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Abstract. Simulations are presented for a reaction-diffusion systéthin a thin layer
containing an enzyme, fed with a substrate from the suriognélectrolyte. The
chemical term is of the nonlinear Michaelis-Menten type egglires a technique such
as Newton iteration for solution. It is shown that approxiimg the nonlinear chemical
term in these systems by a linearised form reduces both thwaxy and, in the case
of second-order methods such as Crank-Nicolson, redueegldbal error order from
O(6T?) to O(8T). The first-order methods plain backwards implicit with anichaut
linearisation, and Crank-Nicolson with linearisation ateof O(67") and very similar
in performance, requiring, for a given accuracy target, @ewoof magnitude more CPU
time than the efficient methods backward implicit with egtstation and Crank-Nicolson,
both with Newton iteration to handle the nonlinearity. $eatate computations agree
with expectations, tending to the known solutions for lingtcases. The Crank-Nicolson
method shows some concentration oscillations close touter tayer boundary but this
does not propagate to the inner boundary at the electroaebdtkward implicit methods
do not result in such oscillations and if concentration pesfiare of interest, may be
preferred.

Keywords: numerical simulation, computational electrochemistaaation-diffusion,
amperometric sensor.

Introduction

This paper describes algorithms for the simulation of cheanperometry at a thin en-
zyme layer on an electrode. The thin layer contains an enzlgateconverts a substrate

*This work was partially supported by Lithuanian State Soéerand Studies Foundation, project

No. N-08007.
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S into a product P, the substrate diffusing into the layemfian electrolyte outside the
layer. The product P is electroactive at the electrode ameéldctrode potential is set such
that the resulting current is limited by diffusive transpafirP to the electrode, setting the
boundary condition that the concentration of P is zero attketrode. The electrolyte

outside the enzyme layer is well stirred and contains S atdautk concentration, this

being the boundary concentration at the outer layer surfade electrolyte does not

initially contain P and is assumed to have a much greatenwelilhan the layer, ensuring
that the concentration of P remains virtually at zero; thithie other boundary condition
for P at the outer layer surface. The system tends towardsaal\ststate. There are
analytical solutions for the current for some parameteitsirbut no general solution

exists, which is why a simulation is needed.

Enzyme kinetics was first described by Michaelis and Memntel9il3 [1] and their
equation was confirmed by Briggs and Haldane in 1925 [2]. Timyme electrode
was suggested by Updike and Hicks in 1967 for the first time fi@Jowed by other
early works [4-7]. These papers attempted to solve the nratties of the relevant
kinetics. The electrodes can either be run in the amperametode, in which the
product is electrolysed at the electrode, or in the potemtiic mode, where no current
is drawn at the electrode and the electrode potential is tsedeasure the product
concentration. A useful review was written in 1990 by Scheibter [8], who described
mathematical and numerical approaches to solving theikiet these electrodes. Kulys
et al. presented some steady state solutions for the amp&iomode of these electrodes
[9], which are used for comparison in the present paper. Sumeerical solutions were
presented for the amperometric and potentiometric cageslpPl, and most recently in
2007 [13, 14], where the nonlinear chemical homogeneoussterere approximated by
linearised forms. In this paper, we present further algarg of greater efficiency, not
avoiding the nonlinearity.

2 Theory
The chemical reactions in the layer are

S+E=ES—E+P, 1)
where E refers to the enzyme, ES is a transitory complex asgumbe at a steady
concentration, and P is the product [15]. This is a catalgaction, the enzyme itself
not being used up.

