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Abstract. Numerical solution of unsteady laminar free convection from an
incompressible viscous fluid flow past a vertical cone with non-uniform surface heat
flux qw(x) = axm varying as a power function of the distance from the apex of
the cone (x = 0) in the presence of a transverse magnetic field applied normal to
the surface is considered. The dimensionless governing coupled partial differential
boundary layer equations are formulated and solved numerically using an efficient
and unconditionally stable finite-difference scheme of theCrank-Nicolson type. The
numerical results are validated by comparisons with previously published work and
are found to be in excellent agreement. The velocity and temperature fields have been
studied for various combinations of physical parameters (Prandtl numberPr, exponent
and magnetic parameterM ). The local as well as the average skin-friction parameter and
the Nusselt number are also presented and analyzed graphically.

Keywords: finite-difference method, free convection, MHD, non-uniform surface heat
flux, vertical cone, unsteady flow.

a constant M magnetic parameter
B0 magnetic filed strength NuX non-dimensional local Nuselt number
f ′′(0) local skin-friction in [16] NU non-dimensional average Nuselt
f ′(η) dimensionless velocity number

in X-direction in [16] Pr Prandtl number
F ′′

0 (0) local skin friction in [20] qw rate of heat transfer per unit area
GrL Grashof number R dimensionless local radius of the cone
g acceleration due to gravity r local radius of the cone
k thermal conductivity T ′ temperature
L reference length T dimensionless temperature
m exponent in power law variation t′ time

in surface heat flux t dimensionless time
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U dimensionless velocity X dimensionless spatial co-ordinate
in X-direction along cone operator

u velocity component x spatial co-ordinate along cone
in x-direction generator

V dimensionless velocity Y dimensionless spatial co-ordinate
in Y -direction along the normal to the cone generator

v velocity component y spatial co-ordinate along the normal
in y-direction to cone generator

Greek symbols

α thermal diffusivity 1/Φ0(0) local Nusselt number in [20]
β volumetric thermal expansion µ dynamic viscosity
η dimensionless independent ν kinematic viscosity

variable in [16] τX dimensionless local skin-friction
ρ density parameter
σ electrical conductivity of τ dimensionless average

the fluid skin-friction parameter
φ semi vertical angle of the cone −θ(0) temperature in [16]

Subscripts

w condition on the wall ∞ free stream condition

1 Introduction

Natural convection flows under the influence of a gravitational force have been inves-
tigated most extensively because they occur frequently in nature as well as in science
and engineering applications. When a heated surface is in contact with the fluid, the
result of temperature difference causes buoyancy force, which induces natural convection
heat transfer. From a technological point of view, the studyof convection heat transfer
from a cone is of special interest and has wide range of practical applications. Mainly,
these types of heat transfer problems deal with the design ofspacecrafts, nuclear reactor,
solar power collectors, power transformers, steam generators and others. Since 1953,
many investigations [1–12] have developed similarity and non-similarity solutions for
axi-symmetrical problems for natural convection flows overa vertical cone in steady
state. Recently, Bapuji and Ekambavanan [13] have numerically studied the solutions
of steady flows past plane and axi-symmetrical shape bodies.Also, Bapuji et al. [14, 15]
have numerically studied the problem of transient natural convection from a vertical cone
with isothermal and non-isothermal surface temperature using an implicit finite-difference
method.

Recently heat flux applications are widely used in industries, engineering and science
fields. Heat flux sensors can be used in industrial measurement and control systems.
Examples of few applications are detection fouling (BoilerFouling Sensor), monitoring
of furnaces (Blast Furnace Monitoring/General Furnace Monitoring) and flare monitoring.
Use of heat flux sensors can lead to improvements in efficiency, system safety and mod-
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eling. The studies [16–30] have considered problems of flow past a vertical cone/frustum
of a cone in the case of uniform/non-uniform surface heat fluxwith porous/non-porous
medium. Recently, Bapuji et al. [31] have numerically studied the problem of transient
natural convection from a vertical cone with non-uniform surface heat flux using an
implicit finite-difference method. All the above investigations [1–31] do not include deal
with MHD effect.

