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Abstract. Discrete numerical methods with finite time-steps represemractical
technique to solve initial-value problems involving nowdar differential equations.
These methods seem particularly useful to the study of cbiaes no analytical chaotic
solution is currently available. Using the well-known Loreequations as an example,
it is demonstrated that numerically computed results amdr thssociated statistical
properties are time-step dependent. There are two reasotiss behavior. First, chaotic
differential equations are unstable so that any small éeamplified exponentially
near an unstable manifold. The more serious and lesserrkmemson is that stable
and unstable manifolds of singular points associated wiffierdntial equations can
form virtual separatrices. The existence of a virtual safpir presents the possibility
of a computed trajectory actually “jumping” through it duethe finite time-steps of
discrete numerical methods. Such behavior violates thgueniess theory of differential
equations and amplifies the numerical errexplosively These reasons imply that, even
if computed results are bounded, their independence ongtepeshould be established
before accepting them as useful numerical approximatiorthe true solution of the
differential equations. However, due to these exponeatidlexplosive amplifications of
numerical errors, no computed chaotic solutions of difiéet equations independent of
integration-time step have been fourithus, reports of computed non-periodic solutions
of chaotic differential equations are simply consequendesistably amplified truncation
errors, and are not approximate solutions of the associdiéfdrential equations.

Keywords: chaos, turbulence, numerical solutions, computation;limaar differential
equations.

1 Introduction

In spite of numerous attempts, a convincing proof of theterige of the geometric Lorenz
attractor for the Lorenz’s differential equations was raftiaved until recently. Tucker [1]
provided a solution to this problem, which is the 14th of tBechallenging mathematical
problems defined by Smale [2]. Viana [3], in a review of thetdrisal advancement
of structural stability theories, explained the difficeftithat Tucker had to overcome to
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complete his proof. The next step in the progression of thigorrtant research topic is the
construction of an existing solution. Without proof of théstence of chaotic solutions of
nonlinear differential equations, Tucker’s solution idyovalid for algebraic mappings
Equivalently, a non-periodic structure associated witragra horseshoe is for algebraic
mappings only, as is explained in Section 5 when we disceskdhenz attractors.

A possible approach to this issue is direct numerical irgggn, which is a pow-
erful, popular, and convenient tool for solving initialtva problems for nonlinear dif-
ferential equations arising in science and engineeringe Uge of such tools introduces
truncation and rounding errors that often have a major impadhe quality of “com-
puted results”, which are the product of an application ofdain algorithm in a certain
computing environmenihe major goal of this paper is to demonstrate why approxémat
chaotic solutions cannot be constructed by the current ggioa of such methodsThe
important consequence is that the existence of chaotitigsntuof differential equations
has never been adequately demonstrated in spite of repdtts tontrary.

In all specific cases reported in this paper, “computed t&5tdil to provide an
approximate solution in any sense to the original initialee problem. These ideas
are studied for a particular chaotic system based on thekmelvn Lorenz equations
for variablesz(t), y(t), andz(t). It is demonstrated that the numerical integration of
this chaotic system is extremely sensitive to the integratime-step. Coupled with this
behavior is the fact that different integration time-stgiedd both “computed results” and
computed statistical properties of the associated attrathat are dramatically different.
These statistical properties can often be associated \withigal quantities of interest in
applications from science and engineerin@f course, any “computed results” whose
statistical properties are sensitive to integration tisteps are not useful.

The Rossler equations [4, pp. 532-533] display a sersitfi“computed results”
to integration time-steps. Rossler himself noted, in tak é¢f 1975 [5, p.213], the
important role-played by integration time-steps in histeys However, there was no
attempt to connect this sensitivity to the statistical @mjes of the “similar” attractors
shown in Fig. 7.1 of [4], and no explanations for these oletgsuas were provided.
The sensitivity of “computed results” to integration tirseps has also been studied
for the one-dimensional Kuramoto-Sivashinsky equationo@linear partial differential
equation [6].