Let the layer be of thicknesd along the coordinate. The partial differential
equations describing the kinetics of the two substancesi ®avithin the layer are [8,14]

s 0%s s

—=D;— -V, —— 2
5 S Fm2 VmerKM’ (2a)
op 9%p s

—=D,—+V,,————, 0 d, t>0, 2b
ot p8$2+ s+ Ky ST - ( )
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in which s andp are the concentrations of S and P, respectivelythe time variabley
the coordinate across the layér, and D, are the two diffusion coefficients;,, is the
maximal rate of the enzymatic reaction, alid, is the Michaelis constant. The chemical
reaction term is the Michaelis-Menten term, and gives gerbblems in the simulation,
as it is nonlinear. The bulk concentration of Ssjs Initially, there is neither S nor P
within the enzyme layer. S diffuses into that layer and isveoted to P there. Also,
because the bulk volume is assumed large and well stirreck th never appreciable P in
the bulk outside the enzyme layer.

Initial and boundary conditions are

t=0 0<zx<d: s=0, p=0, 3)
0

t>0, 2=0: Z_0 p=o, (42)
Ox

t>0, v=d: s=s9, p=0. (4b)

P is thus held at zero concentrations at both ends of the, ldygrwill attain finite
concentrations within it. (In potentiometric mode, thetlagndition at the electrode
becomes the zero-flux conditian,= 0: dp/dx = 0, and as here; = d: p = 0).

It is convenient to normalise the variables,
Dt S P D,

X
X==, T= S==, P=- =L 5
d’ a2 50 ) ©)

This leads to a dimensionless form of the kinetic equations,

as %S B S (6a)
ar ~ ox2 "Syw
OP 0*pP S
a_T_TW—FMS—M’ 0<X <1, T>0, (Gb)
where we have two new symbols
Vind?
n= D.so and k= KM/S(). (7)
Following Kulys et al. [9], we also define the diffusion modul
Vind?
2 _ m _
= DK = p/k. (8)
The new initial and boundary conditions are
T=0,0<X<1: S=0, P=0, 9)
oS
T X=0: —=0, P= 1
>0, 0 X 0, 0, (10a)
T>0 X=1: S=1, P=0. (10b)
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The current density occuring at the electrode due to reduction or oxidation of P i
given by

0
g=nkFD ap

poe| CED

=0

wheren is the number of electrons transferred alids the Faraday constant. This
becomes the dimensionless current denSitgimply given by

9P

G=5%|. .

(12)

The system tends towards a steady state at long tiifies (1). There are analytical
solutions for the steady state current density [9] only fier éxtreme cases ef< 1,

Go = /2, (13)
andrk > 1,
1
o =1- . 14
G cosho (14)

These can be used for comparison with simulated values.
In what follows, both steady state and chronoamperomettigtions will be de-
monstrated by digital simulation [16].

3 Discretisation and simulation methods

The domair) < X < 1is divided into/N equal intervalg? and the time dependent si-
mulations proceed by steps of length. The notation used is that we have concentration
samplesS;, P;, i =0,...,N atthe pointsX; =iH, i =0,...,N (X0 =0, Xy = 1),

and that the plain symbol$; and P; correspond to present, known values at tihand

the symbolsS! and P/ are the next values, d&t+ 7', to be computed. It is the aim of this
work to achieve global concentration and current error®(f7'?, H?). Second order
with respect toH is easily achieved by a central difference approximatioth&spatial
second derivative, and will not be included in order statetméereafter, as the focus is
on the order with respect &". Achievement of second order error is critically dependent
on how the nonlinear term in (6) is discretised.

The system (6) has one convenient property. Although it isupted pair of equa-
tions, only the second equation, f&Y, depends on the other. Thus we can compute all
S values first, handling the nonlinearity in some manner, &ed tompute alP values,
where the nonlinearity is now simply a function of known ofttlanewsS values.

3.1 Steady state

In order to compute the steady state, one can use the timehingmethod [14], driving
the simulation to times so long that no further change is dofthis is indeed a good
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check on the correctness of the simulations, but an easitrogéo achieve steady state
is to set the time derivatives on the left-hand side of (6a) @fb) to zero, discretise the
right-hand side and solve. F&¥, the discrete expression at the palitbecomes
Si—1— 28+ Siq1 S; .