MHD flow and heat transfer is of considerable interest because it can occur in many
geothermal, geophysical, technological, and engineeringapplications such as nuclear
reactors and others. The geothermal gases are electricallyconducting and are affected
by the presence of a magnetic field. Vajravelu and Nayfeh [32]studied hydromagnetic
convection from a cone and a wedge with variable surface temperature and internal heat
generation or absorption. Chamkha [33] considered the problem of steady-state laminar
heat and mass transfer by natural convection boundary layerflow around a permeable
truncated cone in the presence of magnetic field and thermal radiation effects, non-similar
solutions were obtained and solved numerically by an implicit finite-difference method-
ology. Takhar et al. [34] developed the problem of unsteady mixed convection flow over
a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the
presence of a magnetic field. The coupled nonlinear partial differential equations gover-
ning the flow have been solved numerically using an implicit finite-difference scheme.
Afify [35] studied the effects of radiation and chemical reaction on steady free convective
flow and mass transfer of an optically dense viscous, incompressible and electrically
conducting fluid past a vertical isothermal cone in the presence of a magnetic field. Afify’s
similarity equations were solved numerically using a fourth-order Runge-Kutta scheme
with the shooting method. Later, Chamkha and Al-Mudhaf [36]focused on the study
of unsteady heat and mass transfer by mixed convection flow over a vertical permeable
cone rotating in an ambient fluid with a time-dependent angular velocity in the presence
of a magnetic field and heat generation or absorption effectswith the cone surface is
maintained at variable temperature and concentration. Numerical solutions obtained,
solving by the partial differential equations using an implicit, iterative finite-difference
scheme. Recently, Elkabeir and Modather [37] studied chemical reaction, heat and mass
transfer on MHD flow over a vertical isothermal cone surface in micropolar fluids with
heat generation and absorption. Their numerical solutionswere obtained by using the
fourth-order Runge-Kutta method with shooting technique.

The present work is devoted to the study of transient laminarfree convection flow
past a vertical cone with non-uniform surface heat flux in thepresence of a magnetic field.
In order to check the accuracy of the numerical results, the present results are compared
with the available results of Lin [16], Pop and Watanabe [17], Na and Chiou [23], Hossain
and Paul [20] and are found to be in excellent agreement.

2 Mathematical analysis

The problem of axi-symmetrical, unsteady, laminar free convection flow of a viscous
incompressible electrically-conducting fluid past a vertical cone with non-uniform sur-
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face heat flux under the influence of transversely applied magnetic field is formulated
mathematically in this section. The following assumptionsconcerning the magnetic field
and the geometry are made:

1. The magnetic field is constant and is applied in a directionperpendicular to the cone
surface.

2. The magnetic Reynolds number is small so that the induced magnetic field is ne-
glected and therefore, does not distort the magnetic field.

3. The coefficient of electrical conductivity is a constant throughout the fluid.

4. The Joule heating of the fluid (magnetic dissipation) and viscous dissipation are
neglected.

5. The Hall effect of magnetohydrodynamics is neglected.

6. The system is considered as axi-symmetrical.

7. The effect of pressure gradient is assumed negligible.

The coordinate system is chosen (as shown in Fig. 1) such thatx measures the
distance along surface of the cone from the apex (x = 0) andy measures the distance
normally outward.

0
B

y

u

x

g

v
r

Fig. 1. Physical model and co-ordinate system.

Here,φ is the semi vertical angle of the cone andr is the local radius of the cone.
Initially ( t′ ≤ 0), it is also assumed that the cone surface and the surrounding fluid, which
is at rest, have the same temperatureT ′

∞
. Then at timet′ > 0, it is assumed that heat

is supplied from cone surface to the fluid at the rateqw(x) = axm and it is maintained
at this value withm being a constant. The fluid properties are assumed constant except
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for density variations, which induce buoyancy force term inthe momentum equation.
The governing boundary layer equations of continuity, momentum and energy under
Boussinesq approximation are as follows:

Equation of continuity

∂

∂x
(ru) +

∂

∂y
(ru) = 0, (1)

equation of momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= gβ

(

T ′
− T ′

∞

)

cosφ + ν
∂2u

∂y2
−

σB2

0

ρ
u, (2)

equation of energy

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2
. (3)

The initial and boundary conditions are

t′ ≤ 0: u = 0, v = 0, T ′ = T ′

∞
for all x and y,

t′ > 0: u = 0, v = 0, ∂T ′/∂y = −qw(x)/k at y = 0,
(4)

u = 0, T ′ = T ′

∞
at x = 0,

u → 0, T ′
→ T ′

∞
as y → ∞.