The sensitivity to initial conditions has been studied fgpérbolic systems [7]
and is an active topic for nearly hyperbolic systems [3, §-10 particular, the meth-
ods of shadowing for hyperbolic systems have shown thatdrajies may bdocally
sensitive to initial conditions while beirgjobally insensitive since true trajectories with
adjusted initial conditions exist. Such trajectories aaked shadowing trajectories, and
lie very close to the long-time computed trajectories. Heosvesystems of differential
equations arising from physical applications are not hlypke systems. If the attractor is
transitive (ergodic), all trajectories are inside the attractor sy e generallypelieved
to be solutions of the underlying differential equationsat@ver the initial conditions.
Little is known about systems, which are not transitive @@ogodic). Do and Lai [11]
have provided a comprehensive review of previous work, asclidsed the fundamental
dynamical process indicating that a long-time shadowingaf-hyperbolic systems is
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not possible.
Two important facts about the computation of numerical ticesmlutions of differ-
ential equations, which are not commonly known, are:

1. No computed chaotic solution of the Lorenz system, whicimilependent of the
integration time-step, exists. The same conclusion caxteméded to other chaotic
situations, including the direct numerical simulation wftiulence through the Na-
vier—Stokes equations.

2. A sensitivity-to-initial-condition is frequently viesd as anecessargndsufficient
condition for the existence of chaos by most readers. Homvées property is
also noted in the solutions of all nonlinear differentialiations when the values
of their governing parameters are larger than appropriétteat values [6, 12—17].
Consequently, it cannot be argued that this sensitivityssfficient condition for
chaos. It is worthwhile to note that the sensitivity to iaitconditions associated
with a set of nonlinear differential equations is a reflectaf a characteristic of
a physical system; on the other hand, integration time-stegm artificial com-
putational quantity. That a discrete numerical computatiast not be time-step
dependentin order to be considered as an approximatemoludis first put forward
by Von Neumann [18-21].

In this paper, | discuss the first of these issues in detailysig that it is a consequence of
unavoidable numerical errors, and briefly consider thersgclm the next section, | show
that such “computed results” as well as a correspondingtong averaged statistical cor-
relation display a sensitive dependence on integratioa-8teps. A systematic decrease
in the magnitude of the time steps does not lead to a conviegpgétern; rather irregularly
fluctuating results are noted due to instabilities. Differes between different samples
can be small in a suitable sense, but never demonstratergemes, indicating that the
bounded “computed results” are contaminated by numericate Consequently, there
is no guarantee that any of such “solutions” is close to thieecbone.

Section 3 contains a demonstration of the exponential dication of a small dif-
ference between two trajectories, which involve diffefiategration time-steps, occurring
when they move in the direction of an unstable manifold (tkexis for the specific cases
treated here). When two different, as just mentioned, ¢ctajees move in the direction
of a stable manifold, their difference becomes smaller.s Tifference depends on the
initial error introduced by the different time-steps, armdyents the determination of an
approximate computed solution by any discretized numiemeghod.

In Section 4, | show that a significant amplification of nuroaferrors occurs when
a trajectory, in violation of theoretical expectationsnjos through a two-dimensional vir-
tual separatrix. In contrast to the behavior noted in Sa@idhis behavior is independent
of the differences induced by the integration time-stegereeamplification.

Section 5 shows that “computed results” can be used to eartstistrange attractor,
even though they are time-step dependent. Each integrati@rstep generates its own
algebraic mapping. For such algebraic mappings, the caedptejectory seems to visit
the edges of the attractor less frequently. This obsematgrees with the finding by
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Tucker [1] that the stretching rate near the edge of theaitiras smaller than/2, the
required minimum value to ensure its transitivity [3]. Nuical computed results do not
demonstrated the property of topological transitivity Iseytare not ergodic. Amazingly,
it can be shown by following Tucker’s computer assisted meéthat attractors generated
with different time-steps and contaminated by truncationrs satisfy the properties of
Smale’s horseshoe.

Conclusions are discussed in the final section.

2 Time-step sensitive numerical solution
| use the Lorenz equations,

= —sx + sy,
re —y — xz, 0
= —bz + xy,

’
xz
’
Y
S

with the widely used values of the parametersy 10, r = 28, b = 8/3, as the basis
for showing that the “computed results” are time-step dedpahand do not converge for
large time. The initial conditions are = 1, y = —1, z = 10. All results presented are
generated by an explicit, second-order accurate Adam#@&ads method. The time his-
tory of z is plotted in Fig. 1 for three different time steps, cleathpwing the divergence
of the “computed results”. Similar behavior was noted witthafns—Bashforth methods
up to the fifth order; an implicit Crank—Nicholson method¢@ed-order and forth-order
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Fig. 1. Plots of the time history of for three different time-steps showing that the
“computed results” for a time-step 00001 start to diverge from the other two at
approximatelyt = 20. They all become different after= 30.
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Runge—Kutta methods; adaptive methods; and compact tiffezethce schemes. In no
case was a convergent solution obtained far 20.

