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Abstract. In this paper the dynamics of a three neuron model with smifiection
and distributed delay under dynamical threshold is ingastid. With the help of
topological degree theory and Homotopy invariance prieagistence and uniqueness of
equilibrium point are established. The conditions for vithilce Hopf-bifurcation occurs
at the equilibrium are obtained for the weak kernel of théritisted delay. The direction
and stability of the bifurcating periodic solutions areeatatined by the normal form
theory and central manifold theorem. Lastly global bifti@ma aspect of such periodic
solutions is studied. Some numerical simulations for fusty the theoretical analysis
are also presented.

Keywords: BAM neural network, distributed delay, Hopf-bifurcatiostability and
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1 Introduction

In many areas of science, for example biology, populatiamagyics, neuroscience, eco-
nomics network with connection delays arise [1-3]. Howemeareural networks delays
occur in the signal transmission between neurons or el@ctnoodel neurons due to finite
propagation velocity of action potentials (axonal delaghmegligible time of a signal
from a neuron to reach the receiving site of a postsynapticare(synaptic delay) and
some finite switching speed.

In some artificial neural network information is stored @bt equilibrium points of
the system. Retrieval occurs when the system is initializigin the basin of attraction
of one of the equilibria and the network is allowed to stakilin its steady state [1, 4].
Delay may render such networks more versatile [5, 6]. Naedess uncontrolled delays
may degrade network performance by rendering the equlilbnstable, and makes the
retrieval of the corresponding information impossible. [Mhus delay is an important
controlled parameter in neural system. Delays may be desorecontinuous in nature.
We have considered here a three neuron BAM network withibliged delay.
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In 1980, Hopfield proposed a simplified neuron network modehe development
of memory in human [1]. In this model each neuron is represkbly a linear circut
consisting of a resistor and a capacitor and is connectdubtother neuron via nonlinear
sigmoidal activation function. Since then hopfield modefelaeen widely developed and
studied both in theory and application including both comtius and discrete time delay.

Since the complexity found in simple models can often beieduwver to large scale
networks in some way thereby yielding much better undeditanof the later from a
careful study of the former,most network has focussed om#ugal networks where all
connection terms have same time delay [8].

Recently many two neuron neural network models with digcoetistributed delay
are proposed and their bifurcation, stability propertiesie been analysed [8-22].

X. Liao, S. Guo, C. Li[23] considered a simple delayed threeron network model
and obtained sufficient delay dependent criteria to enslaieagjassymptotic stability
of the euilibrium. They also paid attention to the double Hbifurcation associated
with resonance. Das Gupta, Majee, and Roy [24] studiedlgyaifurcation and global
existence of a Hopf-bifurcating periodic solution for aniguron Hopfield type general
model. They derived sufficient condition for linear stajlinstability and occurrence
of Hopf-bifurcation with respect to delay parameter abdnét trivial euilibrium. They
also studied asymptotic stability, orbital stability of pfebifurcating periodic solution
for a three neuron network with distributed delay [25]. Baldd Atiya [26] investigated
the effect of delays on the dynamics ofieneuron ring network and discussed its oscil-
lating properties. Recently Wei and Velarde [27] studiedsity and other properties of
delay induced Hopf-bifurcation for Baldi and Atiya modeltivithree neurons. There are
many other research works [28—-30] on three neuron network.

Bidirectional associate memorial (BAM) neural networke ar type of network
with the neurons arrayed in two layers. Netwroks with suchidirdctional structure
have practical applications in storing paired patterns emmries and possess the ability
of searching the desired patterns via both directions: dotwand backward [31-35].
A BAM neural netwok can be described by the following systdrordinary differential
equations.

& (t) = —a4(t Zaufj yJ TU)) L, i=12 ...,m,
Ui(t) = —ui(t +thjgj IJ Tij))-i-Ji, 1=1,2,...,m.

Realizing the ubiquitous existences of delay in neural ngte Gopalsamy and He [31]
incorporated time delays into the model and considereddhevfing system of delay
differential equations

#i(t) = —zi(t +Zaufj (vt —7)) + L, i=1,2,....m,
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yz(t) = 7y2(t> -+ sz‘jgj(ﬂfj(t — rij)) -+ Jz 7= 1,2, e, M.
j=1

A diagonally dominant and delay independent criterion fobgl stability of above model
was established [31]. Recently Mohammad [35] addresseéxpenential stability of
above model. More recently Wang and Zou [36] considered aiapease of above
model where all delays in each layer are identical, and pedd local stability and Hopf
bifurcation analysis of that.

Liao et al. [8, 9] proposed the following two neuron systenttwdistributed delays
and no self-connection:

(t) = —x(t) +arf

y(t) — by / Fls)y(t —s) ds] ,

§(t) = —y(t) + af

z(t) = b1 [ F(s)x(t —s) ds]
/

and found that Hopf-bifurcation occurred for the weak kérridowever as far as we
know, there is few works dealing with self connected delayedral network systems.

In this paper we have investigated local asymptotic stgb#ixistence, uniqueness
of equilibrium, existence and directional stability of Hdpfurcating periodic solution
for a BAM three-neuron network with distributed delay. listhetwork neurons 1, 2 and
neurons 1, 3 are coupled. Each neuron possesses non-gffdaeesiback under dynamic
threshold (Fig. 1).

