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Abstract. In this paper the dynamics of a three neuron model with self-connection
and distributed delay under dynamical threshold is investigated. With the help of
topological degree theory and Homotopy invariance principle existence and uniqueness of
equilibrium point are established. The conditions for which the Hopf-bifurcation occurs
at the equilibrium are obtained for the weak kernel of the distributed delay. The direction
and stability of the bifurcating periodic solutions are determined by the normal form
theory and central manifold theorem. Lastly global bifurcation aspect of such periodic
solutions is studied. Some numerical simulations for justifying the theoretical analysis
are also presented.
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1 Introduction

In many areas of science, for example biology, population dynamics, neuroscience, eco-
nomics network with connection delays arise [1–3]. Howeverin neural networks delays
occur in the signal transmission between neurons or electronic model neurons due to finite
propagation velocity of action potentials (axonal delay) non negligible time of a signal
from a neuron to reach the receiving site of a postsynaptic neuron (synaptic delay) and
some finite switching speed.

In some artificial neural network information is stored as stable equilibrium points of
the system. Retrieval occurs when the system is initializedwithin the basin of attraction
of one of the equilibria and the network is allowed to stabilize in its steady state [1, 4].
Delay may render such networks more versatile [5, 6]. Nevertheless uncontrolled delays
may degrade network performance by rendering the equilibria unstable, and makes the
retrieval of the corresponding information impossible [7]. Thus delay is an important
controlled parameter in neural system. Delays may be discrete or continuous in nature.
We have considered here a three neuron BAM network with distributed delay.
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In 1980, Hopfield proposed a simplified neuron network model in the development
of memory in human [1]. In this model each neuron is represented by a linear circut
consisting of a resistor and a capacitor and is connected to the other neuron via nonlinear
sigmoidal activation function. Since then hopfield model have been widely developed and
studied both in theory and application including both continuous and discrete time delay.

Since the complexity found in simple models can often be carried over to large scale
networks in some way thereby yielding much better understanding of the later from a
careful study of the former,most network has focussed on theneural networks where all
connection terms have same time delay [8].

Recently many two neuron neural network models with discrete or distributed delay
are proposed and their bifurcation, stability properties,have been analysed [8–22].

X. Liao, S. Guo, C. Li [23] considered a simple delayed three neuron network model
and obtained sufficient delay dependent criteria to ensure global assymptotic stability
of the euilibrium. They also paid attention to the double Hopf-bifurcation associated
with resonance. Das Gupta, Majee, and Roy [24] studied stability,bifurcation and global
existence of a Hopf-bifurcating periodic solution for a trineuron Hopfield type general
model. They derived sufficient condition for linear stability, instability and occurrence
of Hopf-bifurcation with respect to delay parameter about the trivial euilibrium. They
also studied asymptotic stability, orbital stability of Hopf-bifurcating periodic solution
for a three neuron network with distributed delay [25]. Baldi and Atiya [26] investigated
the effect of delays on the dynamics of an-neuron ring network and discussed its oscil-
lating properties. Recently Wei and Velarde [27] studied stability and other properties of
delay induced Hopf-bifurcation for Baldi and Atiya model with three neurons. There are
many other research works [28–30] on three neuron network.

Bidirectional associate memorial (BAM) neural networks are a type of network
with the neurons arrayed in two layers. Netwroks with such a bidirectional structure
have practical applications in storing paired patterns or memories and possess the ability
of searching the desired patterns via both directions: forward and backward [31–35].
A BAM neural netwok can be described by the following system of ordinary differential
equations.

ẋi(t) = −xi(t) +

n
∑

j=1

aijfj

(

yj(t− τij)
)

+ Ii, i = 1, 2, . . . ,m,

ẏi(t) = −yi(t) +

n
∑

j=1

bijgj

(

xj(t− rij)
)

+ Ji, i = 1, 2, . . . ,m.

Realizing the ubiquitous existences of delay in neural networks Gopalsamy and He [31]
incorporated time delays into the model and considered the following system of delay
differential equations

ẋi(t) = −xi(t) +

n
∑

j=1

aijfj

(

yj(t− τij)
)

+ Ii, i = 1, 2, . . . ,m,
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ẏi(t) = −yi(t) +

n
∑

j=1

bijgj

(

xj(t− rij)
)

+ Ji, i = 1, 2, . . . ,m.

A diagonally dominant and delay independent criterion for global stability of above model
was established [31]. Recently Mohammad [35] addressed theexponential stability of
above model. More recently Wang and Zou [36] considered a special case of above
model where all delays in each layer are identical, and performed local stability and Hopf
bifurcation analysis of that.

Liao et al. [8, 9] proposed the following two neuron system with distributed delays
and no self-connection:

ẋ(t) = −x(t) + a1f

[

y(t) − b2

∞
∫

0

F (s)y(t− s) ds

]

,

ẏ(t) = −y(t) + a2f

[

x(t) − b1

∞
∫

0

F (s)x(t− s) ds

]

and found that Hopf-bifurcation occurred for the weak kernel. However as far as we
know, there is few works dealing with self connected delayedneural network systems.

In this paper we have investigated local asymptotic stability; existence, uniqueness
of equilibrium, existence and directional stability of Hopf bifurcating periodic solution
for a BAM three-neuron network with distributed delay. In this network neurons 1, 2 and
neurons 1, 3 are coupled. Each neuron possesses non-linear self feedback under dynamic
threshold (Fig. 1).

Fig. 1. Directed graph of a three-neuron network model.

