets of computed trajectories are substantially different from each
other.

(a) (b)

(c)

Fig. 6. (a) “Computed results” showing that a dramatic growth of numerical errors
occurs with time-steps of extremely small differences. Twoof the computed trajectories
jump through the virtual separatrix; (b) a three-dimensional view of Fig. 6(a);

(c) amplified views of Figs. 6(a), 6(b).

119



L.-S. Yao

A commonly cited computational example in chaos involves two solutions of slightly
different initial conditions that remain “close” for some time interval and then diverge
suddenly. In fact, this behavior is often believed to be a characteristic of chaos. More
properly, this phenomenon is actually due to the explosive amplification of numerical
errors, and violation of the differential equations noted above.

Before closing this section, the essence of explosive amplification of truncation
errors, which may be the origin ofhomoclinic explosions, is summarized in the following
theorem:

Theorem. Numerical errors can cause a chaotic trajectory of the Lorenz differential
equations to penetrate a separatrix. Since a pseudotrajectory of a chaotic system of
non-linear differential equations can move very close to a separatrix, however small nu-
merical errors introduced by discrete numerical methods can cause the pseudotrajectory
to penetrate the separatrix. This behaviour violates the uniqueness theorem; thus, the
trajectory cannot be considered a solution of the Lorenz differential equations and is
therefore unshadowable.

Proof. Theλ-lemma [23] guarantees that a chaotic trajectory can move closer to the local
intersection of stable and unstable manifolds (the z-axis for the Lorenz system) than any
pre-assigned value. Consequently, the trajectory will travel through the separatrix unless
there is zero truncation error.

5 Lorenz attractor

The lack of convergence in the results of Figs. 1 and 3 is, at first glance, unexpected, but
is real. Attempts to ignore this behavior frequently rely onthe following three commonly
believed erroneous arguments. However, they cannot withstand careful scrutiny as the
remarks provided below show.

Argument 1. Since a necessary property of chaos is the presence of a positive Liapunov
exponent, or a positive nonlinear exponential growth-rate, the truncation error introduced
by various numerical methods can be amplified exponentially. Hence, erroneous solutions
develop differently due to different truncation errors. This is equivalent to saying that the
finite-difference equations, which approximate the differential equations, are unstable.
Thus, since convergence requires stability and consistency, convergent computed results
are not achievable. Such unstable cases are shadowable, that is, they remain sufficiently
close to the true trajectory with slightly different initial conditions. However, as demon-
strated in this paper, Argument 1 is not valid uniformly in the entire geometric space.
The breakdown in the numerical solutions for chaos shown in Figs. 1 and 3 is sudden,
explosive, and unshadowable, but it is not only due to the exponential growth of numerical
errors associated with an unstable manifold.Even if computed results are shadowable,
their statistical properties cannot be determined, implying a useless computation!

Argument 2. It is well known that chaotic solutions of differential equations are sensitive
to initial conditions. The different truncation errors associated with different integration
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time-steps, in effect, lead to a series of modified initial conditions for later times. Con-
sequently, computed chaotic solutions are integration time-step dependent, and cannot be
considered to be an approximate, in any sense, solution of the differential equations.

On the other hand, as demonstrated before [6, 12, 13, 15–17],stable long-time
numerical solutions for the Navier-Stokes equations and the one-dimensional Kuramoto-
Sivashinsky equation are sensitive to initial conditions,but are also convergent and in-
dependent of the integration time-steps. This shows that a solution sensitive to initial
conditions is not necessarily sensitive to integration time-steps.

Argument 3. It is commonly believed that the existence of an attractor guarantees the
long-time correctness of numerical computations of chaos,irrespective of the numerical
errors that are inevitably present in any computation. Sucha concept has never been
proved, but it is customarily used to support the belief thatnumerical errors do not in-
validate particular computed chaotic results among the community working on numerical
solutions of dynamic systems.

A reason, which often leads researchers to believe that any incorrect computed
trajectory is acceptable as long as it resides in an attractor, is the attractor’s property
of beingrobust. Unfortunately, the true mathematical definition ofa robust attractoris
less dramatic and simply means that an attractor is includedin a large attracting open
set as stated in the Section 3; thus, the existence of attractors does not makeincorrect
computations become correct!Furthermore, this argument is incorrect because a compu-
tation contaminated by numerical error can escape an existing correct attractor and create
another attractor, which is associated with the incorrect numerical results. This will be
discussed below.

The locations where numerical errors are amplified can be better discussed within
the framework of a particular example, the Lorenz attractor. It should be emphasized that
I do not have a method to explicitly compute the true Lorenz attractor due to unavoidable
numerical errors. I can only determine an erroneous attractor as others have. A computed
Lorenz attractor for∆t = 10−5, and the initial condition(1,−1, 10) is used for the
following discussion. The computation is carried out for108 time-steps, and recorded
every1, 000 time-steps. The attractor is constructed using100, 000 points, admittedly
insufficient, but there are limitations due to the speed of the available computer.