Fig. 1. Directed graph of a three-neuron network model.

The paper is structured as follows:

In Section 2 the model is presented and a sufficient condftiorexistence and
uniqueness of equilibrium is given using degree theory. dati®n 3 local stability ana-
lysis of trivial equilibrium has been done. In Section 4 &ige of Hopf-bifurcating
periodic solution about origin is studied. In Section 5 diien,period and stability of
that bifurcating periodic solution is studied. In SectioneXistence of global Hopf-
bifurcation has been studied. To verify the theoreticall\sis, humerical simulations
are demonstrated in Section 7. Finally a conclusion has 8esmn in Section 8.
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2 Model description and existence and uniqueness of the edjbirium

In this paper our aim is to consider a three neuron systemdisthibuted delay and having
self connections under dynamic threshold. Such a model eaxpressed in following
form.

% =-—x1(t)+0'f 551(15)7/F(S)x1(ts)dsc1]
0
+bf mg(t)—'y/F(s)xg (t—s) ds—@}
0
+b'f mg(t)—'y/F( Yzs(t —s) d5—031
0
% = —w(t) +a'f|a1(t) *V/F(s)xl (t—s) dsq] (1)
0
+3'f 552(75)—7/F( Yzt — 8) d5—02‘|,
0
% = —a3(t) +d'f =’U1(t)’y/F(s)x1(ts)dsq]
0
+ 6 f |x3(t) W/F(s)xd(ts)dsq;]

In this modelx; (i = 1,2, 3) denotes the mean soma potential of the netrdre non-
negative constant’, corresponds to the strength of neurons to itsilfcorresponds to
the strength of neuron 2 and 3 on neurondl.represents the strength of neuron 1 on
neuron 2 and 3y # 0 is the measure of the inhibitory influence of the past histery
(i =1,2,3) > 0 denotes the neuronal threshold. The tefnn the argument of function
f represents local positive feedback. In biological literat such a feedback is known
as reverbation, while in the literature of artificial neunatwork it is known as excitation
from other neurons. The weight functidi{s) is a non-negative bounded function defined
on [0, o) to reflect the influence of the past states on the current disaf(s) is called
the delay kernel.

Let us assume that:

(H1) f € C*R), £(0)=0,anduf(u) > 0for u # 0;
(H2) f: R — R is globally Lipschitz with Lipschitz constatt > 0, that is
[f(w) = f)l < Llu—v[ V u,v€R. 2
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The general form of delay kernél(s) is as follows:

F(s) = ant1 ¢

Y s€(0,00), n=0,1,2,

wherea is a parameter denoting the rate of decay of the effects dfrpamories and
it is a positive real number. It is also known as exponentitdtding memory.n = 0
represents weak kernel whereas- 1 represents strong kernel.

In this paper we study the effect of weak kernel only, that is

F(s) =ae™™, s€(0,00), a>0. 3)

Therefore[” F(s)ds = 1, [~ sF(s) ds < cc.
In this section we are interested in the existence and unigseof the equilibrium
of the system (1). The initial condition associated withi§l)f the form

x;(t) = @i(t), ¢i € C((—o0,0,R), te€(—00,0], i=1,2,3,

¢:(t) is bounded on(—oo, 0] and the norm ofC((—oo, 0]) is denoted by||¢(t)|| =
SUPse(— o001 ([91(D)] + [92(t)] + |03(2)]) wherep(t) = (¢1(t), p2(t), P3(t)).

We shall use here topological degree and homotopy invagiprinciple to establish
the existence and uniqueness of the equilibrium of the syéig.

Definition 1 ([37]). Let f(xz): @ — R™ is continuous and differentiable function. If
p & f(0R) andJs(z) # 0forallz € f~1(p) then

deg(f,Q,p) = Z Sgn Jy(x)
zef~1(p)

whereQ2 C R™ is a bounded open set. Suppgie): 2 — R™ is a continuous function,
g(x): @ — R™ is a continuous and differentiable functionpife f(09) and|| f(z) —

9(z) ||< p(p, £(092)) then

deg(f,Q,p) = deg(g,,p).

Homotopy invariance principle ([37]). Assuming thati: Q x [0,1] — R" is a con-
tinuous function, letv;(x) = H(z,t) and letp: [0,1] — R™ be a continuous function
satisfyingp(t) & h:(99) if ¢t € [0,1]. Thendeg(hs, 2, p(t)) is independent of.