The paper is structured as follows:
In Section 2 the model is presented and a sufficient conditionfor existence and

uniqueness of equilibrium is given using degree theory. In Section 3 local stability ana-
lysis of trivial equilibrium has been done. In Section 4 existence of Hopf-bifurcating
periodic solution about origin is studied. In Section 5 direction,period and stability of
that bifurcating periodic solution is studied. In Section 6, existence of global Hopf-
bifurcation has been studied. To verify the theoretical analysis, numerical simulations
are demonstrated in Section 7. Finally a conclusion has beendrawn in Section 8.
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2 Model description and existence and uniqueness of the equilibrium

In this paper our aim is to consider a three neuron system withdistributed delay and having
self connections under dynamic threshold. Such a model can be expressed in following
form.

dx1

dt
= −x1(t) + β′f

[

x1(t) − γ

∞
∫

0

F (s)x1(t− s) ds− c1

]

+ b′f

[

x2(t) − γ

∞
∫

0

F (s)x2(t− s) ds− c2

]

+ b′f

[

x3(t) − γ

∞
∫

0

F (s)x3(t− s) ds− c3

]

,

dx2

dt
= −x2(t) + a′f

[

x1(t) − γ

∞
∫

0

F (s)x1(t− s) ds− c1

]

+ β′f

[

x2(t) − γ

∞
∫

0

F (s)x2(t− s) ds− c2

]

,

dx3

dt
= −x3(t) + a′f

[

x1(t) − γ

∞
∫

0

F (s)x1(t− s) ds− c1

]

+ β′f

[

x3(t) − γ

∞
∫

0

F (s)x3(t− s) ds− c3

]

.

(1)

In this modelxi (i = 1, 2, 3) denotes the mean soma potential of the neuroni. The non-
negative constantβ′, corresponds to the strength of neurons to itself.b′ corresponds to
the strength of neuron 2 and 3 on neuron 1.a′ represents the strength of neuron 1 on
neuron 2 and 3.γ 6= 0 is the measure of the inhibitory influence of the past history. ci
(i = 1, 2, 3) > 0 denotes the neuronal threshold. The termxi in the argument of function
f represents local positive feedback. In biological literature, such a feedback is known
as reverbation, while in the literature of artificial neuralnetwork it is known as excitation
from other neurons. The weight functionF (s) is a non-negative bounded function defined
on [0,∞) to reflect the influence of the past states on the current dynamics.F (s) is called
the delay kernel.

Let us assume that:

(H1) f ∈ C4(R), f(0) = 0, andµf(µ) > 0 for µ 6= 0;

(H2) f : R → R is globally Lipschitz with Lipschitz constantL > 0, that is

|f(u) − f(v)| ≤ L|u− v| ∀ u, v ∈ R. (2)
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The general form of delay kernelF (s) is as follows:

F (s) = αn+1 s
n e−αs

n!
, s ∈ (0,∞), n = 0, 1, 2,

whereα is a parameter denoting the rate of decay of the effects of past memories and
it is a positive real number. It is also known as exponentially fading memory.n = 0
represents weak kernel whereasn = 1 represents strong kernel.

In this paper we study the effect of weak kernel only, that is

F (s) = αe−αs, s ∈ (0,∞), α > 0. (3)

Therefore
∫∞
0
F (s) ds = 1,

∫∞
0
sF (s) ds <∞.

In this section we are interested in the existence and uniqueness of the equilibrium
of the system (1). The initial condition associated with (1)is of the form

xi(t) = ϕi(t), φi ∈ C((−∞, 0], R), t ∈ (−∞, 0], i = 1, 2, 3,

φi(t) is bounded on(−∞, 0] and the norm ofC((−∞, 0]) is denoted by‖φ(t)‖ =
supt∈(−∞,0](|φ1(t)| + |φ2(t)| + |φ3(t)|) whereφ(t) = (φ1(t), φ2(t), φ3(t)).

We shall use here topological degree and homotopy invariance principle to establish
the existence and uniqueness of the equilibrium of the system (1).

Definition 1 ([37]). Let f(x) : Ω → R
n is continuous and differentiable function. If

p 6∈ f(∂Ω) andJf (x) 6= 0 for all x ∈ f−1(p) then

deg(f,Ω, p) =
∑

x∈f−1(p)

SgnJf (x)

whereΩ ⊂ R
n is a bounded open set. Supposef(x) : Ω → R

n is a continuous function,
g(x) : Ω → R

n is a continuous and differentiable function, ifp ∈ f(∂Ω) and‖ f(x) −
g(x) ‖< p(p, f(∂Ω)) then

deg(f,Ω, p) = deg(g,Ω, p).

Homotopy invariance principle ([37]). Assuming thatH : Ω̄ × [0, 1] → R
n is a con-

tinuous function, letht(x) = H(x, t) and letp : [0, 1] → R
n be a continuous function

satisfyingp(t) 6∈ ht(∂Ω) if t ∈ [0, 1]. Thendeg(ht,Ω, p(t)) is independent oft.

Theorem 1. If (H2) holds andF (s) is of form (3) and there exists positive constants
ξi > 0, i = 1, 2, 3 such that

(

ξi − ξiβ
′L|1 − γ| − ξi

3
∑

j=1,j 6=i

µijL|1 − γ|
)

> 0, i = 1, 2, 3, (4)

then system(1) has a unique equilibriumx∗.
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Proof. The system (1) can be rewritten as

dxi

dt
= −xi(t) + β′f

[

xi(t) − γ

∞
∫

0

F (s)xi(t− s) ds− ci

]

+

+

3
∑

j=1,j 6=i

µijf

[

xj(t) − γ

∞
∫

0

F (s)xj(t− s) ds− cj

]

. (5)

Hereµ11 = µ22 = µ33 = β′, µ12 = µ21 = a′, µ23 = µ32 = 0.
As
∫∞
0 F (s) ds = 1, it is easy to see thatx∗ = (x∗1, x

∗
2, x

∗
3) is an equilibrium of

system (5) if and only if the following condition holds:

x∗i = β′f [(1 − γ)x∗i − ci] +
3
∑

j=1,j 6=i

µijf [(1 − γ)x∗j − cj ], i = 1, 2, 3, (6)

µ is given in (5).
Let h(x) = (h1(x), h2(x), h3(x)) where

hi(x) = xi − β′f [(1− γ)xi − ci]−
3
∑

j=1,j 6=i

µijf [(1− γ)xj − cj ], i = 1, 2, 3. (7)

Obviously the solution ofh(x) = 0 are equilibrium of system (5). We define a homotopic
mapping

F (x, λ) = λh(x) + (1 − λ)x (8)

whereλ ∈ [0, 1], F (x, λ) = (F1(x, λ), F2(x, λ), F3(x, λ)) and

Fi(x, λ) = λhi(x) + (1 − λ)xi. (9)

Then it follows that

|Fi(x, λ)| = |λhi(x) + (1 − λ)xi|

=

∣

∣

∣

∣

∣

xi − λβ′f [(1 − γ)xi − ci] − λ

3
∑

j=1,j 6=i

µijf [(1 − γ)xj − cj ]