The trajectory for one of the cases of Fig. At( = 0.0001) is shown in three
projections in Fig. 2 for the first00, 000 computational time steps. This figure is useful
as a geometric aid to identifying the location (and reastorsthe observed divergence.
Initially, the trajectory moves smoothly around the twoggitar points (reverse spiral),
and from one singular point to the other. However, at a aetiaie identified by an arrow
in the figure, the computed trajectory diverges. This bedrasignals the “break-down”
of the computation; it will be discussed in greater detatbection 4.
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Fig. 2. Plots of three projections for the fifg$i0, 000 computed points with a time-step
of 0.0001. An arrow marks the location where the computed trajecttaststo deviate
from those for other time-steps. This divergence occurisret $lightly smaller theR0.

The apparent random behavior in Fig. 1 is consistent witfttimemon expectation
that it is impossible to repeat the time histories of chadififerent equations due to their
extreme sensitivity. On the other hand, in order to be ugafatientific or engineering
applications, the statistical properties of a chaotic “pabed result”, which can be of
physical significance, must not be sensitive to the intégnatme-step. As an example,
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Fig. 3 displays the time-averagéd norms corresponding to the “computed results” of

Fig. 1,
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Fig. 3. The autocorrelations of computedt) for three different time-steps showing

that they are all different. Extending the computationt te= 2000 did not improve

the convergence, and shows tliatz) continuously fluctuates and does not show any
tendency to approach a constant.

t
E(t) = %/\:ﬂdt,
0

where L, norm is mathematical terminology. In statistics, it is kmoa&s an autocorrela-
tion while it is turbulent kinetic energy in fluid mechanids.is an important statistical
guantity to identify random functions.

They also strongly depend on the integration time-step. |[@dations for much
longer times than the ones shown in the figure reveal thatahiewsFE(¢) continue to be
dependent on the integration time-step and do not conv&gelong time,E(¢) can be
interpreted as the moment of inertia of the numerical Lowgiractor about: = 0 since
the attractor is assumed topologically transitive. SiA¢e) is an important statistical and
geometric property of the attractor, differefitt) implies different attractors. The geo-
metric properties of the “computed results” will be exandime the next section to show
that the sensitivity to integration time-steps is the coussce of repeated amplification
of numerical errors.

3 Exponential growth of numerical errors

The following discussion is based on the normal form of theebha system [1, 3].
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With s = 10, b = 8/3, andr = 28, these equations are

¥ =11.82 — 0.29(x + y)z,
y' = —228y+0.29(z + y)z, (2)
2= —-2.67z+ (x +y)(2.2x — 1.3y).

Their three equilibrium points aré),0,0) and (£+5.5929, +2.8981, +26.8698). The
coefficients of the linear terms in (2) are eigenvalues apdesent the growth rates of
x, y, andz, respectively. The non-linear terms lead to energy trasstenonge, y, and

z [13]. Far away from the three equilibrium points, the neeeffis attracting since the
sum of the eigenvalues is negative. Once a trajectory mduss to the three equilibrium
points, it is trapped in a complex attractor due to the coitipetbetween attraction and
repulsion of the three equilibrium points. This shows thatltorenz attractor is inside a
large attracting open set; hence, itadust[3].

The Euler method is used to integrate equations (2). Thialicibnditions are the
same as those used in Section 2. An explicit, second-oirate Adams—Bashforth
method was also used, and showed that the results were regidksgt on these two “low-
accuracy” numerical methods. These results, when propetdypreted, identify two
mechanisms that contribute to the sensitivity of the “cotaguesults” to the integration
time-step. The first of these mechanisms will be discusséueriollowing material, the
second in Section 4. This conclusion is insensitive to amiqudar numerical method as
long as it involves truncation errors since the computatizawe been repeated with high-
order and higher-level finite-difference methods, intemrathods, and series methods.

The first mechanism is associated with the movement of tlectary toward the
z-axis (Fig. 4).