0= - =1,...,N—1. 15

At the electrode surface, we invoke the zero flux conditica).(4n order to achieve
a global error ofO(H?) here, a three-point forward approximation is used (g€8)
in [16, p. 281)),

—3Sp + 451 — Sy = 0, (16)
and at; = N, condition (10b),
Sy=1. 17)

These equations now form a system of nonlinear equatiorssolved, which we express
as

F=0 (18)
with
Fy = =350 + 451 — Sq,
b S0=281+8 S
1 — H2 /’LSI +I€’
: Si—1— 285+ Siq1 S
F; = - 19
H? M;S’i—‘r,"ﬁ7 (19)
P _ SN—2 —25N_1+ 58 Sn-1
N—-1 H2 IU/SN_1+I€7
Fy =Sy — 1.

Newton’s method [17] suggests itself here, with an initiaégs at the vect® = 0, and
computing at each Newton iteration a correction veé®given as the solution of

J5S = —F, (20)

in whichJ is the Jacobian matrix &. This is an iterative process, and generally, only 3—4
iterations are required for convergence. This was set tadhelition that the Euclidian
norm||8S|| < 1078,

3.2 Chronoamperometry

For time-marching problems, the left-hand side of (6a) &g (hust be included in the
simulation. This is always approximated here as
0Z; Zl—7Z;
P 21
oT or (1)
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whereZ stands for eithes or P. This approximation takes different orders, depending
on which position in the intervalT" it refers to. Second order errors with respect1o
are achieved if (21) refers to the midpoint of the time in&drthis is the case if Crank-
Nicolson is used [18], where the right-hand sides of theigladifferential equations
are also discretised referred to the midpoint (see belovwr tike explicit simulation
method [19], the approximation is a forward difference, rdhe fully implicit method
(backward implicit Bl or Laasonen method [20]) it becomesakward difference, both
producing global errors aD(4T) (see also below).

We now outline several possible methods of solution. In trevipus works [13,
14], the nonlinearity was avoided by an approximation. If e seen that this leads
to an order reduction t®(d7"), even for methods that otherwise achieve global errors
of O(67%). Nonlinearities often occur in connection with homogereduwemical terms
in electrochemical simulation problems, and in many ca$és pp. 135-136] second-
order linear approximations can be found. This is not pdsdilere, so we must cope
with the nonlinearity in some manner. We explore the use efithckward difference
or Laasonen method [20] (here called Bl) and of the CrankeNan method [18], here
called CN. The explicit method [19] is not used here, as itdtability limitations, nor
is hopscotch [21, 22] used, although it is a stable methochuse of the “propagational
inadequacy” problem, pointed out by Feldberg [23].

In all cases below, use is made of the definition

\=0T/H? (22)
for convenience, and we assume-= 1, that is, the two species S and P share the same
diffusion coefficient.
3.3 Method BI1, backward implicit with linearisation
This is the use of the Bl or Laasonen method, but avoids théneanity, as was done

in [13]. The discretisations for S are

— 38, +48] — S, =0,

1 S’

X(Si —S1) =85 —251 + 55— uHQS’l——il—m’

l(.Sf —Si)=8_y —28/+ 5/, — nH? S (23)
Y 7 1 1—1 7 141 Sz +I€7

l(.gf —Sw 1):5’ — 924" + 9 —MHQL

N PN-1 - N-2 N-1 N Syv_1tr

Sy = 1.