Theorem 1. If (H2) holds andF(s) is of form(3) and there exists positive constants
& >0,i=1,2,3suchthat

3
<§i§i5’L|1’Y|§i Z Mz'jL|1’Y|> >0, =123, 4)
=L

then systenil) has a unique equilibrium*.
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Proof. The system (1) can be rewritten as

oo

dd:ii = —;(t) + B f|wi(t) - fy/F(s):ci(t —s)ds —¢; |+
0
3 o'}
* Z pij f lxj(t) - ’Y/F(s)xj (t —s)ds — Cj‘| ' )
J=li# 0

Herepq, = ,u22 = pi33 = [, pi2 = po1 = a’, oz = pzz = 0.
As j;) s)ds = 1, it is easy to see thazt* (x7, 2%, x3) is an equilibrium of
system (5) if and only if the following condition holds:

3
i =B f[(1 —y)xf —ci] + Z pi fl(1—=v)xf —¢], i=1,2,3, (6)

j=1,j#i

wis given in (5).
Leth(x) = (h1(z), ho(z), hg(x)) where

3

hi(z) = @i = B flL=YNai—a] = Y nifll=7ay—¢l, i=1,2,3. (7)

j=1,j#i

Obviously the solution of(x) = 0 are equilibrium of system (5). We define a homotopic
mapping

F(z,\) = Ah(z) + (1 = Nz (8)
wherel € [0, 1], F(z,\) = (Fi(z, A), Fa(z, A), F5(z, X)) and

Fi(z,A) = Ahi(x) + (1 — M), 9)
Then it follows that

|Fi(z, )| = [Mhi(z) + (1 = A

= *Aﬂf[(lf 761 - A Z szf 1* *cj]

J=1,j#1
3

> Jai| = A B (L= yai —al| =X Y i Fl(1=)a; — o

J=1,j7i
= |2 — W |fI(1 = y)zi — ci] = f(=ci) + f(=ci)]
= A Z pig | FI(L = vz = ¢5] = f(=¢;) + f(=¢;)]
j=1,j#i
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> Jai| = ABLIL = Alai] = AB'[f (—ci)

3 3
=AY gLt =l =AY piglf(=e)l

j=1,j#i j=1,j#i
3
ZA[|$'L'|—5'L|1—7||$'&|— > Mz‘jL|1—7||$j|]
j=1,j#i
— M| f(=ci)| = A Z pig|f(=c;)l (10)
Jj=1,j#i

By (5) we have

3 3 3
dGIF( N =AY & l|30i| —BLL=Allzil =L Y pylt —7||$j|]

i=1 i=1 J=1,j#i
3 3 3
— MY &l (=)l - AZ&( > Mz‘j|f(—cj)|>
i=1 i=1 j=1,j#i
3 3
AZ[ — &AL = —&L ) Mz‘j|1—7||30j|1 |z
i=1 j=1,j#i
3 3
—AMB D &ilf (e |+Z€z< > mﬂf(—cﬂl)]- (1)
i=1 i=1,i#j

Let

3
fo— min [fz GOLIL—7—& > ,UijL|1_'7|‘|7

J=1,5#
3
ag = max & [ﬁlf(—cz-)l + > uijlfj(—cj)I] : (12)
- J=1,5
Thené, > 0 by (4) andag is a positive constant by (H2).
Let
1
0(0) = [aflar) < 20 21). (13)
0

It follows from (13) that for any: € 9(U(0)), 3 1 < ip < 3 such that

3(@0 + 1) .

& (14)

|zio| =
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By (12) we can obtain that for any € (0, 1]

3

D &lFi(z, )]
=1
B 3

> A io — &P LT — ] — Z &tio L1 = |=Tz'o|*AZ“0

i=1 §=1,j#3 i=1

> )\f()|£CZ‘()| — 3)\0,() =32>0 (15)
which implies thatF'(z, \) # Ofor anyz € 9(U(0)) andX € (0, 1].

If A=0 from (9) we haveF'(z, \) =z # 0 for anyx € 9(U(0)). HenceF (z, A) #0
foranyz € 0(U(0)) andX € [0,1]. Hence it is easy to provéeg(g, U(0),0) = 1 where
g(z) = =z is differentiable and strictly monotonic increasing. Téfere by Homotopy
invariance principle

deg (F, U(O),O) = deg (g, U(O),O) =1.

By topological degree theory we can conclude that equdtiar) = 0 has at least a
solution inU(0). That is to say system (5) has at least one equilibritinimplying
system (1) has at least one equilibrium.

Now we consider uniqueness of equilibriurh of system (5).

Suppose/* = (y5,y3,y5) is also an equilibrium of system (5). Then we have

3
vi =B f( =y —al+ > mgfll =y —¢l, i=1,2,3 (16)
J=1,j#i

By (6) and (16)
of =y =B (fl(1 =7z — el = fI(1=)y; —ci)

3
+ 3w (fl(L=y)z; =] = I =yf —¢)), i=1,2,3. (17)
J=1,5#i
According to (H2)
3
o =yl < BLIL=Allef —yf|+ Y miy LIt =] —yjl.
J=1, j#i

Therefore

3 3 3

S Gl -yl <G [ﬁ’Lll—vllx? —yil+ Y wgLll—Allzl -yl

=1 i=1 j=Lji

3 3

= l&- &AL ==& Y pulll—Al|le] —yi| <0 (18)

i=1 i=1, i)
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In view of (4) as¢; > 0 it is obvious thafz} — y| = 0 implying 2} = y/,i = 1,2,3.
Hencer* = y*. Therefore the system (1) has a unique equilibrium.

Corollary 1. If in (1) we assumef(z) = tanh(z) and F(s) = ae ** then from
Theorem follows that corresponding system has unique equilibriim i

1= (B +20)1=~]]>0, [1—(F +a)[l-7]>0. (19)
3 Local stability analysis of trivial equilibrium

In this section we focus on investigating the local stapitif equilibrium and existence
of Hopf-bifurcation for system (1).
For convenience we set= 1 andc; = ¢co = ¢3 = 0.

