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Abstract. This paper is concerned with a delayed Kaldor-Kalecki non-linear business
cycle model in income. By applying a global Hopf bifurcationresult due to Wu, the
global existence of periodic solutions is investigated. Numerical examples will be given
in the end, to illustrate our theoretical results.
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1 Introduction and mathematical models

For long time the analysis of Hopf bifurcations phenomena inbusiness cycle models has
attracted much attention due to it’s practical significance(see for example, [1–5]). It has
demonstrated that the existence of a branch of nonconstant periodic solutions identified
a mechanism that gives rise to business cycles in economic activities. However, due to
the nature of the Hopf bifurcations theory these periodic solutions are generally local,
whereas business cycle behavior concerns global dynamics (see for example, [6–8]).
Therefore, it is an important subject to investigate if nonconstant periodic solutions exist
globally.

For determining the global existence of periodic solutions, there exist two methods,
one is based on [9] ejective fixed point argument, the other isbased on [10, 11] purely
topological argument.

In this paper we use a method on the global existence of periodic solutions given
by Wu [11] to study the following delayed Kaldor-Kalecki model of business cycle (see
[5,12,14,15]):











dY

dt
= α

[

I
(

Y (t), K(t)
)

− S
(

Y (t), K(t)
)]

,

dK

dt
= I

(

Y (t − τ), K(t − τ)
)

− δK(t),

(1)
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whereY is the income,K is the capital stock,α is the adjustment coefficient in the goods
market,δ is the depreciation rate of capital stock,I is the investment function,S is the
saving andτ is the time delay needed for new capital to be installed (see [1]).

In [12, 2008], we investigated the local Hopf bifurcation, that is proven to exist as
the delay cross some critical valueτ0. In [13, 2009], we established an explicit algorithm
for determining the direction of Hopf bifurcation and the stability or instability of the
bifurcating branch of periodic solutions using the methodspresented by Diekmann et al.
in [16, 1995].

In this paper, we would like to extend the analysis of the local Hopf bifurcation and
to present some new results concerning global Hopf bifurcation of system (1). Also some
numerical simulations are given to illustrate the theoretical analysis.

2 Local existence of periodic solutions

As in [12], we consider some assumptions on the investment and saving functions:

I(Y, K) = I(Y ) − δ1K,

and
S(Y, K) = γY,

whereδ1 > 0 andγ ∈ (0, 1).
Then system (1) becomes:










dY

dt
= α

[

I
(

Y (t)
)

− δ1K(t) − γY (t)
]

,

dK

dt
= I

(

Y (t − τ)
)

− δ1K(t − τ) − δK(t).

(2)

In the following proposition, we give a sufficient conditions for the existence and
uniqueness of positive equilibriumE∗ of the system (2).

Proposition 1 ( [12]). Suppose that

(H01) There exists a constantL > 0 such that |I(Y )| ≤ L for all Y ∈ R ;

(H02) I(0) > 0;

(H03) I ′(Y ) − γ < γδ1

δ for all Y ∈ R.

Then there exists a unique equilibriumE∗ = (Y ∗, K∗) of system(2), whereY ∗ is the
positive solution of

I(Y ) −
(δ1 + δ)γ

δ
Y = 0 (3)

andK∗ is determined by

K∗ =
γ

δ
Y ∗. (4)
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Let y = Y −Y ∗ andk = K −K∗. Then by linearizing system (2) around(Y ∗, K∗)
we have











dy

dt
= α

(

I ′(Y ∗) − γ
)

y(t) − αδ1k(t),

dk

dt
= I ′(Y ∗)y(t − τ) − δ1k(t − τ) − δk(t).

(5)

The characteristic equation associated to system (5) is

λ2 + aλ + bλ exp(−λτ) + c + d exp(−λτ) = 0, (6)

where

a = δ − α(I ′(Y ∗) − γ), b = δ1,

c = −αδ(I ′(Y ∗) − γ), d = αδ1γ.

Theorem 1 ( [12]). Let the hypotheses:

(H1) |I ′(Y ∗) − γ| < γδ1

δ ,

(H2) I ′(Y ∗) − γ < δ+δ1

α .

