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Abstract. This paper is concerned with a delayed Kaldor-Kalecki rioadr business
cycle model in income. By applying a global Hopf bifurcaticesult due to Wu, the
global existence of periodic solutions is investigatedniédcal examples will be given
in the end, to illustrate our theoretical results.
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1 Introduction and mathematical models

For long time the analysis of Hopf bifurcations phenomeniisiness cycle models has
attracted much attention due to it’s practical significafe=e for example, [1-5]). It has
demonstrated that the existence of a branch of nonconstaiodic solutions identified
a mechanism that gives rise to business cycles in econoniitias. However, due to
the nature of the Hopf bifurcations theory these periodiot&ms are generally local,
whereas business cycle behavior concerns global dynarsées for example, [6-8]).
Therefore, it is an important subject to investigate if rmmstant periodic solutions exist
globally.

For determining the global existence of periodic solutjdhsre exist two methods,
one is based on [9] ejective fixed point argument, the othéaged on [10, 11] purely
topological argument.

In this paper we use a method on the global existence of gersmdutions given
by Wu [11] to study the following delayed Kaldor-Kalecki maldf business cycle (see
[5,12,14,15)):

dy
— =al[l(Y(t),K(t) - S(Y (), K(t))],

dK
== I(Y(t—1),K(t—7)) - 6K(t),
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whereY is the income) is the capital stocky is the adjustment coefficient in the goods
market,d is the depreciation rate of capital stodkis the investment functiorfy is the
saving andr is the time delay needed for new capital to be installed ($pe [

In [12, 2008], we investigated the local Hopf bifurcatiohat is proven to exist as
the delay cross some critical valag In [13, 2009], we established an explicit algorithm
for determining the direction of Hopf bifurcation and thalstity or instability of the
bifurcating branch of periodic solutions using the methpassented by Diekmann et al.
in [16, 1995].

In this paper, we would like to extend the analysis of the llbtizpf bifurcation and
to present some new results concerning global Hopf bifionatf system (1). Also some
numerical simulations are given to illustrate the theaedtanalysis.

2 Local existence of periodic solutions

As in [12], we consider some assumptions on the investmehsaving functions:

I(Y,K)=I1(Y) — 6 K,
and
S(Y,K) =Y,
whered; > 0 andy € (0,1).
Then system (1) becomes:

% = a[I(Y(t) = 51 K(t) — 7Y (1)],

(2)
% —I(Y(t— 7)) — 6K (t — 1) — OK(t).

In the following proposition, we give a sufficient condit®for the existence and
uniqueness of positive equilibriud* of the system (2).
Proposition 1 ([12]). Suppose that
(HO1) There exists a constant > 0 suchthat|I(Y)| <L forall Y e R;
(H02) 1(0) > 0;
(HO3) I'(Y) — v < 22 forall Y € R.

Then there exists a unique equilibriubt = (Y*, K*) of system(2), whereY* is the
positive solution of

I(Y) - @Y =0 3)

and K* is determined by
x _ Vyx
K* = <Y, (4)
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Lety =Y —Y*andk = K — K*. Then by linearizing system (2) arouid*, K*)
we have
d
= a(I'(Y") = 7)y(t) - adik(d), o
‘31_’; — (Y )y(t— 1) — S1k(t — 7) — Sk(L).

The characteristic equation associated to system (5) is
A+ aX 4+ bhexp(—AT) + ¢ + dexp(—AT) = 0, (6)
where

a=86—a(l'(Y*)—7), b=d,
c=—ad(I'(Y*)—7), d=ady.