Thin slices of the computed attractor normal to thez-axis are plotted at four dif-
ferentz locations in Fig. 7. A short curve above the attractor shows that the computed
trajectory rapidly enters the attractor from its initial location. This is because the attractor
is robust. The bottom of the attractor looks like a “thin sheet”, with the z-axis embedded
in it, as shown in Fig. 7(a). For the purpose of demonstration, an expanded cartoon of the
computed thin-attractor section of Fig. 7(a) appears in Fig. 9. It shows that the size of the
attractor section contaminated by numerical errors is twice as large as the correct one, and
its shape is also quite different. This suggests that the effect of numerical errors is by no
means small.

Moving toz = 17.9, the attractor starts to “split” near its center and thez-axis is no
longer embedded in it, as shown in Fig. 7(b). Above this valueof z, the linearized analysis
of Section 4 is not valid. For even larger values ofz, the attractor splits into two parts due
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to the attraction from the two equilibrium points. The two large dots in Fig. 7(c) locate the
equilibrium points that no computed trajectory can reach; hence, there are two “holes” in
the computed attractor near the two equilibrium points. In Figs. 7 and 8, it is clear that the
two-dimensional inset of the saddle at the origin connects the two-dimensional outsets of
the other two fixed points.

Fig. 7. Cross-sections of a computed Lorenz attractor at selectedz locations showing
that its thickness is thin and that its point density is not uniform.

Higher up, the cross-section of the computed attractor shrinks and finally disappears
for z > 40. Thin slices of the computed attractor normal to thex-axis are plotted in Fig. 8.
For smallx, the attractor splits into two symmetric parts, which look very much like a
“butterfly”, as is well known, when viewed from other angles.The attractor is very thin
due to the strong contraction of the Lorenz equations [1,3].

A single simulation, which is not an acceptable solution according to the present
results, used to construct a numerical Lorenz attractor indicates that the orbit is dense,
and the computed attractor seemstransitiveandindecomposable. The plots of Figs. 7 and
8 seem to show that the attractor is finite and closed; hence, it is compactand invariant
for a given time step, convincing evidence that it is an attractor satisfying the properties
of Smale’s horseshoe! The plots also show that the computed trajectory visits the edge
of the attractor less frequently than its interior, a minor weakness. Since this trajectory is
sensitive to the initial condition, it is commonly called astrangeattractor [3,24]. However,
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recall that computed attractors are also sensitive to integration time-steps in thatdifferent
time-steps result in different computed attractors, which all satisfy the mathematical
properties of Smale’s horseshoe, as demonstrated by Tucker[1]. The conclusion is that
none of the attractors generated by an algebraic mapping is an acceptable solution of the
differential equation even though they all satisfy the property of Smale’s horseshoe.

Fig. 8. Cross-sections of a computed Lorenz attractor at selectedx locations showing
that its thickness is thin and that its point density is not uniform.

Furthermore, studies of multiple solutions of the Navier-Stokes equations [6,12–17]
indicate that initial conditions can determine completelydifferent long-time development
of flow patterns and/or the frequencies and wave numbers of their fluctuations. Those
computational results,convergent and independent of integration time-steps, can be ob-
tained only for unstable flows not too far from their criticalstates, but aresensitive to
initial conditions. This implies that large number of attracting open sets exist for unstable
flows. The open sets can be disjoint or overlapping. The phenomena are certainly complex
and different from the description of thesimple structure of Smale’s horseshoe. The
relevance of his horseshoe to differential equations is an open question.

No convergent computational results can be found when the Reynolds numbers
are much larger than the corresponding critical Reynolds number for unstable flows, a
class of fluid flows that include turbulent flows. After we attempted to compute many of
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these flows, the reason for the lack of success became clear: it is impossible to construct
a stable discretized numerical method, which is required by one of Von Neumann’s
criteria for convergence, without introducing sufficient numerical dumping (numerical
viscosity). Since the viscous effect is small for large Reynolds number, introducing too
much numerical viscosity contravenes the consistency requirement of Von Neumann’s
convergent criterion.

Fig. 9. Enlarged cartoon of Fig. 7(a) after mapping the localunstable manifold to the
x-axis. The local stable manifold inside the attractor formsa finite virtual separatrix
whose height is about (see equations (5), (7)). The explosive error amplification causes
the symmetry property of the computed results different from that of the Lorenz system,

alters the shape of the Poincaré section of the attractor, and doubles its area.

6 Conclusion

It has been demonstrated that attempts to compute numericalsolutions of the Lorenz
equations and their associated statistical properties arecontaminated by errors due to
the use of a discrete numerical method and finite computer arithmetic. Similar behavior
has been discovered for the Rössler equations [4, 5] and a particular one-dimensional
partial differential equation, the Kuramoto-Sivashinskyequation [6]. Reasons for this
behavior have been advanced. They suggest that nonlinear differential equations are not
hyperbolic systems since they have discrete singular points. Each singular point has its
own stable and unstable manifolds, which may form one or morevirtual separatrices.
Truncation errors of numerical computation are amplified along the unstable-manifold
direction; hence, they violate the Von Neumann stability requirement necessary to ensure
convergent solutions. The existence of a virtual separatrix allows a computed trajectory to
“jump” through it. Such behavior violates the differentialequations.Even in the presence
of bounded “computed results”, their convergence should beexamined before accepting
them as useful numerical approximations to the solution of the differential equations.
There is norigorousmathematical theory or any existing evidence that supportsany other
conclusion.
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