∣

∣

∣

∣

∣

≥ |xi| − λ
∣

∣β′f [(1 − γ)xi − ci]
∣

∣− λ
3
∑

j=1,j 6=i

|µijf [(1 − γ)xj − cj ]|

= |xi| − λβ′|f [(1 − γ)xi − ci] − f(−ci) + f(−ci)|

− λ
3
∑

j=1,j 6=i

µij |f [(1 − γ)xj − cj ] − f(−cj) + f(−cj)|
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≥ |xi| − λβ′L|1 − γ||xi| − λβ′|f(−ci)|

− λ
3
∑

j=1,j 6=i

µijL|1 − γ||xj | − λ
3
∑

j=1,j 6=i

µij |f(−cj)|

≥ λ

[

|xi| − β′L|1 − γ||xi| −
3
∑

j=1,j 6=i

µijL|1 − γ||xj |
]

− λβ′|f(−ci)| − λ

3
∑

j=1,j 6=i

µij |f(−cj)|. (10)

By (5) we have

3
∑

i=1

ξi|Fi(x, λ)| ≥ λ

3
∑

i=1

ξi

[

|xi| − β′L|1 − γ||xi| − L

3
∑

j=1,j 6=i

µij |1 − γ||xj |
]

− λβ′
3
∑

i=1

ξi|f(−ci)| − λ

3
∑

i=1

ξi

(

3
∑

j=1,j 6=i

µij |f(−cj)|
)

= λ

3
∑

i=1

[

ξi − ξiβ
′L|1 − γ| − ξiL

3
∑

j=1,j 6=i

µij |1 − γ||xj |
]

|xi|

− λ

[

β′
3
∑

i=1

ξi|f(−ci)| +
3
∑

i=1

ξi

(

3
∑

i=1,i6=j

µij |f(−cj)|
)]

. (11)

Let

ξ0 = min
1≤i≤3

[

ξi − ξiβ
′L|1 − γ| − ξi

3
∑

j=1,j 6=i

µijL|1 − γ|
]

,

a0 = max
1≤i≤3

ξi

[

β|f(−ci)| +
3
∑

j=1,j 6=i

µij |fj(−cj)|
]

. (12)

Thenξ0 > 0 by (4) anda0 is a positive constant by (H2).
Let

U(0) =

[

x/|xi| <
3(a0 + 1)

ξ0

]

. (13)

It follows from (13) that for anyx ∈ ∂(U(0)), ∃ 1 ≤ i0 ≤ 3 such that

|xi0| =
3(a0 + 1)

ξ0
. (14)
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By (12) we can obtain that for anyλ ∈ (0, 1]

3
∑

i=1

ξi|Fi(x, λ)|

≥ λ

3
∑

i=1

[

ξi0 − ξiβ
′L|1 − γ| −

∑

j=1,j 6=3

ξjµji0L|1 − γ|
]

|xi0 | − λ

3
∑

i=1

a0

≥ λξ0|xi0| − 3λa0 = 3λ > 0 (15)

which implies thatF (x, λ) 6= 0for anyx ∈ ∂(U(0)) andλ ∈ (0, 1].
If λ=0 from (9) we haveF (x, λ)=x 6= 0 for anyx∈∂(U(0)). HenceF (x, λ) 6=0

for anyx∈ ∂(U(0)) andλ∈ [0, 1]. Hence it is easy to provedeg(g, U(0), 0) = 1 where
g(x) = x is differentiable and strictly monotonic increasing. Therefore by Homotopy
invariance principle

deg
(

F,U(0), 0
)

= deg
(

g, U(0), 0
)

= 1.

By topological degree theory we can conclude that equationh(x) = 0 has at least a
solution inU(0). That is to say system (5) has at least one equilibriumx∗ implying
system (1) has at least one equilibrium.

Now we consider uniqueness of equilibriumx∗ of system (5).
Supposey∗ = (y∗1 , y

∗
2 , y

∗
3) is also an equilibrium of system (5). Then we have

y∗i = β′f [(1 − γ)y∗i − ci] +

3
∑

j=1,j 6=i

µijf [(1 − γ)y∗j − cj ], i = 1, 2, 3. (16)

By (6) and (16)

x∗i − y∗i = β′(f [(1 − γ)x∗i − ci] − f [(1 − γ)y∗i − ci]
)

+

3
∑

j=1,j 6=i

µij

(

f [(1 − γ)x∗j − cj ] − f [(1 − γ)y∗j − cj]
)

, i = 1, 2, 3. (17)

According to (H2)

|x∗i − y∗i | ≤ β′L|1 − γ||x∗i − y∗i | +
3
∑

j=1, j 6=i

µijL|1 − γ||x∗j − y∗j |.

Therefore

3
∑

i=1

ξi|x∗i − y∗i | ≤
3
∑

i=1

ξi

[

β′L|1 − γ||x∗i − y∗i | +
3
∑

j=1,j 6=i

µijL|1 − γ||x∗j − y∗j |
]

=⇒
3
∑

i=1

[

ξi − ξiβ
′L|1 − γ| − ξi

3
∑

i=1, i6=j

µjiL|1 − γ|
]

|x∗i − y∗i | ≤ 0. (18)
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In view of (4) asξi > 0 it is obvious that|x∗i − y∗i | = 0 implying x∗i = y∗i , i = 1, 2, 3.
Hencex∗ = y∗. Therefore the system (1) has a unique equilibrium.

Corollary 1. If in (1) we assumef(x) ≡ tanh(x) and F (s) = αe−αs then from
Theorem1 follows that corresponding system has unique equilibrium if

[1 − (β′ + 2b′)|1 − γ|] > 0, [1 − (β′ + a′)|1 − γ|] > 0. (19)

3 Local stability analysis of trivial equilibrium

In this section we focus on investigating the local stability of equilibrium and existence
of Hopf-bifurcation for system (1).

For convenience we setγ = 1 andc1 = c2 = c3 = 0.
Now let

y1(t) = x1(t) −
∞
∫

0

F (s)x1(t− s) ds,

y2(t) = x2(t) −
∞
∫

0

F (s)x2(t− s) ds,

y3(t) = x3(t) −
∞
∫

0

F (s)x3(t− s) ds.