Theorem 1 ([12]). Let the hypotheses:
* 41

(HL) [I'(Y™) =] < 55,

(H2) I'(Y*) —y < 250,

Then there existsy; > 0 such that, when € [0, 7)) the steady statd’* is locally
asymptotically stable, when > 7y, E* is unstable and when = 7,,, n = 0,1,2,....
Equation(6) has a pair of purely imaginary root&iwg, with

1
BH =-3 [aQ(I'(Y*) — 7)2 +6% - 6%}

+ % [0 (I'(Y*) =) +6%—83] } - a{a? [ (I' (V") —7)? =837} /2 (1)
and
_ 1 alyd — (ay = O)(I'(Y*) = 9)]wo + wg | 2n7
™= o M T (V) — 0 a2e (YY) — ) | wn (®)

2.1 Local Hopf bifurcation occurrence

According to the Hopf bifurcation theorem [17], we estabksifficient conditions for the
local existence of periodic solutions.

Theorem 2. Under hypothesefH1) and (H2) of Theoreml, there exists a continuous
functionr(e) with 7(0) = 7,, n = 0,1,2,..., and for all sufficiently small values of
e # 0there exists a continuous family of nonconstant periodigtgms for the systerf®),
which collapses to the positive equilibrium poitit ase — 0.

Remark 1. From Theorem 2, periodic solutions bifurcating from theiprs equilibrium
point E* occurs when the time delayis close tor,,, n = 0,1,2,.. ..
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Proof. For the proof of this theorem we apply the Hopf bifurcatioadrem introduced in
[17]. From Theorem 1, the characteristic equation (6) haairagh imaginary rootstiw
atT = 7,. In the first, lets show thaty, is simple: Consider the branch of characteristic
rootsA(r) = v(r) +iw(r), of equation (6) bifurcating fronw, atT = 7,,. By derivation
of (6) with respect to the delay, we obtain
dA
{2X4+6 —a(I'(Y*) —7) + (61 — 7(01 X + ad17)) exp(— A1) I
= (1A + ad1y)Nexp(—A7). 9

If we suppose, by contradiction, that, is not simple, the right hand side of (9) gives
ay +iwg =0,

and leads a contradiction with the fact tihaand~y are positive.
Lastly we need to verify the transversally condition,
dRe())
dr

Tn#0

From (9), we have

dA -t _ @A+ —al'(Y) =) exp(A\1) 01 T
dr - )\(51)\+a51'y) )\
As,
. dRe(V)| .. !
Sign ar | = Sign Re(E) -
Then
. dRe(N)| . (—2iwo + 01 + 6 + a(I'(Y™*) — 7)) exp(iwoTy)
Sign I = Sign Re o (V") .

Tn

From (6), we have

o 51)\ —+ 0451’)/

PN = R G At — A ad V) ) 4o
So, by (H1) and (7) we obtain

SigndlzeT()\) — Sign ({ [aQ(I'(Y*) _ 7)2 162 6%}2

o 4042 [52(II(Y*) o 7)2 o 5%,}/2} }1/2).

Consequently,

dRe(N) 0 0

dr .
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2.2 Direction of Hopf bifurcation

In this subsection we use a formula on the direction of the fHhiforcation given by
Diekman in [16] to formulate an explicit algorithm about tieection and the stability of
the bifurcating branch of periodic solutions of system (2).

Let
- aTo " % T()()L(SIH(Y*)Q
Rele) = 5 O G oy — o (v
22711 *\2
a l"(Y")?
2(32 + 02) [(BéTO + QCWO)L (11)
where

B = 740)(2) — OL(S(I/(Y*> — "}/)Tg + 2517’()(.4}() SiH(QW()) + aényg COS(2W()),
C = 20mywg — 204([’(Y*) — ’Y)Towo — adyy7g sin(2wp) + 201 Towo cos(2wp).

Theorem 3 ([13]). AssuméH1), and(H2). Then,

(i) the Hopf bifurcation occurs as crossesry to the right (supercritical Hopf bifur-
cation) if Re(c) > 0 and to the left (subcritical Hopf bifurcation) iRe(c) < 0;
and

(i) the bifurcating periodic solutions is stablee(c) > 0 and unstable ifRe(c) < 0;
where Re(c) is given by(11).