Projecgion on x-z plane - N Projection on x-z plane
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Fig. 4. (a) “Computed results” for two different time-stepith identical initial condi-

tions showing the exponential growth of the numerical exrorThe arrow marks

the starting location of dramatic error amplification; (b)haee-dimensional view of
Fig. 4(a).
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Equations (2) shows that, as the valu¢of-y) becomes small, the value of the non-
linear terms in the equation decreases to near zero. This causesnove exponentially
towardz = 0, but the time required to reach= 0 is infinite. Simultaneously, the value
of x increases exponentially so that the trajectory turns $haopvard the direction of
increasinge since thec-axis is the unstable manifold. In order to show the sengjtie
the integration time-steps, two different time steps, hetgame initial conditions, were
used to integrate equations (2). The results show that tieesesiccumulated before the
trajectory reaches the-axis are amplified exponentially along thedirection and cause
substantial numerical errors in the computation. It iscthat this amplification begins
near thez-axis. The differences between the two trajectories fdedeht integration time-
steps decrease as they approach:taeis (along the direction of the stable manifold), but
start to increase exponentially as they turn toward thectioe of the unstable manifold.
This is a typical example for a positive Lyapunov exponend also is a hint about
the existence of Smale’s horseshoe. As the “computed séselpeatedly pass through
the region just described, the corresponding trajectaniege further apart. The study
of whether such trajectories are shadowable for nearlyetalic systems is a current
research topic [1, 9, 10]. Even though it might be shadowatsestatistical properties,
which have practical interest, cannot be determifédd Why should one take the effortto
solve chaotic differential equations when no statisticapgrties of the computed results
can be determined?

4 Explosive amplification of numerical errors

The second mechanism occurs close to tkaxis where the trajectory can turn in two
opposite directions depending on whether the trajectoriyes at positive or negative
x (Fig. 5) since thez-axis is the intersection of stable and unstable manifol@ikis
means that a small numerical error can be “explosively” #iegdl The breakdown
of the computed results presented in Fig. 2 belongs to tlisscl The reason for this
“unshadowable” amplification of numerical errors is expéd below.

It will be demonstrated in Section 5 that the trajectory @reqtly visits the neigh-
borhood of thez-axis 0 < z < 15), where the values af andy are small. Itis clear from
equations (2) that, if the trajectory starts on thaxis, it will stay on it forever so that the
z-axis is an invariant set for the saddle at the origin. A thjey in theinsetof a limit
point will approach the limit point asymptotically. The etf an attractor is called its
basin. The separatrix is defined as the complement of thadagattraction. The initial
state of a trajectory must belong to a separatrix if its fei{uf) limit set is not an attractor.
Therefore, a separatrix consists of the insets of the nwaetive (or exceptional) limit
sets. Anactual separatrix separates basins. However, if it does not dgtsaparate
basins, it is called airtual separatrix [22]. A computed trajectory cannot penetrate a
separatrix since that would violate the uniqueness theofidras, a computed trajectory
that jumps through a separatrix means that the “computedisésiolate the differential
equations.
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Fig. 5. (a) “Computed results” for two different time-stepith identical initial condi-

tions showing dramatic growth of the numerical errors. Tagettory associated with

time-step 00.001 jumps through the virtual separatrix; (b) a three-dimemsioiew of
Fig. 5(a); (c) amplified views of Figs. 5(a), 5(b).

The following linearized analysis shows that the inset & saddle point at the
origin near thez-axis is a two-dimensional surface that includes thaxis. This inset
is a virtual separatrix embedded in the attractor. The éirder linearized version of
equations (2) for smalt andy, that is, near the-axis, are

¥ =118z — 0.29(x + y)z,
y' = —22.8y +0.29(x + )z, 3)
2= —-2.67z.
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The solution forz is simply
z = zge” 207, (4)

where0 < zy < 15 is the initial z location inside the attractor. The trajectories that reach
the z-axis are found by setting

x = h(y,2) = A(z)y + O(y?), (5)

whereh (0, z) = 0 and A(z) is a function to be determined. Equation (5) defines the local
stable and unstable manifolds near thaxis. Using (5), the first two of equations (3)
become
dh
r_
Tr = dyy

dh
= d—yy[—22.8y +0.29(h + )2]
=11.8h — 0.29(h + )z, (6)

whereh can be determined by solving (6) with (4). Comparison of th&ult with (5)
provides