Then system (1) is equivalent to the following model:

dy1
dt

= − y1(t) + β′f [y1(t)] − β′
∞
∫

0

F (−s)f [y1(t+ s)] ds+ b′f [y2(t)]

− b′
∞
∫

0

F (−s)f [y2(t+ s)] ds+ b′f [y3(t)] − b′
∞
∫

0

F (−s)f [y3(t+ s)] ds,

dy2
dt

= − y2(t) + a′f [y1(t)] − a′
∞
∫

0

F (−s)f [y1(t+ s)] ds+ β′f [y2(t)]

− β′
∞
∫

0

F (−s)f [y2(t+ s)] ds,

dy3
dt

= − y3(t) + a′f [y1(t)] − a′
∞
∫

0

F (−s)f [y1(t+ s)] ds+ β′f [y3(t)]

− β′
∞
∫

0

F (−s)f [y3(t+ s)] ds.

(20)
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From (4) it is clear that ifγ = 1, then the corresponding system has a unique steady state
and asc1 = c2 = c3 = 0 it is obvious that(0, 0, 0) is the unique steady state of (20). The
linearization of system (20) about(0, 0, 0) takes the form:

dy1
dt

= − y1(t) + βy1(t) + by2(t) + by3(t) − β

0
∫

−∞

F (−s)y1(t+ s) ds

− b

0
∫

−∞

F (−s)y2(t+ s) ds− b

0
∫

−∞

F (−s)y3(t+ s) ds,

dy2
dt

= − y2(t) + βy2(t) + ay1(t) − a

0
∫

−∞

F (−s)y1(t+ s) ds

− β

0
∫

−∞

F (−s)y2(t+ s) ds,

dy3
dt

= − y3(t) + βy3(t) + ay1(t) − a

0
∫

−∞

F (−s)y1(t+ s) ds

− β

0
∫

−∞

F (−s)y3(t+ s) ds

(21)

whereβ = β′f ′(0), a = a′f ′(0), b = b′f ′(0).
Now the associated characteristic equation of the linearized system (20) after substi-

tutingF (s) = αe−αs, α > 0 is
∣

∣

∣

∣

∣

∣

λ+ 1 − β(1 − α
α+λ

) −b(1 − α
α+λ

) −b(1 − α
α+λ

)

−a(1 − α
α+λ

) λ+ 1 − β(1 − α
α+λ

) 0

−a(1 − α
α+λ

) 0 λ+ 1 − β(1 − α
α+λ

)

∣

∣

∣

∣

∣

∣

= 0 (22)

=⇒ λ6 +m1λ
5 +m2λ

4 +m3λ
3 +m4λ

2 +m5λ+m6 = 0 (23)

wherem1,m2,m3 . . .m6 are given by

m1 = 3(1 + α− β),

m2 = 3(1 + α− β)2 + 3α− 2ab,

m3 = (1 + α− β)
[

(1 + α− β)2 + 6α− 2ab
]

,

m4 = αm2,

m5 = α2m1,

m6 = α3.
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Now the trivial equilibrium(0, 0, 0) is locally asymptotically stable iff all the roots of
equation (23) have negative real parts.

According to Routh-Hurwitz criteria all the roots of equation

yk + α1y
k−1 + α2y

k−2 + . . .+ αk−1y + αk = 0

have negative real part iff

Dm =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 α3 α5 . . . . . . . . . . . .
1 α2 α4 . . . . . . . . . . . .
0 α1 α3 α5 . . . . . . . . .
0 1 α2 α4 . . . . . . . . .
...
0 . . . . . . . . . . . . . . . αm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0 ∀m = 1, 2, . . . , k.

In case of equation (22)

D1 = 3(1 + α− β),

D2 = (1 + α− β)
[

8(1 + α− β)2 + 3α− 4ab
]

,

D3 = 4(1 + α− β)2
[

(1 + α− β)2 + 3α− 2ab
][

2(1 + α− β)2 − ab
]

,

D4 = 4α(1 + α− β)2
[

2(1 + α− β)2 − ab
]

×
[

4a2b2 − 2ab
{

4α2 + α(11 − 8β) + 4(β − 1)2
}

+ 3
{

α4 + α3(5 − 4β) + (β − 1)4 − α(β − 1)2(4β − 5)

+ α2
(

6β2 − 14β + 9
)}]

,

D5 = 16α3(1 + α− β)3
[

(1 + α− β)2 − 2ab
][

2(1 + α− β)2 − ab
]2
,

D6 = α3D5.

Here

D1, D2, D3, D5, D6 > 0 if (1 + α− β) > 0

and ab < min

[

(1 + α− β)2

2
+

3

2
α, (1 + α− β)2

]

,

D4 > 0 if 4a2b2 − 2abA+B > 0

where

A =
[

4α2+α(11−8β)+4(β−1)2
]

> 0,

B = 3
[

α4+α3(5−4β)+(β−1)4−α(β−1)2(4β−5)+α2(6β2−14β+9)
]

> 0.

Now

4a2b2 − 2abA+B > 0 =⇒ ab <
n1

2
or ab >

n2

2
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where

n1 =
A−

√
A2 − 4B

2
, n2 =

A+
√
A2 − 4B

2
or

n1

2
=

1

4

[

{

4(1 + α− β)2 + 3α
}

−
√

{

4(1 + α− β)2 + 3α
}2

+ 12
{

(1 + α− β)2 +
α

2

}2

+ 9α2

]

,

n2

2
=

1

4

[

{

4(1 + α− β)2 + 3α
}

+

√

{

4(1 + α− β)2 + 3α
}2

+ 12
{

(1 + α− β)2 +
α

2

}2

+ 9α2

]

.

Combining above results we get

D1, D2, D3, D4, D5, D6 > 0 if (1 + α− β) > 0,

ab < min

[

n1

2
,
(1 + α− β)2

2
+

3

2
α, 2(1 + α− β)2

]

or (1 + α− β) > 0,

n2

2
< ab < min

[

(1 + α− β)2

2
+

3

2
α, 2(1 + α− β)2

]

.