Now let
/F x1 t—s ds,

ya2(t) = xa(t) — | F(s)za(t — s)ds,

ys(t) = xz3(t) — | F(s)xs(t — s)ds.

\8 0\8 o

0
Then system (1) is equivalent to the following model:

U (0)+ T ()] - /F Flont+ )] ds =+ flya(0)
0 [ P lyalt + )] ds + ¥ Slys()] — ¥ [ (=) luslt + 5)] b,
/ /
V= al®) + S )]~ o [ F5) e+ 9] ds + 5 Fluate)
0 (20)
— ﬁ / yg t + S)] d
W= 3a®) + S )]~ o [ F5) e+ 9] ds + 5 Fluate)

0
00

-5 / F(=s)flys(t + s)] ds.

0
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From (4) itis clear that ify = 1, then the corresponding system has a unique steady state
and as;; = ¢; = ¢3 = 0 itis obvious that{0, 0, 0) is the unique steady state of (20). The
linearization of system (20) abo(f, 0, 0) takes the form:

0

% = —y1(t) + By (t) + by2(t) + bys(t) — B / F(=s)y1(t + s)ds
—b / F(=s)y2(t +s)ds = b / F(=s)ys(t + s)ds,
o K
e a(0) + Balt) + () — 0 [ Fos)n(t+9)ds
0 - (21)
B / F(—=s)ya(t + s)ds,
% = —y3(t) + Bys(t) + ay:(t) — a / F(=s)y1(t + s)ds

—00
0

76/F(75)y3(t+8)d5

whereg = 3’ f/(0), a = o’ f'(0), b=1V'f'(0).
Now the associated characteristic equation of the linedr&ystem (20) after substi-
tuting F'(s) = ae= %, o > 0is

A+1-6(1- %) —b(1 - 3%5) —b(1 - 325)
—a(l - 7%5) A+1-801-5%) 0 =0 (22)
—a(l — 7%5) 0 A1-6(1- %)

= A+ m A%+ ma At + ms A + A+ msA +mg =0 (23)

wheremy, mo, m3 ... mg are given by

mi; =31+ a—71),

my = 3(1+ o — B8)? + 3o — 2ab,
mg:(1+a—ﬁ)[(1+a—ﬁ)2+6a—2ab],
my = ams,

ms = o®my,

me :Oé3.
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Now the trivial equilibrium(0,0,0) is locally asymptotically stable iff all the roots of
equation (23) have negative real parts.
According to Routh-Hurwitz criteria all the roots of equeati

Yoy ooy TP Lt apsiy +ap =0

have negative real part iff

a1 Q3 (673
1 9 Qg
0 a1 Qs (673
Dm: 0 1 (6] [0 >0 vm:172a"'7k-
0 ... .. .. L. .

In case of equation (22)

Dy =3(1+a-p),
Dy =(1+a—pP)[8(1+a—p)%+3a—4ab),
Dy=4(1+a—B3)?[(1+a—B)* +3a—2ab][2(1 + o — 3)* — ab],
Dy =4a(l+a—B)*[21+a—3)* — ab]
x [4a®b® — 2ab{4a® + (11 — 83) + 4(8 — 1)*}
+3{a*+a?(5—-48)+ (B—1)* —a(B—1)*(48—5)
+a2(66% — 148+ 9)}],
Ds =160°(1 + o — B [(1+a — B)* — 2ab] [2(1 + o — B)> — ab]’,
D¢ = a®Ds.
Here

D1,Dy, D3, D5, Dg >0 if (1+Oé—ﬁ)>0

o 2
w+;av (1+O&*6)2 )

and ab < min
Dy >0 if 4a*b®> — 2abA+ B >0
where

A = [4a®+a(11-83)+4(8-1)%] >0,
B =3[a*+a3(5-48)+(8—1)*—a(B—1)*(48—5)+a*(63>—143+9)] > 0.

Now

4020 —2abA+ B >0 =—> ab<% or ab>%
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where
 A-VAT-4B  A+VAT 4B

ny = 2 ’ ng = 2

or
1
M_ {41+ a— B)2 +3a)
2 4
2
—\/{4(1+a—ﬁ)2+3a}2+12{(1+a—ﬁ)2+%} +9a2|,
no 1 2

+\/{4(1+aﬂ)2+3a}2+12{(1+a6)2+%}2+9a2

Combining above results we get
Dl,DQ,Dg,D4,D5,D6>O if (14’04*6) >0,

)2
ab < min [%,Wfﬁ)jL;a,?(lﬂLa—ﬁ)Q] or (l1+a—p)>0,

N9 M+§a,2(1+a—ﬁ)2]

7<ab<min[ 5 5

Nowasn; < 0and% > 2(14+a—p)%+3a > min[MJr%a,Z(lJrafﬂ)Q], it can

be concluded thad,, D, D3, D4, D5, Dg > 0 implying origin is locally assymptotically
stable if(1 + o — 3) > 0 andab < %
Hence we have the following conclusion:

Theorem 2. For system(20) the trivial equilibrium (0,0, 0) is locally asymptotically
stable if(1 + o — 3) > 0 andab < = where

ni

1
5 =1 {4(14+a—B)? + 3a}

- \/{4(1+a6)2+3a}2+12{(1+a5)2+%}2+9a2

4 Existence of Hopf bifurcating periodic solution
Let A = iw, w > 0 be a root of equation (23). Substituting= iw in (23) and then
separating real and imaginary parts we get

me — m4w2 + m2w4 — W= 0,

) 24
msw — maw® + miw’® = 0. (24)

446



Stability and Hopf-Bifurcation Analysis of Delayed BAM Neal Network under Dynamic Thresholds

Eliminatingw from equations in (24) and then substituting values@f mso, ms, . .., mg

after simplification it is obtained as
(1+a=pB)[1+a-pB)*-2ab][2(1+a—B)* —ab] =0. (25)

(25) implies that characteristic equation (24) has a purmegginary rootiw if
(1+a—-B)=00r (1+a—p3)*=2abor (1+a—p3)7>*= %b.

To study the existence of Hopf-bifurcating periodic sadutifirst let us assume
0 < 2ab < 3a.

Case 1.(1+a — () =0. Thenm; = mg = ms =0, ma = 3a — 2ab > 0. Therefore
characteristic equation (23) reduces to

A6 + mg)\4 + 7714)\2 +mg =10, mo,my,mg > 0. (26)

Applying Descarte’s rule of sign and relation between r@oid coefficients of a polyno-
mial it can be concluded that apart from two purely imaginaxgts other roots of (23)
can not have real negative part.

Therefore in this case there is no possibility of Hopf-bifation.

Case 2. (1 + a — 3)? = 2ab. Heremy,ma,ms,...,mg > 0if (1 +a — 3) > 0.
Now applying Descarte’s rule of sign and relation betweests@nd coefficients of a
polynomial it can be concluded that (23) has two purely imagi roots and other four
roots have real negative part.

Now (1+a—03)? =2ab = a=(B—1)+v2ab=a; (say) @ = (3—1)—+/2ab
is neglected aél + a — 3) > 0).

As before we have assumed > 22 thereforea; > 22 = (3 -1) >
V2ab(¥2 1),

At a = a1, if tiw; is a pair of purely imaginary roots of characteristic equaf23)
then from (24) we get

2
w2 o msimims — Msm3 — MiMe
1=

2 2
mims — MMy + MmiMmams — ms3 a=ay

- 1202 (1+a1—B)%[2(14+a1 — 3)? —ab] - 27)
T 41+ B)2[(1+a1—B)2+3a1—2ab|2(1+ay—B)2—ab] -

Differentiating equation (23) with respectaoimplicitly at o = a4 that is ath = iw; we
get (B)o—n, = —2ulltien) (supstitutingw? = o and (1 + a1 — §)? = 2ab).
ThereforeRe(%)a:a1 = 1 # 0. Therefore all the sufficient conditions of Hopf-
bifurcation [38—40] are satisfied.

Case32(1+a—p)?=ab = a= (6—1)+\/§:a2 (say) (o« = (ﬁ—l)—\/g
is neglected a6l + o — ) > 0).
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Let ata = aq, +iws is a pair of purely imaginary roots of characteristic equiati
(23) then from (24) we get

2
w2 o msmimsg — Ms5mMm3 — MiMeg
5 =

2 2
mims — mimg + mimems — ms3 o=as

- 12a3(1 4+ az — 8)2[2(1 + ag — B)% — ab]
- 4(1 + ap — 6)2[(1 + o — 5)2 + 30[2 — 2ab] [2(1 —+ o — 6)2 — ab]
= g, as2(1+ag — B3)* —ab =0.
As in this case value ab, is indeterminate, characteristic equation (23) can have no
purely imaginary root-iws ata = as.
So there is no possibility of Hopf-bifuircation.
Hence we have the following theorem:

Theorem 3. If 0 < 2ab < 3a, (1+a—fB)? =2ab, 3—1> vmb(@ — 1), then
Hopf bifurcation occurs ate = oy = (8 — 1) + v 2ab.

5 Direction, period and stability of Hopf-bifurcating peri odic
solution

In the previous section we obtained the condition for HogtiRiation to occure at the
critical valuea = 7. In this section we are interested to determine the stelalid
direction of the periodic solutions bifurcating from theudiprium (0, 0, 0) following the
idea of the Normal form and the centre manifold theory [39].

The nonlinear system (20) can be expanded into first secahtiigher order terms
near origin and then we have the following matrix form.