Further, we introduce the following non-dimensional variables:

X =
x

L
, Y =

y

L
, t =

(

ν

L2
Gr

2/5

L

)

t′, R =
r

L
,

U =

(

L

ν
Gr

−2/5

L

)

u, V =

(

L

ν
Gr

−1/5

L

)

v,

T =
T ′ − T ′

∞

L[qw(L)/k]
Gr

1/5

L , M =
σB2

0
L2

µ
Gr−2/5,

(5)

whereGrL = gβ[qw(L)]L4 cosφ/ν2k is the Grashof number based onL, Pr = ν/α
is the Prandtl number andr = x sin φ. Equations (1)–(3) can then be written in the
following non-dimensional form:

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (6)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T +

∂2U

∂Y 2
− MU, (7)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
, (8)
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whereM is the magnetic parameter.
The corresponding non-dimensional initial and boundary conditions are

t ≤ 0: U = 0, V = 0, T = 0 for all X and Y,

t > 0: U = 0, V = 0, ∂T/∂Y = −Xm at Y = 0,
(9)

U = 0, T = 0 at X = 0,

U → 0, T → T ′

∞
as Y → ∞.

Once the velocity and temperature profiles are known, it is interesting to study the
local as well as the average skin-friction parameter and therate of heat transfer at steady
state and transient levels. The local non-dimensional skin-friction parameterτX and the
local Nusselt numberNuX are given by

τX = Gr
3/5

L

(

∂U

∂Y

)

Y =0

, NuX =
X Gr

1/5

L

TY =0

(

−
∂T

∂Y

)

Y =0

. (10)

Also, the non-dimensional average skin-friction parameter τ and the average Nusselt
numberNu can be written as

τ = 2Gr
3/5

L

1
∫

0

X

(

∂U

∂Y

)

Y =0

dX, Nu = 2Gr
1/5

L

1
∫

0

X

TY =0

(

−
∂T

∂Y

)

Y =0

dX. (11)

The derivatives involved in equations (10) and (11) are obtained using five-point
approximation formula and then the integrals are evaluatedusing Newton-Cotes closed
integration formula.

3 Solution procedure

The governing partial differential equations (6)–(8) are unsteady, coupled and non-linear
with initial and derivative boundary conditions (9). They are solved numerically by
an implicit finite-difference method of Crank-Nicolson type as described in detail by
Bapuji et al. [14, 15]. The region of integration is considered as a rectangle with sides
Xmax = 1.0 andYmax = 26, whereYmax corresponds toY = ∞ which lies very
well outside the momentum and thermal boundary layers. The finite-difference scheme
is unconditionally stable as explained by Bapuji et al. [15]. Stability and compatibility
ensure the convergence.

4 Results and discussion

In order to prove the accuracy of our numerical results, the present results for the steady-
state flow conditions atX = 1.0 when M = 0 (i.e. the absence of magnetic field
effect) are compared with available solutions from the openliterature. The velocity and
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temperature profiles of the cone forPr = 0.72 are displayed in Fig. 2 and the numerical
values of local skin-frictionτX and temperatureT for different values of Prandtl number
are shown in Table 1 and are compared with similarity solutions of Lin [16] in steady
state using suitable transformation (Y = (20/9)1/5η, T = (20/9)1/5(−θ(0)), U =
(20/9)3/5f ′(η), τX = (20/9)2/5f ′′(0)). In addition, the local skin-frictionτX and the
local Nusselt numberNuX for different values of Prandtl number when heat flux gradient
powerm = 0.5 at X = 1.0 in steady state are compared with the non-similarity results
of Hossain and Paul [20] in Table 2. It is observed that the results are in good agreement
with each other. It is also noticed that the present results agree well with those of Pop and
Watanabe [17], Na and Chiou [23] (as pointed out in Table. 1).