Now asn1 < 0 andn2

2 > 2(1+α−β)2+ 3
2α > min[ (1+α−β)2

2 + 3
2α, 2(1+α−β)2], it can

be concluded thatD1, D2, D3, D4, D5, D6 > 0 implying origin is locally assymptotically
stable if(1 + α− β) > 0 andab < n1

2 .
Hence we have the following conclusion:

Theorem 2. For system(20) the trivial equilibrium (0, 0, 0) is locally asymptotically
stable if(1 + α− β) > 0 andab < n1

2 where

n1

2
=

1

4

[

{

4(1 + α− β)2 + 3α
}

−
√

{

4(1 + α− β)2 + 3α
}2

+ 12
{

(1 + α− β)2 +
α

2

}2

+ 9α2

]

.

4 Existence of Hopf bifurcating periodic solution

Let λ = iω, ω > 0 be a root of equation (23). Substitutingλ = iω in (23) and then
separating real and imaginary parts we get

m6 −m4ω
2 +m2ω

4 − ω6 = 0,

m5ω −m3ω
3 +m1ω

5 = 0.
(24)
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Eliminatingω from equations in (24) and then substituting values ofm1,m2,m3, . . . ,m6

after simplification it is obtained as

(1 + α− β)
[

(1 + α− β)2 − 2ab
][

2(1 + α− β)2 − ab
]

= 0. (25)

(25) implies that characteristic equation (24) has a purelyimaginary rootiω if

(1 + α− β) = 0 or (1 + α− β)2 = 2ab or (1 + α− β)2 =
ab

2
.

To study the existence of Hopf-bifurcating periodic solution first let us assume
0 < 2ab < 3α.

Case 1.(1 + α − β) = 0. Thenm1 = m3 = m5 = 0, m2 = 3α− 2ab > 0. Therefore
characteristic equation (23) reduces to

λ6 +m2λ
4 +m4λ

2 +m6 = 0, m2,m4,m6 > 0. (26)

Applying Descarte’s rule of sign and relation between rootsand coefficients of a polyno-
mial it can be concluded that apart from two purely imaginaryroots other roots of (23)
can not have real negative part.

Therefore in this case there is no possibility of Hopf-bifurcation.

Case 2. (1 + α − β)2 = 2ab. Herem1,m2,m3, . . . ,m6 > 0 if (1 + α − β) > 0.
Now applying Descarte’s rule of sign and relation between roots and coefficients of a
polynomial it can be concluded that (23) has two purely imaginary roots and other four
roots have real negative part.

Now (1+α−β)2 = 2ab ⇒ α = (β−1)+
√

2ab = α1 (say) (α = (β−1)−
√

2ab
is neglected as(1 + α− β) > 0).

As before we have assumedα > 2ab
3 thereforeα1 > 2ab

3 ⇒ (β − 1) >√
2ab(

√
2ab
3 − 1).

At α = α1, if ±iω1 is a pair of purely imaginary roots of characteristic equation (23)
then from (24) we get

ω2
1 =

[

m5m1m2 −m5m3 −m2
1m6

m1m5 −m2
1m4 +m1m2m3 −m2

3

]

α=α1

=
12α2

1(1+α1−β)2[2(1+α1−β)2−ab]
4(1+α1−β)2[(1+α1−β)2+3α1−2ab][2(1+α1−β)2−ab] = α1. (27)

Differentiating equation (23) with respect toα implicitly at α = α1 that is atλ = iω1 we
get ( dλ

dα
)α=α1

= −4abα1(1+iω1)
−8iabα1ω1

(substitutingω2
1 = α1 and (1 + α1 − β)2 = 2ab).

ThereforeRe( dλ
dα

)α=α1
= 1

2 6= 0. Therefore all the sufficient conditions of Hopf-
bifurcation [38–40] are satisfied.

Case 3.2(1 +α− β)2 = ab ⇒ α = (β− 1)+
√

ab
2 = α2 (say) ([α = (β− 1)−

√

ab
2

is neglected as(1 + α− β) > 0).
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Let atα = α2, ±iω2 is a pair of purely imaginary roots of characteristic equation
(23) then from (24) we get

ω2
2 =

[

m5m1m2 −m5m3 −m2
1m6

m1m5 −m2
1m4 +m1m2m3 −m2

3

]

α=α2

=
12α2

2(1 + α2 − β)2[2(1 + α2 − β)2 − ab]

4(1 + α2 − β)2[(1 + α2 − β)2 + 3α2 − 2ab][2(1 + α2 − β)2 − ab]

=
0

0
, as 2(1 + α2 − β)2 − ab = 0.

As in this case value ofω2 is indeterminate, characteristic equation (23) can have no
purely imaginary root±iω2 atα = α2.

So there is no possibility of Hopf-bifuircation.
Hence we have the following theorem:

Theorem 3. If 0 < 2ab < 3α, (1 + α − β)2 = 2ab, β − 1 >
√

2ab(
√

2ab
3 − 1), then

Hopf bifurcation occurs atα = α1 = (β − 1) +
√

2ab.

5 Direction, period and stability of Hopf-bifurcating peri odic
solution

In the previous section we obtained the condition for Hopf Bifurcation to occure at the
critical valueα = α1. In this section we are interested to determine the stability and
direction of the periodic solutions bifurcating from the equilibrium (0, 0, 0) following the
idea of the Normal form and the centre manifold theory [39].

The nonlinear system (20) can be expanded into first second and higher order terms
near origin and then we have the following matrix form.

dy

dt
= Ly(t) +

0
∫

−∞

F (−s)y(t+ s) ds+H(s) (28)

where

L =





−1 + β b b
a −1 + β 0
a 0 −1 + β



 , (29)

H(y) =





























β(2)[y2
1(t) −

∫ 0

−∞ F (−s)y2
1(t+ s) ds]

+b(2)[y2
2(t) −

∫ 0

−∞ F (−s)y2
2(t+ s) ds]

+b(2)[y2
3(t) −

∫ 0

−∞ β(2)[y2
1(t)F (−s)y2

3(t+ s) ds] + . . .

a(2)[y2
1(t) −

∫ 0

−∞ F (−s)y2
1(t+ s) ds]

+β(2)[y2
2(t) −

∫ 0

−∞ F (−s)y2
2(t+ s) ds] + . . .

a(2)[y2
1(t) −

∫ 0

−∞ F (−s)y2
1(t+ s) ds]

+β(2)[y2
3(t) −

∫ 0

−∞ F (−s)y2
3(t+ s) ds] + . . .





