Note that the nonlinearity has been removed. Bl is a firseordethod, so this might
not matter. It will be seen in Section 5 that it works as wellBd2 as described be-
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low. The system can be rearranged in an obvious manner anedsosing the Thomas
algorithm [16, 24, 25]. The boundary val$g is computed using the “u-v” mechanism
[16, pp.87—89], which is simply a convenient way to solvesh®ll linear system com-
prised of the boundary condition equation (the first in (28pether with the next two
equations, after they have been reduced to two unknownskgatie first (backward)
Thomas sweep (for details, see [16, pp. 86—89]). Having etetpall S values, a similar
system is written forP,

R):Ov

1 / / / / 2 Si
X(P1—P1):P()_2P1+P2+HH [

1. / / / / 2 Sz/
X(Pi_Pi):P'i—l_QPi+P'i+1+MH S (24)

1 S/
—(Ply_,—Px_1) =Py _, — 2P\ P! H2_—N-L
)\( N-—1 N 1) N—2 N_1 TN+ Sv1t R

where both the old; and the news; values are used. Again, the Thomas algorithm is
used. LastlyG is computed using a three-point current approximationyknto have
errors ofO(H?) [16, 26].

3.4 Method BI2, backward implicit without linearisation

With this method, the nonlinearity is not removed. Thenitheequation in (26) becomes

Si
(S)—8;)=8]_y—2S/+ S/, —puH? i (25)

> =

and similarly for P, where the nonlinear term is positive. Here, the Thomasrilgo
cannot be used. There are two main possibilities.

The nonlinear system can be solved using the Rosenbrocloth§2f], described
for electrochemical digital simulations by Bieniasz [28ldadescribed in detail in [16,
pp.167-172]. This evaluates concentrations at the next figwvel without iteration, and
will handle nonlinearities without problems. There areesal/variants, of different error
orders and unconditional stability.

Another way to handle the nonlinearity is, at each step, &the Newton method
as was done above for the steady state computation, corgputinrrection set in each
iteration. This is necessary only &, after which the known new valugs can be used
for the computation of?, again using the Thomas algorithm.

For S, the system of equations like (23) but using (25), is cast@torm similar to
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(19), solving for the correction vector. The system coroesfing to (20) is the following:

[—3 4 -1 [ 6So ] [ —bo |
2
L a—s 1 851 —by
ey =] 26
1 alf(sqﬁ_ﬂ)z 1 0.S; —b; ( )
o : :
L 01—z 0Sn-1] [ —bn-1]

where

a; = —(2+1/)\),

bp = =350 + 451 — Sa,
bi=—S8;/A (1<i<N-2),
by_1 = —Si/A— Sy.

(27)

The system is solved iteratively undéis converges, each time correcting the ve&dyy
this amount. Since changes from one time step to the nexatrerrsmall, in most cases
only 2-3 iterations are required in order to achieve corerecg. Then one solves for
using the equations as in (24), except that the chemical hemncontains only terms in
(now known)S..

3.5 Method BI3, backward implicit without linearisation and using extrapolation

The Bl method is a first-order method with respect to timerirgks. It has the ad-
vantage of a smooth error response in cases of a sharp istiéip] such as we have
in the present system, where concentratigr{or in dimensionless terms, unity) is
applied at a boundary 8t = 0. We shall show below that Crank-Nicolson reacts with
oscillations to such sharp transients; this can be dampasevaral ways [29] but it is
often more convenient to use Bl with extrapolation [30, 31fjch preserves the smooth
error response and increases the order. Extrapolationntragluiced to electrochemical
simulations by Strutwolf and Schoeller [32]. In the secamder variant, each step is first
taken with the full time intervadT’, and the new concentrations stored. This is denoted
as the operatiorl,;. Then the calculation is repeated using two steps of lengi2,
denoted ad.2, and the resulting concentrations combined with those fitwerfirst step
according to

Z = (2L3 - L,)Z (28)

(Z again denotes eithed or P). This eliminates the first-order error term, leaving the
term inO(67%). Method BI2 was modified in this sense.
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3.6 Method CN1, Crank-Nicolson with linearisation

The essence of CN is to match the time derivative approxonateft-hand side of (6a)
and (6b), with right-hand side terms referred to the midpaaross the time step. This
makes the time derivative approximation a central secadéralifference. CN produces
global errors 0f0(67?%). As mentioned above, CN has the problem of reacting to sharp
changes in an oscillatory manner, which can be a disadvantage oscillations can
be damped [29] with some programming effort. In the presasecas will be shown
below, there are oscillations in concentrations, but theydt appear to matter, as they
do not propagate to the electrode, where the current is ctadpli is possible that some
parameter choices could produce oscillations even onittésod the enzyme layer and if
this happens, then damping techniques can be used.