Then there existsτ0 > 0 such that, whenτ ∈ [0, τ0) the steady stateE∗ is locally
asymptotically stable, whenτ > τ0, E∗ is unstable and whenτ = τn, n = 0, 1, 2, . . ..
Equation(6) has a pair of purely imaginary roots±iω0, with

ω2
0 =−

1

2

[

α2
(

I ′(Y ∗) − γ
)

2 + δ2 − δ2
1

]

+
1

2

{[

α2
(

I ′(Y ∗)−γ
)

2+δ2−δ2
1

]}2
−4

{

α2
[

δ2
(

I ′(Y ∗)−γ
)

2−δ2
1γ

2
]}1/2

(7)

and

τn =
1

ω0
arctan

α[γδ − (αγ − δ)(I ′(Y ∗) − γ)]ω0 + ω3
0

(αI ′(Y ∗) − δ)ω2
0 + α2γδ(I ′(Y ∗) − γ)

+
2nπ

ω0
. (8)

2.1 Local Hopf bifurcation occurrence

According to the Hopf bifurcation theorem [17], we establish sufficient conditions for the
local existence of periodic solutions.

Theorem 2. Under hypotheses(H1) and (H2) of Theorem1, there exists a continuous
functionτ(ε) with τ(0) = τn, n = 0, 1, 2, . . . , and for all sufficiently small values of
ε 6= 0 there exists a continuous family of nonconstant periodic solutions for the system(2),
which collapses to the positive equilibrium pointE∗ asε → 0.

Remark 1. From Theorem 2, periodic solutions bifurcating from the positive equilibrium
pointE∗ occurs when the time delayτ is close toτn, n = 0, 1, 2, . . ..
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Proof. For the proof of this theorem we apply the Hopf bifurcation theorem introduced in
[17]. From Theorem 1, the characteristic equation (6) has a pair of imaginary roots±iω0

at τ = τn. In the first, lets show thatiω0 is simple: Consider the branch of characteristic
rootsλ(τ) = ν(τ)+ iω(τ), of equation (6) bifurcating fromiω0 atτ = τn. By derivation
of (6) with respect to the delayτ, we obtain

{

2λ + δ − α
(

I ′(Y ∗
)

− γ
)

+
(

δ1 − τ(δ1λ + αδ1γ)
)

exp(−λτ)
}dλ

dτ

= (δ1λ + αδ1γ)λ exp(−λτ). (9)

If we suppose, by contradiction, thatiω0 is not simple, the right hand side of (9) gives

αγ + iω0 = 0,

and leads a contradiction with the fact thatα andγ are positive.
Lastly we need to verify the transversally condition,

d Re(λ)

dτ

∣

∣

∣

∣

τn 6=0

.

From (9), we have
(

dλ

dτ

)−1

=
(2λ + δ − α(I ′(Y ∗) − γ)) exp(λτ) + δ1

λ(δ1λ + αδ1γ)
−

τ

λ
.

As,

Sign
d Re(λ)

dτ

∣

∣

∣

∣

τn

= Sign Re

(

dλ

dτ

)−1∣
∣

∣

∣

τn

.

Then

Sign
d Re(λ)

dτ

∣

∣

∣

∣

τn

= Sign Re
(−2iω0 + δ1 + δ + α(I ′(Y ∗) − γ)) exp(iω0τn)

−iαδ1I ′(Y ∗)ω0
.

From (6), we have

exp(λτ) = −
δ1λ + αδ1γ

λ2 + (δ − α(I ′(Y ∗) − γ)λ − αδ(I ′(Y ∗) − γ)
. (10)

So, by (H1) and (7) we obtain

Sign
d Re(λ)

dτ

∣

∣

∣

∣

τn

= Sign
({[

α2
(

I ′(Y ∗) − γ
)

2 + δ2 − δ2
1

]

2

− 4α2
[

δ2
(

I ′(Y ∗) − γ
)

2 − δ2
1γ

2
]}

1/2
)

.

Consequently,

d Re(λ)

dτ

∣

∣

∣

∣

τn

> 0. �
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2.2 Direction of Hopf bifurcation

In this subsection we use a formula on the direction of the Hopf bifurcation given by
Diekman in [16] to formulate an explicit algorithm about thedirection and the stability of
the bifurcating branch of periodic solutions of system (2).

Let

Re(c) =
ατ0

2
I ′′′(Y ∗) +

τ0αδI ′′(Y ∗)2

(δ1 + δ)γ − δI ′(Y ∗)

+
τ2
0 α2I ′′(Y ∗)2

2(B2 + C2)
[(Bδτ0 + 2Cω0)], (11)

where

B = −4ω2
0 − αδ

(

I ′(Y ∗) − γ
)

τ2
0 + 2δ1τ0ω0 sin(2ω0) + αδ1γτ2

0 cos(2ω0),

C = 2δτ0ω0 − 2α
(

I ′(Y ∗) − γ
)

τ0ω0 − αδ1γτ2
0 sin(2ω0) + 2δ1τ0ω0 cos(2ω0).