(30)
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where

β(2) =
β′f ′′(0)

2
, a(2) =

a′f ′′(0)

2
, b(2) =

b′f ′′(0)

2
. (31)

For convenience we rewrite the system (28) into an operator form:

ẏt = Aµyt +Ryt (32)

wherey = (y1, y2, y3)
T , yt = y(t+ θ), θ ∈ (−∞, 0); µ = α− α1.

The operatorsA andR are defined as

Aµφ(θ) =



















dφ(θ)

dθ
, if θ ∈ (−∞, 0),

Lφ(θ) +

0
∫

−∞

K(s)φ(s) ds, if θ = 0,
(33)

and

Rφ(θ) =

{

(0, 0, 0)T , if θ ∈ (−∞, 0),

f(φ, σ) = (f1, f2, f3)
T , if θ = 0,

(34)

whereL is defined in (29),K is defined as

K(s) =





−βF (−s) −bF (−s) −bF (−s)
−aF (−s) −βF (−s) 0
−aF (−s) 0 −βF (−s)



 (35)

and

f1 =β(2)

[

φ2
1(0)−

0
∫

−∞

F (−s)φ2
1(s) ds

]

+b(2)

[

φ2
2(0)−

0
∫

−∞

F (−s)φ2
2(s) ds

]

+b(2)

[

φ2
3(0)−

0
∫

−∞

F (−s)φ2
3(s) ds

]

+. . . ,

f2 =a(2)

[

φ2
1(0)−

0
∫

−∞

F (−s)φ2
1(s) ds

]

+β(2)

[

φ2
2(0)−

0
∫

−∞

F (−s)φ2
2(s) ds

]

+. . . ,

f3 =a(2)

[

φ2
1(0)−

0
∫

−∞

F (−s)φ2
1(s) ds

]

+β(2)

[

φ2
3(0)−

0
∫

−∞

F (−s)φ2
3(s) ds

]

+. . . .

(36)

Let us define an adjoint operatorA∗ of A as

A∗ψ(δ) =



















−dψ(δ)

dδ
, if δ ∈ (0,∞),

LTψ(0) +

0
∫

−∞

KT (s)ψ(−s) ds, if δ = 0,
(37)

449



P. D. Gupta, N. C. Majee, A. B. Roy

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄T (0)φ(0) −
0
∫

θ=−∞

θ
∫

ξ=0

ψ̄T (ξ − θ)K(θ)φ(ξ) dξ dθ (38)

whereLT ,KT , ψ̄T are the transpose ofL,K, ψ̄ respectively. SinceA andA∗ are adjoint
operators, if±iω0 are eigen values ofA, then they are also eigen values ofA∗. Let q(θ)
be the eigen vector ofA0 associated with the eigenvalueiω0

=⇒ A(0)q(θ) = iω0q(θ).

This givesq(θ) =





q1
1
1



 eiω0θ where

q1 =
(iω0 + 1)(α+ iω0) − βiω0

iaω0
. (39)

Similarly it can be verified thatq∗(δ)is the eigen vector ofA∗ corresponding to−iω0

where

q∗(δ) = (q′1, 1, 1)e−iω0δ = D(q∗1 , 1, 1)T eiω0δ,

q∗1 =
(1 − iω0)(α− iω0) + βiω0

−iaω0
.

(40)

D̄ can be calculated from the relations< q∗(s), q(θ) >= 1 and< q∗(s), q̄(θ) >= 0.
Now we first compute the coordinates describing the center manifold C0 atµ = 0.

Let yt be the solution of (22) atµ = 0.
Let us define

z(t) = 〈q∗, yt〉 (41)

and

W (t, θ) = W (z(t), z̄(t), θ) (42)

= yt(θ) − z(t)q(θ) − z̄(t)q̄(θ)

= yt(θ) − 2 Re z(t)q(θ). (43)

On the centre manifoldC0 we have

W (t, θ)=W (z, z̄, θ)=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+W30(θ)

z3

6
+. . . (44)

wherez andz̄ are local coordinates forC0 in the direction ofq∗ andq̄∗ respectively.W
is real ifXt is real. We shall deal with real solutions only. Now for any solution yt ∈ C0
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of (22)

ż(t) = iω0z(t) +
〈

q̄∗(0), R
(

0,W (z, z̄, θ) + 2Re{zq(0)}
)〉

= iω0z(t) + q̄∗(0)R
(

W (z, z̄, 0) + 2Re{zq(0)}
)

= iω0z(t) + q̄∗(0)R0(z, z̄) (45)

= iω0z(t) + g(z, z̄) (46)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ . . . . (47)

By comparing the coefficients in the two sides of (46) and (47)we have

g20
2

= D̄

[

q̄∗1q
2
1β

(2) + 2b(2)
(

1 − α

α+ 2iω0

)

+ 2q21a
(2) + β(2)

(

1 − α

α+ 2iω0

)]

,

g02
2

= D̄

[

q̄∗1 q̄
2
1β

(2) + 2b(2)
(

1 − α

α+ 2iω0

)

+ 2q̄21a
(2) + β(2)

(

1 − α

α+ 2iω0

)]

,

g11 = 0,

g21
2

= D̄

[

q̄∗1

{

β(2)
(

W
(1)
20 (0)q̄1 + 2W

(1)
11 (0)q1

)

+ 2b(2)
(

W
(2)
20 (0) + 2W

(2)
11 (0)

)

− β(2)

0
∫

−∞

F (−s)
(

W
(1)
20 (s)q̄1e

−iω0s + 2W
(1)
11 (s)q1e

iω0s
)

ds

− 2b(2)
0
∫

−∞

F (−s)
(

W
(2)
20 (s)e−iω0s + 2W

(2)
11 (s)eiω0s

)

ds

+ 3
(

β(3)q21 q̄1 + 2b(3)
)

(

1 − α

α+ iω0

)

}

+

{

2a(2)
(

W
(1)
20 (0)q̄1 + 2W

(1)
11 (0)q1

)

+ β(2)
(

W
(2)
20 (0) + 2W

(2)
11 (0)

)

− 2a(2)

0
∫

−∞

F (−s)
(

W
(1)
20 (s)q̄1e

−iω0s + 2W
(1)
11 (s)q1e

iω0s
)

ds

− b(2)
0
∫

−∞

F (−s)
(

W
(2)
20 (s)e−iω0s + 2W

(2)
11 (s)e−iω0s

)

ds

+ 3
(

a(3)q21 q̄1 + b(3)
)

(

1 − α

α+ iω0

)

}]

.