In [14], CN1 was used, discretising at tfth point for S as

2 .

X(Szl — Sz) = 52{71 - 25{ + SZ(JFI + S;-1 —2S; + S’H—l — 2,LLH2 SZSjF P (29)
The discrete expressions for the boundary conditiods at 0 are, in the CN manner,

—38) +485] — S5 —3S9+45; — S, =0 (30)

and the condition ak' = 1 is the same as that for Bl1, Section 3.3. The system is easily
solved by the Thomas algorithm. Then we have for P, atttheoint,

2

5!
NS

S+ k

(31)
now using the new values fat. Again, this is readily solved.

3.7 Method CN2, Crank-Nicolson without linearisation

Using the CN idea, a more consistent discretisation is theding. The first and last dis-
crete equations, expressing boundary conditions, are floo€£N1, but the discretisation
at point; becomes

2
X(SZI —8i) =8i_1—25/4+ 5[+ Si—-1— 25+ Sina

S/ S;
— nH? i ). 32
. <S§+/¢+Si+f£) (32)

This is a nonlinear system, and can be solved by the Newtocefdtoe as described
above. ForP, we then have, at poirf

2
(Pl = P) =Py = 2P+ Plyy + Pioy = 2P+ Pipa
S Si
+'LLH2<S(+K+SL'+I€)’ (33)

where now boths andS’ are known.
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4 Estimating error orders

Except at extreme values @f there are no analytical solutions, so that if we wish to
compute error orders, we cannot use known solutions forghimation. However, there
is a way, due to @sterby [33], which does not require exaatesto compare with. In

a given simulation, one first take$ steps of length, with the resultR;. Then the
simulation is repeated usiny/2 steps of lengti2h, with resultR,, followed by a third
using N/4 steps of lengthih, with resultR4. These are combined to produce the factor
q, given by

Ry — R,
L 34
1= R, — R, (34)

and the order is thelm ¢/ In 2. This was carried out in the present work.

5 Results and discussion

Except for the steady state computations, all simulatioesewdriven at equal space
intervals of 0.001, that isv = 1000, which was found to be adequate, and at various
numbers of time interval§l” always tol" = 1.

The computations were carried out under Linux Suse 10.2usie Intel Fortran
90/95 compiler and IEEE 754 standard double precisionngivbughly 16 decimal digit
precision.

The orders were computed by the procedure mentioned abodegra tabulated in
Table 1. We note that there are only two methods, BI3 and Ch&, groduce global
errors of second order, the others all having error®@¥T"), even CN1. Thus it is seen
that eliminating the nonlinearity reduces the error orde!GN.

Table 1. Error orders with respectd@ for the methodsy, = x = 10, N = 1000

Method Order ofSy  Order of G

BI1 1 1
BI2 1 1
BI3 2 2
CN1 1 1
CN2 2 2

Steady state curren€swere computed as described for a range ahd three values
of u, and are shown in Fig. 1. They are all referred to @thgiven in (13) and7, given
in (14). Note the convergence to unity at the respective ehtte « scale.

Errors in the current densities were computed relative toverged current values,
obtained by increasing the number of time steps in a sinmratsing CN2, until there
were no further changes in the value to 8 decimals. The earerexpressed as relative
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errorse, given by

GG,
G

whereG, is the converged current. This had to be computed for anyngdagameter
set(u, k). It was found thatNy = 4096 was sufficient for convergence to 8 decimal
places. The Newton iterations can easily achieve muchrimiterergence than this, and
it is indeedN+ here which limits convergence. The errors are shown in Figh2 figure
reflects the orders from Table 1 by the slopes and itis se¢alttlaree first-order methods
BI1, BI2 and CN1 have very similar errors, CN1 being only gistimprovement on BI1
and BI2. BI2, which accounted for the nonlinearity, mightédeen thought to show
smaller errors than BI1, despite the same order, but did@leiarly, CN2 and BI3 have
the smallest errors and a second-order slope.