Theorem 3 ( [13]). Assume(H1), and(H2). Then,

(i) the Hopf bifurcation occurs asτ crossesτ0 to the right (supercritical Hopf bifur-
cation) if Re(c) > 0 and to the left (subcritical Hopf bifurcation) ifRe(c) < 0;
and

(ii) the bifurcating periodic solutions is stable ifRe(c) > 0 and unstable ifRe(c) < 0;
whereRe(c) is given by(11).

Remark 2. Note that, Theorem 3 provides an explicit algorithm for computing an in-
dicatorRe(c) of stability or instability of the bifurcating branch of periodic solutions of
system (2).

3 Global existence of periodic solutions

For determining the global existence of periodic solutions, there exist two methods, one is
based on ejective fixed point argument, see for example [9], the other is based on purely
topological argument, see for example [10, 11]. In this section, we investigate the global
continuation of periodic solutions bifurcated from the point (E∗, τn), n = 0, 1, 2 . . .. for
system (2), by applying the method given by Wu [11].

For simplification of notations, settingz = (Y, K), we may rewrite system (2) as the
following functional differential equation:

dz

dt
= F

(

z(t), z(t − τ)
)

. (12)

Note thatF satisfies the hypotheses (A1) and (A2) in [11, p. 4813–4814].
Following the work of Wu [11], we need to define

X = C
(

[−τ, 0], R2
)

,

Σ = Cl
{

(z, τ, p) ∈ X × R × R
+ : z is a p-periodic solution of system (12)

}

,
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and letl(E∗, τn, 2π
ω0

) denote the connected component of(E∗, τn, 2π
ω0

) in Σ, whereω0 and
τn are defined respectively in (7) and (8).

Lemma 1. Under hypotheses(H1) and (H2) of Theorem1, the periodic solutions of
system(12)are uniformly bounded.

Proof. Let (Y (t), K(t)) be a nonconstant periodic solution of system (12). Then we
obtain



















































Y (t) = exp(−αγt)

×

{

Y (0) + α

t
∫

0

[

I
(

Y (s − τ)
)

− δ1K(s − τ)
]

exp(αγs) ds

}

,

K(t) = exp(−δt)

×

{

K(0) +

t
∫

0

[

I
(

Y (s − τ)
)

− δ1K(s − τ)
]

exp(δs) ds

}

.

(13)

By using the generalized Gronwall Lemma, we get

|K(t)| ≤

[

L

δ
+ K(0)

]

exp

(

δ1

δ
eδτ

)

, (14)

whereL is defined in proposition 1.
We setM1 := [L

δ + K(0)] exp( δ1

δ eδτ ). Thus, we have

|Y (t)| ≤
L + δ1M1

γ
+ Y (0). (15)

ChoosingM = max(M1, M2), whereM2 := L+δ1M1
γ + Y (0). Then a nonconstant

periodic solution(Y (t), K(t)) of system (12) is uniformly bounded for boundedM .

Remark 3. Although the boundariesM1 andM2 of Y (t) andK(t) depend on the value
of τ, they are uniformly bounded onτ whenτ is bounded.

Lemma 2.

I ′(Y ) − γ <
δ + δ1

α
, for all Y ∈ R.

Under hypothesis(H1) and (H2) of Theorem1, system(12) has no nontrivialτ -periodic
solution.

Proof. For a contradiction, suppose that system (12) has a nontrivial τ -periodic solution.
Then the following system of ordinary differential equations has periodic solution











dY

dt
= α

[

I
(

Y (t)
)

− δ1K(t) − γY (t)
]

,

dK

dt
= I

(

Y (t)
)

− δ1K(t) − δK(t).

(16)
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DenoteP (Y, K) = α(I ′(Y )− δ1K − γY ), andQ(Y, K) = I(Y )− (δ1 + δ)K, then we
have

∂P

∂Y
+

∂Q

∂K
= α

(

I ′(Y ) − γ
)

− (δ1 + δ).

By (H2) in Theorem 1, we have that

I ′(Y ) <
αγ + δ + δ1

α
,

which leads to

∂P

∂Y
+

∂Q

∂K
< 0.

Due to the Bendixson’s criterion [18, p. 373], we conclude that the system (16) has no
periodic solution. The conclusion follows.

Lemma 3. l(E∗, τn, 2π
ω0

) is unbounded.

Proof. We regardτ as a parameter. By Theorem 1, we have that(E∗, τ) is the only
stationary solution of (12) and the corresponding characteristic matrix

∆(E∗,τ)(λ) =

(

λ − α(I ′(Y ∗) − γ) αδ1

−I ′(Y ∗) exp(−λτ) λ + δ1 exp(−λτ) + δ

)

, (17)

is clearly continuous in(λ, τ) ∈ C×R+. This justifies hypothesis(A3) in [11, p. 4814],
for the considered system (12).