(48)
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In order to determineg21, we need to computeW20 andW11 where W20(θ) =

(W
(1)
20 (θ),W

(2)
20 (θ),W

(3)
20 (θ))T and W11(θ) = (W

(1)
11 (θ),W

(2)
11 (θ),W

(3)
11 (θ))T .

Now we have

Ẇ = ẏt − żq − ˙̄zq̄

=

{

A0W − 2Re q̄∗(0)R0q(θ), θ ∈ (−∞, 0),

A0W − 2Re q̄∗(0)R0q(θ) +R0, θ = 0,

= AW +H(z, z̄, θ) (49)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+H30(θ)

z3

6
+ . . . . (50)

On the centre manifoldC0 near the origin

Ẇ = Wz ż +Wz̄ ˙̄z. (51)

From (49), (50) and (51) we get

(A− 2iω0)W20(θ) = −H20(θ), (52)

AW11(θ) = −H11(θ). (53)

Also

H20 = −g20q(θ) − ḡ20q̄(θ), (54)

H11 = g11q(θ) − ḡ11q̄(θ). (55)

From (52) and (54) and definition ofA

Ẇ20(θ) = 2iω0W20(θ) + g20q(0)eiω0θ + ḡ20q̄(0)e−iω0θ. (56)

Similarly from (53) and (55)

Ẇ11(θ) = g11q(0)eiω0θ − ḡ11q̄(0)e−iω0θ (57)

W20(θ) =
ig20
ω0

q(0)eiω0θ +
iḡ02
3ω0

q̄(0)e−iω0θ +K1e
2iω0θ,

=⇒
W11(θ) =

−ig11
ω0

q(0)eiω0θ +
ḡ11
ω0

q̄(0)e−iω0θ +K2

whereK1 andK2 are both three dimensional vectors that can be determined bysetting
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θ = 0 in H .

K1 =









−1+β−2iω0 b b
a −1+β−2iω0 0
a 0 −1+β−2iω0



 − α

α+ 2iω0





β b b
a β 0
a 0 β









−1

×









−1+β−2iω0 b b
a −1+β−2iω0 0
a 0 −1+β−2iω0





(

g20
iω0

q(0) +
ḡ02
iω0

q̄(0)

)

−





β b b
a β 0
a 0 β





(

g20
iω0

q(0)
α

α+ iω0
+
ḡ02
iω0

q̄(0)
α

α− iω0
−H20

)



 ,

K2 =





−1 0 0
0 −1 0
0 0 −1





−1

×



−H11(0) −





−1 + β b b
a −1 + β 0
a 0 −1 + β





(

− ig11
ω0

q(0) +
iḡ11
ω0

q̄(0)

)

+





β b b
a β 0
a 0 β





(

− ig11
ω0

q(0)
α

α+ iω0
+
iḡ11
ω0

q̄(0)
α

α− iω0

)





where

H20 = (H
(1)
20 , H

(2)
20 , H

(3)
20 )T , H11 = (H

(1)
11 , H

(2)
11 , H

(3)
11 )T ,

q(0) = (q(1)(0), q(2)(0), q(3)(0))T , q̄(0) = (q̄(1)(0), q̄(2)(0), q̄(3)(0))T .

Thus we can calculate the following quantities

E1(0) =
i

2ω0

(

g20g11 − 2|g11|2 −
1

3
|g02|2

)

+
1

2
g21,

µ2 = − ReE1(0)

Reλ′(α1)
,

T2 = − 1

ω0

[

ImE1(0) + µ2 Imλ′(α1)
]

,

b2 = 2 ReE1(0).

Then from conclusion of [39] we obtain the following result:

Theorem 4. (i) The direction of the Hopf-bifurcating periodic solution isdetermined by

µ(σ) = µ2σ
2 + . . . .

Whenµ2 > 0 (< 0), the Hopf-bifurcation is super critical (subcritical) andthe
bifurcating periodic solution exits forα > α0 (< α0).
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(ii) The period of the bifurcating periodic solution can be estimated by

T (σ) =
2π

ω0

(

1 + T2σ
2 + . . .

)

.

The period increases (decreases) ifT2 > 0 (< 0).

(iii) The stability of the bifurcating periodic solution is determined by

B(σ) = b2σ
2 + . . . .

Whenb2 > 0 (< 0) the bifurcating periodic solution is unstable (stable).

6 Global Hopf-bifurcation

In this section we shall consider the global existence of Hopf-bifurcating periodic solution
that is continuation of the bifurcating periodic solutionsas the bifurcation parameter
α increases and varies over the interval(α1,∞) assuming that the Hopf-bifurcation is
supercritical.This phenomenon will be proved by using the technique of Alexander and
Auchmuty [41].

Let P 1 denote the space of allx : R → R
6 which are periodic with period2π. The

spaceP 1 is a Banach space with the norm

‖x‖(1)
∞ = max

1≤i≤6
max

0≤t≤2π

[

|xi(t)| +
∣

∣

∣

∣

dxi(t)

dt

∣

∣

∣

∣

]

.

Let Λ denote the open interval(0,∞). LetL(P 1) denote the set of all continuous linear
maps ofP 1 into itself with the induced norm topology. LetF : P 1 × Λ → P 1 be
continuous and let us consider the problem of finding the solutions (y, α, ω) ∈ P 1 ×
Λ × (0,∞) of the equation

ω
dy

dt
= F (y, α). (58)

If y(t) is a solution of equation (58), and ifx(t) = y(ωt), thenx(t) is a solution of

dx

dt
= F (x, α) (59)

wherex is periodic with periodT = 2π/ω.
Now let

y4(t) =

∞
∫

0

αeαs tanh[y1(t+ s)] ds,

y5(t) =

∞
∫

0

αeαs tanh[y2(t+ s)] ds,
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y6(t) =

∞
∫

0

αeαs tanh[y3(t+ s)] ds.