0

Y Ly + / F(—s)y(t + ) ds + H(s) (28)
where
148 b b
L= a« 148 0 |, (29)
a 0 -140

B — 7 F(—s)y3(t+ s)ds]
+b[y3(t) — f“ooF( $)y3(t + s) ds]
+b‘2) W2(t) — [° BOWR)F(—s)y3(t +s)ds] + . ..
H(y) = | a®[y3(t) — [° F(=s)y3(t + 5) ds] (30)
+ﬁ(2’[y (t) = [0 F(—s)y3(t + 5)ds] +
a@ () — [° F(=s)y3(t+s)ds]
FODR) — [ F(—s)y3(t +s)ds] +
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where
g2 = B0 o a0 e YO (31)
2 7 2 2
For convenience we rewrite the system (28) into an operatar:f
Yt = Auys + Ry (32)

wherey = (y1,y2,93)7, ye = y(t +0), 0 € (—0,0); = — a.
The operatorst andR are defined as

—d‘g(;), if 0 ¢ (—o0,0),
Aud(0) = r (33)
Lo(6) + / K(s)o(s)ds, if 0 =0,
and
(anvo)Tv if 6€ (70070%
0) = 3
Ré( ) {f(¢70)(f1,f27f3)T, if 9:(); ( 4)
wherelL is defined in (29)K is defined as
—pF(—s) —-bF(—s) —bF(—s)
K(s)=| —aF(-s) —pF(-s) 0 (35)
—aF(—s) 0 —BF(—s)
and
0 0
f16<2>[¢%<o> [EE9s6) s 162 630)- [ F(s)gb%(s)ds]
- 0 -
+b3 ¢§(0)—/F(—s)¢§(s)ds ...,
o 0 (36)
f2a<2>l¢%(0) / F(~5)¢3(s) ds| + 82| ¢3(0)— / F(=s)¢3(s)ds| +...,
7 Ty
f3=a(2’l¢>?(0)— [FEas)a +62)30- [FEs)se s +....
Let us define an adjoint operatdr of A as
f_dlgff), it 5 € (0,00),
A*(0) = ' 37
v LT4(0) + / KT (s)y(—s)ds, if 6 =0, D
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and a bilinear inner product

0

0
(16(5), 6(6)) = BT (0)$(0) — / / BT — 0)K(0)(€) de Ao (39)

0=—00 £=0

whereL™, KT 4T are the transpose d@f, K, 1) respectively. Sincel andA* are adjoint
operators, ittiw, are eigen values od, then they are also eigen valuesAf. Let ¢(6)
be the eigen vector ad, associated with the eigenvalue,

= A(0)q(8) = iwoq(0).
a1 _
This givesg(#) = | 1 | e*°? where
1

(iwo + 1)(a + iwg) — Biwo
iawo '

q1 =

(39)

Similarly it can be verified thag*(d)is the eigen vector ofi* corresponding to-iwg
where

7" (8) = (d5,1,1)e™ ™% = D(q}, 1,1)Te™?,

= (1 —iwo)(a — iwy) + Biwg (40)
1 — .

72104(4}()

D can be calculated from the relationsg* (s), ¢(6) >= 1 andk ¢*(s), q(8) >= 0.
Now we first compute the coordinates describing the centaifold Cy at 4 = 0.
Lety; be the solution of (22) gt = 0.
Let us define

2(t) =(q" ) (41)
and
W(t,0) = W(z(t), z(t),0) (42)
= ye(0) — 2(t)q(8) — z(t)q(0)
= y¢(0) — 2Rez(t)q(0). (43)

On the centre manifold, we have
22 z2 23
W(t, 9) :I/V(Z7 z, 9) :WQO(Q)? +W11(9)22+W02(9)7 +W30(9)E +... (44)

wherez andz are local coordinates far in the direction ofg* andg* respectively.W
is real if X, is real. We shall deal with real solutions only. Now for anjusion y; € C
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of (22)
2(t) = iwoz(t) + <q* (0), R(0, W (2, %,0) + 2Re{zq(0)})>
= iwpz(t) + ¢* (0)R(W (z, 2,0) + 2Re{2q(0)})
ZW()Z(t) + (j* (O)R()(Z, Z) (45)
= twoz(t) + g(z, 2) (46)
where
_ 22 _ 72 22z
9(z, 2) = 9207 +g1122+902§ +9217+.... (47)

By comparing the coefficients in the two sides of (46) and & have

920 _ A [ o (2) (2) - 2,(2) (2 @

920 _ p (1 —% )40 -

2 _qlqlﬁ +2b o i) T 8 o+ 2iwo) |’
902 _ 7« 250) | o) a 2 (2) L ) a

g2 _ p @ (1o —% )40 1<

2 _qlqlﬁ +2b o 2ieg) T 8 o+ 2iwo) |’
gi11 = 07

5= Dlai {W (W30 (0)ar +2W31 (0)ar) + 26 (W3 (0) +2W17(0))

0
— 6(2) / F(-s) (Wg(é)(s)qle_i“‘)s + 2W1(11)(s)q16i“08) ds
— 00
0
—92p2) / F(—s) (Wég)(s)e_""”"s + QWS)(S)ewOS) ds
- (48)

o+ 1wy

+3(8%qiq + 2b)) <1 - @ > }

+ {za<2> (Wi (a1 + 21 (0)a) + 8P (W (0) +2W,7)(0))

0
—924® / F(—s) (Wéé)(s)qlefiwos + 2W1(11)(8)Q16iw05) ds
0

_ b(2) / F(*S)(WQ(S)(S)G_WOS +2W1(f)(s)e—iwos) ds

—o0
+3(a® g + 6@ (1 - —= .
o+ ’iW()
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In order to determinegs;, we need to computelW,, andWi; where Wyo(6) =

(Wio (8), Wag (6), Wi ()T and Wi, (8) = (Wi, (6), W, (8), W (6))"

Now we have

W=y, — 2q— 27

_ A()W — 2Re q* (O)ROQ(G)) e (700, 0)7
AW —2Req*(0)Roq(0) + Ry, 60 =0,
— AW + H(z,2,0)

where

2 52

w

z

z z
H(Z,Z, 9) = HQ()(@)— + H11(9)22+ H()Q(@)— —+ Hd()(e)— + ...