A stationary solution(E∗, τ ) is called a center ifdet(∆(E∗,τ)(im
2π
ω0

)) = 0 for some
positive integerm. A center(E∗, τ ) is said to be isolated if it is the only center in some
neighborhood of(E∗, τ).

It follows from theorem 1 that(E∗, τn) is an isolated center and from the implicit
function theorem, there existε > 0, ν > 0 and a smooth curveλ : (τ − ν, τ + ν) → C

such thatdet(∆(E∗,τn, 2π

ω0
)(λ) = 0, |λ(τn) − ω0| < ε for all τ ∈ (τ − ν, τ + ν) and

λ(τn) = iω0,
dRe(λ)

dτ |τ=τn
> 0.

Let

Ωε :=

{

(u, p) : 0 < u < ε,

∣

∣

∣

∣

p −
2π

ω0

∣

∣

∣

∣

< ε

}

.

Clearly, if |τ − τn| < ν and(u, p) ∈ ∂Ωε such thatdet(∆(E∗,τ,p)(u + i 2π
ω0

))) = 0, then
τ = τn, andu = 0. This justifies hypothesis (A4) in [11, p. 4814], form = 1. Moreover,
if we put

H±
1

(

E∗, τn,
2π

ω0

)

(u, p) := det

(

∆(0,τn±ν,p)

(

u + im
2π

p

))

,
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then atm = 1, we have the crossing number of(E∗, τ, p)

Γ

(

E∗, τn,
2π

ω0

)

= degB

(

H−
1 , Ωε, 0

)

− degB

(

H+
1 , Ωε, 0

)

= −1,

wheredegB denotes the classical Brouwer degree. By Theorem 3.3 in [11], we conclude
that the connected componentl(E∗, τn, 2π

ω0

) is unbounded.

Theorem 4. Under hypotheses(H1) and (H2) of Theorem2.1, for eachτ > τn, n =
1, 2 . . . , system(2) has at leastn + 1 periodic solutions.

Proof. It is sufficient to verify that the projection ofl(E∗, τn, 2π
ω0

) ontoτ -space is[τ∗, +∞),

whereτ∗ ≤ τn, n = 1, 2, 3 . . .. Lemma 1 implies that the projection ofl(E∗, τn, 2π
ω0

)
ontoz-space is bounded. Also, note that the proof of Lemma 2 implies that the system
(12) with τ = 0 has no nonconstant periodic solution. Therefore, the projection of
l(E∗, τn, 2π

ω0

) onto theτ -space is bounded below.
By the definition ofτn, we know thatτn > 2π

ω0

for eachn ≥ 1. For a contradiction,

we assume that the projection ofl(E∗, τn, 2π
ω0

) onto theτ -space is bounded. Then there
existsτ > τn such that the projection ofl(E∗, τn, 2π

ω0

) on to theτ -space is included in
the interval[0, τ). 2π

ω0

< τn and Lemma 2 imply that0 < p < τ for (z(t), τ, p) belonging

to l(E∗, τn, 2π
ω0

). Applying Lemma 1 we have thatl(E∗, τn, 2π
ω0

) is bounded. This a
contradiction and hence that the projection ofl(E∗, τn, 2π

ω0

) into theτ -space is[τ∗, +∞),
whereτ∗ ≤ τn, n = 1, 2, 3... The proof is complete.

4 Numerical examples

Consider the following Kaldor-type investment function:

I(Y ) =
exp(Y )

1 + exp(Y )
.

4.1 Stability of the bifurcating branch of periodic solutions

Theorems 1 and 2 implie:

Proposition 2. If α = 3; δ1 = 0.2; δ = 0.1; γ = 0.2. Then system(2) has the
following positive equilibrium

E∗ = (1.31346, 2.62699).

Furthermore, the critical delay, the period of oscillations and the indicator of stability
corresponding to system(2) are τ0 = 2.9929, andP0 = 48.2646 and Re(c) = 0.2133.

The following numerical simulations are given for system (2) for E0 = (1, 1),
E0 = (4, 1), E0 = (2, 1), and E0 = (0.5, 0). By the previous proposition and
Theorem 3, if we increase the value ofτ, then a stable periodic solution occurs
at τ0 = 2.9929 (see Fig. 1).
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Fig. 1. A family of stable periodic solutions bifurcating from E
∗ occurs when

τ = 2.9929.

4.2 Global existence of periodic solutions

From section 3, we have:

Proposition 3. If α = 3; δ1 = 0.2; δ = 0.1; γ = 0.2 Then a family of periodic
solutions bifurcating fromE∗ occurs whenτ > 2.9929 (see Fig.2 ).

Fig. 2. A family of periodic solutions bifurcating fromE∗ occurs whenτ > 2.9929.
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