Then (22) can be written as

dy1
dt

=−y1(t)+β′ tanh[y1]+b
′ tanh[y2]+b

′ tanh[y3]−β′[y4]−b′[y5]−b′[y6],
dy2
dt

=−y2(t) + a′ tanh[y1]+β
′ tanh[y2]+−a′[y4]−β′[y5],

dy3
dt

=−y3(t)+a′ tanh[y1]+β
′ tanh[y3]+−a′[y4]−β′[y6],

dy4
dt

=α(tanh[y1]−y4),
dy5
dt

=α(tanh[y2]−y5),
dy6
dt

=α(tanh[y3]−y6).

(60)

The system of integro differential equations (22) is equivalent to system (60) of ordinary
differential equations [42]. Now if we denote the system (60) by

dY

dt
= F1(Y ), (61)

then (61) can be rewritten as

ω
dZ

dt
= A(α)Z +R(Z,α) (62)

whereA(α) is variational matrix of (60) about trivial equilibrium(0, 0, 0, 0, 0, 0) and
R(Z,α) = F1(Z,α) −A(α)Z.

Now theorem which is used to prove global existence of Hopf-bifurcating prriodic
solution is stated under (proof is in [41]).

Theorem 5. LetF be a Frechet differentiable map ofP 1 × Λ intoP 1. There is a global
bifurcation of2π-periodic solutions of equation(58)from a solution(y∗, α0, ω0) provided

(i) A(α) ∈ L(P 1) for α ∈ Λ. The mappingα → A(α) is continuous and0 is not in
the spectrum ofA(α0).

(ii) The number of linearly independent solutions inP 1 of ω0
dW
dt

= A(α)W is finite
and congruent to2 mod 4.

(iii) There are positiveδ andε such that ifλ(α) is in the spectrum ofA(α) andReλ(α) =
P (β), then|P (α)| > ε|α− α0| for |α− α0| < δ.
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We will verify the above sufficient conditions of global Hopf-bifurcation for the
system (62). We consider the linearized system

ω0
dW

dt
= A(α)W (63)

and let us suppose that it has a periodic solution of period2π; let it be

W =
∞
∑

k=−∞
dke

ikt.

The coefficientsdk are solutions of the linear systemω0ikdk = A(α)dk , k = 0,
±1,±2, . . .. Nontrivial periodic solutions of period2π exist iff ikω0is an eigen value
of A(α). That isikω0 is a solution of equation (24). From previous discussion it is clear
that non-trivial periodic solutions exist only fork = ±1 at α = α1, and hence there is
only one periodic solution of period2π for the linearized system (63). It has been shown
that

Re

(

dλ

dα

)

α=α1

> 0.

It follows that ifP (α) =Re[λ(α)] then

lim
α→α1

α(β) − α(β1)

β − β1
> 0

which implies that there existsε > 0, δ > 0 such that

=⇒
∣

∣

∣

∣

P (α) − P (α1)

α− α1

∣

∣

∣

∣

> ε if |α− α1| < δ,

=⇒ |P (α)| > ε|α− α1| for |α− α1| < δ (as P (α1) = 0).

(64)

AlsoA(α) is continuous inα. Thus all the conditions of Theorem 5 are satisfied. There-
fore there is a global bifurcation of2π periodic solutions from the point(0, α1, ω1).

Thus the global Hopf-bifurcation has been established in a product space of the phase
space,parameter space and the frequency space.

7 Numerical simulation

In this section using the Matlab software we carry out the numerical simulation on a
particular form of system (1). Letf(x) ≡ tanh(x); c1 = c2 = c3 = 0; γ = 1. Then (1)
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takes the form

dx1

dt
= −x1(t) + β′tanh

[

x1(t) −
∞
∫

0

F (s)x1(t− s) ds

]

+ b′ tanh

[

x2(t) −
∞
∫

0

F (s)x2(t− s) ds

]

+ b′ tanh

[

x3(t) −
∞
∫

0

F (s)x3(t− s) ds

]

,

dx2

dt
= −x2(t) + a′ tanh

[

x1(t) −
∞
∫

0

F (s)x1(t− s) ds

]

+ β′ tanh

[

x2(t) −
∞
∫

0

F (s)x2(t− s) ds

]

,

dx3

dt
= −x3(t) + a′ tanh

[

x1(t) −
∞
∫

0

F (s)x1(t− s) ds

]

+ β′ tanh

[

x3(t) −
∞
∫

0

F (s)x3(t− s) ds

]

.

(65)

Now first we takeα = 1, β = 1, a = 1.5, b = −1.5. These values satisfy the conditions
of Theorem 2 and with these values we get Fig. 2. It shows that in this case origin is
locally asymptotically stable.

Fig. 2. a = 1.5, b = −1.5, α = 1, β = 1.
Here origin is locally asymptotically stable.
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Then to verify Theorem 3 we chooseβ = 1, a = 1, b = 0.5. These parametric
values give the critical value ofα asα = 1. Then with these above mentioned prescribed
values of parameters we get Fig. 3, Fig. 4 and Fig. 5

Fig. 3. a=1, b=0.5, α=0.8 < 1, β =1.
Here origin is locally asymptotically stable.

Fig. 4. a = 1, b = 0.5, α = 1, β = 1.
A periodic solution exists near origin.

Fig. 5. a=1, b=0.5, α=1.2 > 1, β =1.
A periodic solution exists near origin.

8 Conclusion

In this paper we have analyzed a BAM neural network model composed of three neurons
with distributed delay. It is a generalization of the model studied in [8, 9]. To our
knowledge, the stability analysis and bifurcation of a bidirectional associate memorial
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network with self-connection have not been investigated inliterature. This paper is an
attempt to do this. As the distributed delay can become a discrete delay when the delay
kernel is a delta function at a certain time, a neural networkmodel with distributed delay
is more general than that with discrete delay.

In this paper in Theorem 1 sufficient condition for existenceof unique equilibrium
has been studied. In Theorem 2 we have obtained the criteria under which the trivial
equilibrium remains locally asymptotically stable. In Theorem 3 condition for existence
of Hopf-bifurcating periodic solution about origin has been obtained. In Theorem 4 we
have studied the direction, period and stability of such Hopf-bifurcating periodic solution.
Then the global stability of that Hopf-bifurcating periodic solution has been studied.
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