A=DB[1£(1- B,

59.66 (7)

B= 1,

z

where the minus sign is for trajectories approaching:tagis (stable manifold), and the
plus sign is for the trajectories leaving it (unstable malaif. This shows that the local
stable manifold is a two-dimensional surface forming, wifie z-axis, the inset of the
saddle point at the origin. Moreover, this result shows thatlocal stable and unstable
manifolds approach theaxis andc-axis, respectively, as z decreases to zero. A trajectory
approaching the-axis along the stable manifold can only move away along sardh

of the unstable manifold without jumping through the vittsaparatrix. The computed
trajectories in Figs. 3, 4, and 5 display this behavior.

It is clear that the stable and unstable manifolds act asialigeparatrices and
roughly divide ther-y plane Poinca map) into four quadrants locally near theaxis.
All meaningful trajectories should only travel in the firstcathird quadrants, buteom-
putedtrajectory may mistakenly move into the second and fourtdgants, two forbid-
den zones, after jumping through the stable manifolds secatinumerical errors intro-
duced by finite integration time-steps, as shown in Figs) &bd 6(c). Such numerical
errors substantially alter the shape of the attractor;rtatter will be further discussed in
the next section. Once a computed trajectory moves intaédden zone, it can return to
its “proper” track only at the beginning of a period of “wimdj” away from one of the two
fixed points above the origin and by forming the “wing of a bufly”. Dawson, Grebogi,
Sauer and Yorke [8] have pointed out that a continuous shiagdvajectory cannot exist
for such a trajectory, that is, it isnshadowable
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The shortcoming of a discrete numerical method is that inoaexactly reach a
surface of zero thickness. It is obvious that one of the twoated trajectories, shown
in Figs. 5 and 6, has passed through the two-dimensional dfiske saddle point at the
origin, thereby violating the uniqueness theorem. In F&(s) and 6(b), four slightly
different integration time steps were used. The corresipgndomputed trajectories
moved closer to the-axis within a circle of radiug0—1°. It is interesting to note that
the two computed trajectories (cases A and B), which did matpj through the virtual
separatrix, agree with each other, as do the two computgettoaies (cases C and D)
that jump through the virtual separatrix and violate théedéntial equations. However,
note that these two sets of computed trajectories are sulaha different from each
other.

Time step: |
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Fig. 6. (a) “Computed results” showing that a dramatic gtowt numerical errors

occurs with time-steps of extremely small differences. Bivthe computed trajectories

jump through the virtual separatrix; (b) a three-dimenalomiew of Fig. 6(a);
(c) amplified views of Figs. 6(a), 6(b).
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A commonly cited computational example in chaos involvessalutions of slightly
different initial conditions that remain “close” for somiene interval and then diverge
suddenly. In fact, this behavior is often believed to be aattaristic of chaos. More
properly, this phenomenon is actually due to the explosmeldication of numerical
errors, and violation of the differential equations notbd\ze.

Before closing this section, the essence of explosive dicgtion of truncation
errors, which may be the origin dbomoclinic explosionss summarized in the following
theorem:

Theorem. Numerical errors can cause a chaotic trajectory of the Laratifferential
equations to penetrate a separatrix. Since a pseudotmjgaf a chaotic system of
non-linear differential equations can move very close tejasatrix, however small nu-
merical errors introduced by discrete numerical methods cause the pseudotrajectory
to penetrate the separatrix. This behaviour violates thejueness theorem; thus, the
trajectory cannot be considered a solution of the Lorenfedihtial equations and is
therefore unshadowable.

Proof. The\-lemma [23] guarantees that a chaotic trajectory can mmsecko the local
intersection of stable and unstable manifolds (the z-adishife Lorenz system) than any
pre-assigned value. Consequently, the trajectory willeréhrough the separatrix unless
there is zero truncation error. O

5 Lorenz attractor

The lack of convergence in the results of Figs. 1 and 3 is, gtdlance, unexpected, but
is real. Attempts to ignore this behavior frequently relytba following three commonly

believed erroneous arguments. However, they cannot aitdstareful scrutiny as the
remarks provided below show.