Remark 2. Note that, Theorem 3 provides an explicit algorithm for cortipg an in-
dicatorRe(c) of stability or instability of the bifurcating branch of pedic solutions of
system (2).

3 Global existence of periodic solutions

For determining the global existence of periodic solutjdhere exist two methods, one is
based on ejective fixed point argument, see for examplel{8]other is based on purely
topological argument, see for example [10, 11]. In thisise¢tve investigate the global
continuation of periodic solutions bifurcated from themdif*, 7,,), n = 0,1,2.. .. for
system (2), by applying the method given by Wu [11].

For simplification of notations, setting= (Y, K), we may rewrite system (2) as the
following functional differential equation:

% = F(z(t),z(th)). (12)
Note thatF' satisfies the hypotheses (A1) and (A2) in [11, p. 4813-4814].
Following the work of Wu [11], we need to define

X =C([-7,0],R?),
¥ =Cl{(z,7,p) € X xR x R*: zis a p-periodic solution of system (1)
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and letl (E*, 7, i—’of) denote the connected componentBf, 7, i—’of) in X, wherew, and
T, are defined respectively in (7) and (8).

Lemma 1. Under hypothesegH1) and (H2) of Theoreml, the periodic solutions of
systen(12) are uniformly bounded.

Proof. Let (Y (¢), K(¢)) be a nonconstant periodic solution of system (12). Then we
obtain

Y () = exp(—ant)

X {Y(O) + a/ [I(Y(s—7)) — 61K (s — 7)] exp(ays) ds},
0

13
K(t) = exp(—dt) (13)
t
X {K(O) + / [I(Y(s—71)) — 61K (s — 7)] exp(ds) ds}.
0
By using the generalized Gronwall Lemma, we get
L
K(1)] < {g n K(O)] exp (%1667), (14)
whereL is defined in proposition 1.
We setM/ 1 := [£ + K(0)] exp(2e’™). Thus, we have
L+6M1
V()] < ———— +Y(0). (15)

7y

ChoosingM = max(M1, M2), where M2 := L2801 1 y(0). Then a nonconstant
periodic solution(Y'(¢), K (t)) of system (12) is uniformly bounded for boundétl O

Remark 3. Although the boundarie®/1 andM 2 of Y'(¢) and K (¢) depend on the value
of 7, they are uniformly bounded onwhenr is bounded.

Lemma 2.

r'Y)—~< 00 forall v e R.
«

Under hypothesigH1) and (H2) of Theoremi, systen(12) has no nontriviak--periodic
solution.

Proof. For a contradiction, suppose that system (12) has a naadtriperiodic solution.
Then the following system of ordinary differential equasichas periodic solution

S = a[I(Y (1) 5K (1)~ 7Y ()],
dK -
= = (Y () - K@) - 6K (2).
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DenoteP(Y,K) = a(I'(Y) — 61 K —~7Y),andQ(Y, K) = I[(Y) — (§; + ) K, then we
have

orP  0Q ,
a—Y+8—K —OZ(I (Y)f’y) 7(51+5).
By (H2) in Theorem 1, we have that

d+0
<om+ to1

') °

)

which leads to

oOP 0Q
Y + 9K < 0.
Due to the Bendixson’s criterion [18, p. 373], we concludat tthe system (16) has no

periodic solution. The conclusion follows. O
Lemma3. I(E*,7,, 3_7;) is unbounded.

Proof. We regardr as a parameter. By Theorem 1, we have {{fat, 7) is the only
stationary solution of (12) and the corresponding charestie matrix

_(A—a(I'(¥")—7) )
Ape ) (A) = (I’g’*)exp()\l) A+ 6 exolg(lfkf) +5) ’ an

is clearly continuous iiA, 7) € C x R,.. This justifies hypothesigd3) in [11, p. 4814],
for the considered system (12).

A stationary solutiof £*,7) is called a center iflet(A g+ =) (imi—g)) = 0 for some
positive integern. A center(E*,T) is said to be isolated if it is the only center in some
neighborhood of E*, 7).