2 2 6

On the centre manifold’y near the origin
From (49), (50) and (51) we get

(A = 2iwg) W2 (0) = —Hao(0),
AWH(G) == _Hll(e)-

Also

Hjo = —g20q(0) — g20q(0),
Hiy = g119(8) — g11q4(0).

From (52) and (54) and definition of
Wao(0) = 2iweWao(6) + g20¢(0)e™°? + Gaog(0)e 0P
Similarly from (53) and (55)
W11 (6) = g119(0)e™? — gr1g(0)e "
Wao(6) = ii—j“q(t))e“ﬂ" + %jq(o)ewo@ + Kol

—i . a »
gllq(O)e“”"e + &Q(O)e wol 1 K
wo wo

Wit (9) =

(49)

(50)

(51)

(52)
(53)

(54)
(55)

(56)

(57)

where K; and K, are both three dimensional vectors that can be determinegtting
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f=0inH.
14 B8—2iwy b b N 3 b b\] "
K, = a  A4+B-2w 0 ——=—|a s 0
a 0  —148-2iwy) T2 \4 0
—1+ 6 — QiW() b b 920 ?]02
X a =1+ —2iw 0 (Z.—Q(O) + JQ(O))
a 0 —1+3—2iwg “o 0
gob 920 a 902 o
a 0 8 W o + 1wo wo o — 1Wo
10 0\ "
Ko=10 —-10
0 0 -1
-1+8 b b ; T
< |- | o 1 0 ) (=20 Dige)
a 0 —1+8 wo wo
B bb 1911 o 1911 _ o’
+la B 0)(-——=49(0)—/F——+—q(0)0—
a 0§ wo @+ 1wo wo o — 1Wo
where

) 9 )
Hjo = (HQ(é)vHQ(?aHQ%))Tv Hu = (Hl(i)aHl(l)aHl(f))Ta

4(0) = (¢1(0),¢®(0),¢PN", q(0) = (¢V(0),4*(0), g )"

Thus we can calculate the following quantities

7 1 1
Ei(0) = -— (920911 —2|g11* - §|g<)2|2) + —go1,

2(.4}() 2
Re E1(0)
H2 = — 05—,
Re N (1)
1
Ty=—— [Im E1(0) 4 p2 Im X (a1)],
0

by = 2Re E1(0).
Then from conclusion of [39] we obtain the following result:
Theorem 4. (i) Thedirection of the Hopf-bifurcating periodic solutiordistermined by
w(o) = pao? + ...,

Whenpe > 0 (< 0), the Hopf-bifurcation is super critical (subcritical) arttie
bifurcating periodic solution exits fax > g (< ap).
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(i) The period of the bifurcating periodic solution can be estied by
2
T(o) = —77(1—|—T202 —|—)
wo
The period increases (decreases}if> 0 (< 0).

(iif) The stability of the bifurcating periodic solution is datgned by
B(o) = byo® +....

Whenb, > 0 (< 0) the bifurcating periodic solution is unstable (stable).

6 Global Hopf-bifurcation

In this section we shall consider the global existence offHifurcating periodic solution
that is continuation of the bifurcating periodic solutioas the bifurcation parameter
« increases and varies over the interyal, co) assuming that the Hopf-bifurcation is
supercritical. This phenomenon will be proved by using #ehhique of Alexander and
Auchmuty [41].

Let P! denote the space of all: R — R® which are periodic with periodr. The
spaceP! is a Banach space with the norm

]

1) — .
ol = o o {2300 +

dt

Let A denote the open intervél, co). Let L(P!) denote the set of all continuous linear
maps of P! into itself with the induced norm topology. Ldt: P! x A — P! be
continuous and let us consider the problem of finding thetswla (y, o,w) € P! x
A x (0, 00) of the equation

dy

wa = F(y, a). (58)

If y(¢) is a solution of equation (58), andaif{t) = y(wt), thenx(¢) is a solution of
dx
dt

wherez is periodic with period” = 27 /w.
Now let

= F(z,a) (59)

o

ya(t) = /ozeaS tanh[y (t + s)] ds,

0
ys(t) = /ae‘” tanh[ys (¢t + s)] ds,
0
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ye(t) = /ae‘” tanh[ys (¢ + s)] ds.
0

Then (22) can be written as

% = —y1(t) 4+ tanh[y, ]+’ tanh[ys] +b' tanh[ys] — B [ya] —b'[ys] — [y,

% = —yo(t) + o’ tanhy; |+ B tanh[ys] +—a’[ya] — 3'[ys),

% = —ys3(t)+a’ tanh[y; ]+ B tanh[ys] +—a'[ya] — 5 [ys],

dya (60)
S =altanhly] —y.).

% = a(tanh[ys] —ys),

% — a(tanh(ys] — ys).