Argument 1. Since a necessary property of chaos is the presence of a/pasépunov
exponent, or a positive nonlinear exponential growth;itétetruncation error introduced
by various numerical methods can be amplified exponentidiyce, erroneous solutions
develop differently due to different truncation errors.idTis equivalent to saying that the
finite-difference equations, which approximate the déferal equations, are unstable.
Thus, since convergence requires stability and consigtenavergent computed results
are not achievable. Such unstable cases are shadowalblis, thay remain sufficiently
close to the true trajectory with slightly different initieonditions. However, as demon-
strated in this paper, Argument 1 is not valid uniformly ire tentire geometric space.
The breakdown in the numerical solutions for chaos shownigs.F and 3 is sudden,
explosive, and unshadowable, but it is not only due to thee&ptial growth of numerical
errors associated with an unstable manifdidzen if computed results are shadowable,
their statistical properties cannot be determined, impdya useless computation!

Argument 2. It is well known that chaotic solutions of differential edioss are sensitive
to initial conditions. The different truncation errors assted with different integration
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time-steps, in effect, lead to a series of modified initiahditions for later times. Con-
sequently, computed chaotic solutions are integratioa-tstep dependent, and cannot be
considered to be an approximate, in any sense, solutioredfitferential equations.

On the other hand, as demonstrated before [6, 12, 13, 15siakjle long-time
numerical solutions for the Navier-Stokes equations ardtie-dimensional Kuramoto-
Sivashinsky equation are sensitive to initial conditiomst are also convergent and in-
dependent of the integration time-steps. This shows thalgien sensitive to initial
conditions is not necessarily sensitive to integratioretisteps.

Argument 3. It is commonly believed that the existence of an attract@rgntees the
long-time correctness of numerical computations of chaumsspective of the numerical
errors that are inevitably present in any computation. Sudoncept has never been
proved, but it is customarily used to support the belief thaerical errors do not in-
validate particular computed chaotic results among thenconity working on numerical
solutions of dynamic systems.

A reason, which often leads researchers to believe that rasgrriect computed
trajectory is acceptable as long as it resides in an atiraictdhe attractor’s property
of beingrobust Unfortunately, the true mathematical definitionaofobust attractoris
less dramatic and simply means that an attractor is inclidedlarge attracting open
set as stated in the Section 3; thus, the existence of aittsadbes not makmcorrect
computations become corredtlurthermore, this argument is incorrect because a compu-
tation contaminated by numerical error can escape an egistirrect attractor and create
another attractor, which is associated with the incorrecherical results. This will be
discussed below.

The locations where numerical errors are amplified can berbeiscussed within
the framework of a particular example, the Lorenz attradt@hould be emphasized that
| do not have a method to explicitly compute the true Loretraator due to unavoidable
numerical errors. | can only determine an erroneous attrastothers have. A computed
Lorenz attractor forA¢t = 10~°, and the initial condition(1, —1,10) is used for the
following discussion. The computation is carried out t0f time-steps, and recorded
every 1,000 time-steps. The attractor is constructed using, 000 points, admittedly
insufficient, but there are limitations due to the speed efavailable computer.

Thin slices of the computed attractor normal to thexis are plotted at four dif-
ferentz locations in Fig. 7. A short curve above the attractor shdvas the computed
trajectory rapidly enters the attractor from its initiat&gion. This is because the attractor
is robust The bottom of the attractor looks like a “thin sheet”, witletz-axis embedded
in it, as shown in Fig. 7(a). For the purpose of demonstratarexpanded cartoon of the
computed thin-attractor section of Fig. 7(a) appears in %idt shows that the size of the
attractor section contaminated by numerical errors isgwalarge as the correct one, and
its shape is also quite different. This suggests that trecefff numerical errors is by no
means small.

Moving to z = 17.9, the attractor starts to “split” near its center and theexis is no
longer embedded in it, as shown in Fig. 7(b). Above this valug the linearized analysis
of Section 4 is not valid. For even larger values pthe attractor splits into two parts due
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to the attraction from the two equilibrium points. The twrgiadots in Fig. 7(c) locate the
equilibrium points that no computed trajectory can reagmde, there are two “holes” in
the computed attractor near the two equilibrium points.iygsF7 and 8, itis clear that the
two-dimensional inset of the saddle at the origin conndettwo-dimensional outsets of
the other two fixed points.
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Fig. 7. Cross-sections of a computed Lorenz attractor actaslz locations showing
that its thickness is thin and that its point density is nafarm.