(35)

€

0.01 01 1 10 100

Fig. 1. Steady state responses. The numbers show valped b curves converging to
unity at the left-hand edge ate¢/Gy, while those converging to unity at the right-hand

edge aré5 /G
0.1
0.01 ¢ BI1, BI2
N
0.001 | ¢
le-04 + BI3
[
le-05 | CN2
1le-06 ¢
1e-07 |
le-08 Lou : :
10 100 1000
Nt

Fig. 2. Errore vs. Ny for the methods as show\ = 1000, u = k = 10.
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It is of some interest to compare the efficiency of the methimdgrms of CPU time
needed to achieve a target accuracy. We choose the tardét @0Oa relative error of
10~* here, for easy comparison, based on Fig.2. Table 2 showstuits. The two
best methods, BI3 and CN2 are an order of magnitude fasterttteother three. In
practice, such a small error is not needed for comparisdmeperimental data, nor are
the CPU times significant. However, if the simulation methade to be applied to longer
simulations such as linear sweep voltammetry and/or if expntal parameters such as
w1 and x or diffusion coefficients are to be fitted by doing many rument efficiency
becomes important.

Table 2. N+ to 7' = 1 needed and CPU use to achieve a relative erafr10~*

Method Nr CPU/s
Bl1 3000 0.45
BI2 3000 0.86
BI3 50 0.049
CN1 1500 0.22
CN2 40 0.025

It was mentioned above that Crank-Nicolson has an osaijlatesponse to sharp
initial transients. This is the case here, where the ing@iditionS(X = 1) = 1is
applied, all othelS values initially being zero. Normally, the oscillationstlensue result
also in oscillatory currents, but here the sharp transigkeg place at the opposite end
of the enzyme layer from that at which the current is gendratéig. 3 shows a time
development of thé' profile for 50 steps in time witd7" = 0.02, and the oscillations in
S are clearly seen at the outer plane of the layer, slowly danagth time.

Fig. 3. Concentration profile vsX andT" for method CN2. Parameterg:= x = 10,
N =100, 6T = 0.02, Ny = 50.
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It is also clear, however, that these oscillations do nopagate to the electrode,
where the profiles are smooth. This is reflected in the currehich also has a smooth
time response. However, if one is interested in the conaBaltrs themselves, then the
oscillations might not be desirable. In that case, meth@&dlers a similar efficiency
and a smooth response, as seen in Fig. 4.

Fig. 4. Concentration profile vsX andT for method BI3. Parameterg: = x = 10,
N =100, 6T = 0.02, Ny = 50.

6 Conclusions

It is seen that attempting to approximate the nonlinear atenterm by a linear form
reduces both the accuracy and, in the case of second-ordensthods such as Crank-
Nicolson, the order fron©(§72) to O(6T). The first-order methods plain backwards
implicit with and without linearisation, and Crank-Nicols with linearisation all have
global errors ofO(67") and are very similar in performance, requiring, for a giveawa
racy target, an order of magnitude more CPU time than theieitienethods backward
implicit with extrapolation and the Crank-Nicolson, botiilwNewton iteration to handle
the nonlinearity.

Steady state computations agree with expectations, tgtdithe limiting cases for
small and large.

Crank-Nicolson shows some concentration oscillationsecto the outer layer bound-
ary, X = 1, but this does not propagate to the inner boundary at theretksr; so it
may not matter. Backward implicit methods do not result iehsoscillations and if
concentration profiles are of interest, may be preferred.
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