It follows from theorem 1 tha{E*, 7,,) is an isolated center and from the implicit
function theorem, there exist> 0, v > 0 and a smooth curve: (1 —v,7 +v) — C
such thatdet(A(E*7T7L,Z_; (A) =0, |A(Tn) —wo| < eforallr € (r —v, 7+ v) and

A(Tn) = Z‘W()a dR;S)\) |T:T7L > 0.
Let
2
Q. = {(u,p): O<u<e, |[p— il <€}.
wo

Clearly, if |7 — 7,,| < v and(u,p) € 9. such thatlet(A(g- . ) (u +i2X))) = 0, then
T = T,, andu = 0. This justifies hypothesis (A4) in [11, p. 4814], for = 1. Moreover,
if we put

2m 2m
Hit (E*, Tn, W_()) (U,p) = det (A(O,-rn:tu,p) (u + Zm?)) 5
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then atm = 1, we have the crossing number(d@*, 7, p)

F(E*77'n7 Z_ﬂ-) = degB(Hf59870) - degB(HlJr’Qs70) =1
0

wheredeg 5 denotes the classical Brouwer degree. By Theorem 3.3 in flé.fonclude
that the connected componéfE*, 7,,, 27) is unbounded. O

wo

Theorem 4. Under hypothesefH1) and (H2) of Theoren?.1, for eachr > 7,, n =
1,2..., system(2) has at leasi + 1 periodic solutions.

Proof. Itis sufficientto verify that the projection 6E*, 7,,, 3—7;) ontor-space igr*, +00),
wherer* < 7,, n = 1,2,3.... Lemma 1 implies that the projection &fE*, 7,,, i—’;)
onto z-space is bounded. Also, note that the proof of Lemma 2 imphat the system
(12) with = = 0 has no nonconstant periodic solution. Therefore, the ptioje of
W(E*, T, 0277;) onto ther-space is bounded below.

By the definition ofr,,, we know thatr,, > 3—75 for eachn > 1. For a contradiction,
we assume that the projection @™, 7,,, i—:) onto ther-space is bounded. Then there
existsT > 7, such that the projection df E*, 7,,, 0277;) on to ther-space is included in
the intervall0, 7). i—: < 7, and Lemma 2 imply thal < p < 7 for (2(¢), 7, p) belonging
to I(E*, 7y, 2Z). Applying Lemma 1 we have thd{E*,7,, 2T) is bounded. This a

contradiction and hence that the projectiod(d@*, 7,,, 0277;) into ther-space ig7*, +00),
wherer* < 7,,n =1,2,3... The proofis complete. O

4 Numerical examples

Consider the following Kaldor-type investment function:
exp(Y)
I(Y)= ———.
¥) 1+exp(Y)
4.1 Stability of the bifurcating branch of periodic solutions
Theorems 1 and 2 implie:

Proposition 2. If « = 3; 41 = 0.2; 6 = 0.1; ~ = 0.2. Then systenf2) has the
following positive equilibrium

E* = (1.31346,2.62699).

Furthermore, the critical delay, the period of oscillat®and the indicator of stability
corresponding to syste(®) are 7o = 2.9929, and Py = 48.2646 and Re(c) = 0.2133.

The following numerical simulations are given for system {& E, = (1,1),
Ey, = (4,1), Ey = (2,1), andEy, = (0.5,0). By the previous proposition and
Theorem 3, if we increase the value of then a stable periodic solution occurs
atmy = 2.9929 (see Fig. 1).
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Fig. 1.
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A family of stable periodic solutions bifurcatingofn E* occurs when

T = 2.9929.

4.2 Global existence of periodic solutions

From section 3, we have:

Proposition 3. If « =3; 6, =0.2; 6 = 0.1; v = 0.2 Then a family of periodic
solutions bifurcating front2* occurs when > 2.9929 (see Fig.2).
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Fig. 2. A family of periodic solutions bifurcating frol®* occurs whenm > 2.9929.
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