The system of integro differential equations (22) is egleinto system (60) of ordinary
differential equations [42]. Now if we denote the system) (&9

dy
E =F (Y)a (61)

then (61) can be rewritten as

az

W = Al(a)Z + R(Z,«) (62)

where A(«) is variational matrix of (60) about trivial equilibriurf0,0,0,0,0,0) and
R(Z,a) = Fi(Z,a) — A(a)Z.

Now theorem which is used to prove global existence of Hafafrbating prriodic
solution is stated under (proof is in [41]).

Theorem 5. Let F' be a Frechet differentiable map &f' x A into P!. There is a global
bifurcation of27-periodic solutions of equatiof®8)from a solutiony*, «g, wo) provided

(i) A(a) € L(PY) for a € A. The mappingy — A(«) is continuous and is not in
the spectrum of(ay).

(i) The number of linearly independent solutionsih of wo &YX = A(a)W is finite
and congruentt@ mod 4.

(iii) There are positivé ande such thatif\(«) is in the spectrum ol (o) andReA(a) =
P(5), then|P(a)| > e|a — ag] for |a — ag| < 6.
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We will verify the above sufficient conditions of global Hepifurcation for the
system (62). We consider the linearized system

wo% = A(a)W (63)

and let us suppose that it has a periodic solution of peXigdet it be

o
W = Z dkeikt.

k=—oc0

The coefficientsd,, are solutions of the linear systeanikd, = A(a)dg, k& = 0,
+1,42,.... Nontrivial periodic solutions of perio@r exist iff ikwyis an eigen value
of A(«). Thatisikwy is a solution of equation (24). From previous discussios dléar
that non-trivial periodic solutions exist only fér= +1 ata = a4, and hence there is
only one periodic solution of periair for the linearized system (63). It has been shown
that

dA
Re <£>a:al > 0

It follows that if P(«r) =Re{A(a)] then

i @W0) —a(By)

>0
a—ar B—0

which implies that there exists> 0, 6 > 0 such that

Pla) = P(an)

>¢e if Ja—aq] <9,
o — (1

‘

(64)
= |P(a)| > ela—ay] for |a—ay1|<d (as P(ai)=0).

Also A(«) is continuous inx. Thus all the conditions of Theorem 5 are satisfied. There-

fore there is a global bifurcation @fr periodic solutions from the poirf, a1, wq).

Thus the global Hopf-bifurcation has been established idyxt space of the phase
space,parameter space and the frequency space.

7 Numerical simulation

In this section using the Matlab software we carry out the etical simulation on a
particular form of system (1). Lef(z) = tanh(z); ¢; = c2 = ¢5 = 0; v = 1. Then (1)
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takes the form

dwy / i
= = —x1(t) + B'tanh |z (t) — /F(s)ml(t —s)ds

+ V' tanh |22 (t) — /F(s)mg(t —s)ds

+ V' tanh |z3(t) — [ F(s)z3(t — s)ds|,

% = —z9(t) + a’ tanh |z1(t) — [ F(s)z1(t — s) 1 (65)
+ @' tanh |xo(t) — [ F(s)xa(t —s)d ]
0=
%:—xg(t)—i—a’tanh acl(t)—/F( s)r1(t —s)d 1
L 0
+ ' tanh |x3(t) — /F(s)xg(t —5) ds] .
L 0

Now firstwetakex = 1, 3 =1, a = 1.5, b = —1.5. These values satisfy the conditions
of Theorem 2 and with these values we get Fig. 2. It shows th#tis case origin is
locally asymptotically stable.

X,y,Z

Fig.2.a =15 b=—-15 a=1, 3= 1.
Here origin is locally asymptotically stable.
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Then to verify Theorem 3 we chooge= 1, a = 1, b = 0.5. These parametric
values give the critical value ef asa = 1. Then with these above mentioned prescribed

values of parameters we get Fig. 3, Fig. 4 and Fig. 5

; _
|"')_-‘lﬁﬁm, I ,
e

|

v i

Fig. 3.a=1, b=0.5, a=0.8 <1, B=1. Fig. 4. a=1,b=05 a=1, 8= 1.
Here origin is locally asymptotically stable. A periodic solution exists near origin.

v

=

005

X.y.Z

v

Fig.5.a=1, b=0.5, a=1.2> 1, g=1.
A periodic solution exists near origin.

8 Conclusion

In this paper we have analyzed a BAM neural network model azag of three neurons
with distributed delay. It is a generalization of the modeldéed in [8,9]. To our
knowledge, the stability analysis and bifurcation of a k@dtional associate memorial
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network with self-connection have not been investigateliténature. This paper is an
attempt to do this. As the distributed delay can become aetisclelay when the delay
kernel is a delta function at a certain time, a neural netwooklel with distributed delay
is more general than that with discrete delay.

In this paper in Theorem 1 sufficient condition for existen€@nique equilibrium
has been studied. In Theorem 2 we have obtained the critadaruvhich the trivial
equilibrium remains locally asymptotically stable. In Bnem 3 condition for existence
of Hopf-bifurcating periodic solution about origin has besbtained. In Theorem 4 we
have studied the direction, period and stability of suchfHuifurcating periodic solution.
Then the global stability of that Hopf-bifurcating periodiolution has been studied.
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