Higher up, the cross-section of the computed attractonkbiand finally disappears
for z > 40. Thin slices of the computed attractor normal to:thaxis are plotted in Fig. 8.
For smallz, the attractor splits into two symmetric parts, which loakywmuch like a
“butterfly”, as is well known, when viewed from other angl8$e attractor is very thin
due to the strong contraction of the Lorenz equations [1, 3].

A single simulation, which is not an acceptable solutionoading to the present
results, used to construct a numerical Lorenz attractdcatels that the orbit is dense,
and the computed attractor seetmasitiveandindecomposabléeThe plots of Figs. 7 and
8 seem to show that the attractor is finite and closed; hehisscompactandinvariant
for a given time step, convincing evidence that it is an attnasatisfying the properties
of Smale’s horseshoe! The plots also show that the comptagettory visits the edge
of the attractor less frequently than its interior, a min@akness. Since this trajectory is
sensitive to the initial condition, it is commonly calledtgangeattractor [3,24]. However,
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recall that computed attractors are also sensitive to iat&Em time-steps in thatifferent
time-steps result in different computed attractonghich all satisfy the mathematical
properties of Smale’s horseshoe, as demonstrated by T{idkeFhe conclusion is that
none of the attractors generated by an algebraic mappingas@eptable solution of the
differential equation even though they all satisfy the ity of Smale’s horseshoe.
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Fig. 8. Cross-sections of a computed Lorenz attractor acsadx locations showing
that its thickness is thin and that its point density is nafarm.

Furthermore, studies of multiple solutions of the Navitsk®s equations [6,12-17]
indicate that initial conditions can determine complet#ifferent long-time development
of flow patterns and/or the frequencies and wave numbersedf flactuations. Those
computational resultg;onvergent and independent of integration time-steps be ob-
tained only for unstable flows not too far from their criticdhtes, but arsensitive to
initial conditions This implies that large number of attracting open sets ésisinstable
flows. The open sets can be disjoint or overlapping. The pinena are certainly complex
and different from the description of tt@mple structure of Smale’s horseshoe. The
relevance of his horseshoe to differential equations isgenajuestion.

No convergent computational results can be found when thadtés numbers
are much larger than the corresponding critical Reynoldsbar for unstable flows, a
class of fluid flows that include turbulent flows. After we attgted to compute many of
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these flows, the reason for the lack of success became diégammipossible to construct
a stable discretized numerical method, which is required by one ofi Weumann’s
criteria for convergence, without introducing sufficientnmerical dumping (humerical
viscosity). Since the viscous effect is small for large Ragia number, introducing too
much numerical viscosity contravenes the consistencyirement of Von Neumann'’s
convergent criterion.

Forbidden zone invaded by

Attractor section .
numerical errors

U E N |
| \ 4 1 » X

Local stable manifold \

Virtual separatrix

Fig. 9. Enlarged cartoon of Fig. 7(a) after mapping the lacedtable manifold to the
z-axis. The local stable manifold inside the attractor fomrfgnite virtual separatrix
whose height is about (see equations (5), (7)). The exmasror amplification causes
the symmetry property of the computed results differentftbat of the Lorenz system,
alters the shape of the Poincaré section of the attractdrdaubles its area.

6 Conclusion

It has been demonstrated that attempts to compute nument#ions of the Lorenz
equations and their associated statistical propertiec@neaminated by errors due to
the use of a discrete numerical method and finite computimaetic. Similar behavior
has been discovered for the Rossler equations [4, 5] andtewar one-dimensional
partial differential equation, the Kuramoto-Sivashinglquation [6]. Reasons for this
behavior have been advanced. They suggest that nonlirféeredtial equations are not
hyperbolic systems since they have discrete singular polach singular point has its
own stable and unstable manifolds, which may form one or moteal separatrices.
Truncation errors of numerical computation are amplifiezhglthe unstable-manifold
direction; hence, they violate the Von Neumann stabilityuieement necessary to ensure
convergent solutions. The existence of a virtual separaliows a computed trajectory to
“jump” through it. Such behavior violates the differenggjuationsEven in the presence
of bounded “computed results”, their convergence shoul@xemined before accepting
them as useful numerical approximations to the solutionhef differential equations.
There is naigorousmathematical theory or any existing evidence that supportother
conclusion.
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