Table 1. Comparison of steady state local skin-friction parameter and temperature
values at X=1.0 with those of Lin [16]

Temperature Local skin friction
Present Present

M = 0 Lin results [16] Lin results [16]results results
Pr −θ(0) −( 20

9
)1/5θ(0) T f ′′(0) ( 20

9
)1/5f ′′(0) τX

1.52278 0.88930
0.72 1.7864 1.7796 1.224 1.2154

1.52278a 0.88930a

1.6327
1 1.39174 1.6263 0.78446 1.0797 1.0721

1.6329b

2 1.16209 1.3633 1.3578 0.60252 0.8293 0.8235
4 0.98095 1.1508 1.1463 0.46307 0.6373 0.6328
6 0.89195 1.0464 1.0421 0.39688 0.5462 0.5423
8 0.83497 0.9796 0.9754 0.35563 0.4895 0.4859

10 0.79388 0.9314 0.9272 0.32655 0.4494 0.4460
100 0.48372 0.5675 0.5604 0.13371 0.184 0.1813

aValues taken from Pop and Watanabe [17] when suction/injection is zero.
bValues taken from Na and Chiou [23] when and solutions for flowover a full cone.

Table 2. Comparison of steady-state local skin-friction parameter and local Nusselt
number values atX = 1.0 with those of Hossain and Paul [20] for different values of

Pr whenm = 0.5 and suction is zero

Local skin-friction Local Nusselt number
M = 0 Hossain results [20] Present resultsHossain results [20] Present results

Pr F ′′(0) τX/(GrL)3/5 1/Φ0(0) NuX/(GrL)1/5

0.01 5.13457 5.1155 0.14633 0.1458
0.05 2.93993 2.9297 0.26212 0.2630
0.1 2.29051 2.2838 0.33174 0.3324
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Figures 3 through 6 present transient velocity and temperature profiles atX = 1.0
for various parametersPr, m and magnetic parameterM . The value oft with star (∗)
symbol denotes the time taken to reach steady state. In Figs.3 and 4, transient velocity
and temperature profiles are plotted for various values ofPr andM . Application of a
magnetic field normal to the flow of an electrically conducting fluid gives rise to a resistive
force that acts in the direction opposite to that of the flow. This force is called the Lorentz
force. This resistive force tends to slow down the motion of the fluid along the cone and
causes an increase in its temperature and a decrease in velocity asM increases. This is
clear from Figs. 3 and 4. Also, it is observed from these figures that the momentum and
thermal boundary layers become thick when the values ofPr decrease or the values of
M increase. The viscous force increases and thermal diffusivity reduces with increasing
values ofPr, causing a reduction in the velocity and temperature. It is also noticed that
the time taken to reach steady-state conditions increases with increasing values ofPr or
M . It is noticed from the Figs. 3 and 4 that the temporal maximumvalue of velocity
reaches steady state only when the value of increases and that there is insignificant effect
on the temperature profiles.

In Figs. 5 and 6, transient velocity and temperature profilesare plotted for various
values ofm with M = 1.0 andPr = 0.71. Impulsive forces are reduced along the
surface of the cone near the apex for increasing values ofm (i.e. the gradient of heat
flux along the cone near the apex reduces with increasing values ofm). Due to this, the
difference between temporal maximum velocity values and steady-state values reduces
with increasing values ofm and that there is no significant effect on temperature profiles
as noticed from Fig. 6. It is also observed that increasingm reduces the velocity as well
as the temperature and takes more time to reach steady-stateconditions.
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Fig. 2. Comparison  of steady state temperature and velocity profiles at X = 1.0.
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Fig. 2. Comparison of steady state temperature and velocityprofiles atX=1.0.
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Figures 7 through 10 depict the variations of the transient local skin-friction parame-
ter τX and the local Nusselt numberNuX at various positions on the surface of the cone
(X = 0.25 and1.0) for controlling parametersm, Pr andM . The local skin-friction
parameterτX and the local Nusselt numberNuX for different values ofPr andM at
various positions on the surface of the cone (X = 0.25 and1.0) in the transient period are
shown in Figs. 7 and 8, respectively. It is observed that the local skin-friction parameter
and the local Nusselt number decreases with increasing values ofM and the effect ofM
on the local skin-friction parameterτX and the local Nusselt numberNuX is less near the
apex of the cone and increases gradually with increasing thedistance along the surface
of the cone from the apex. Also, it is noticed from Fig. 7 that the local wall shear stress
decreases asPr increases because the velocity decreases with an increasing value ofPr
as shown in Fig. 3. The local Nusselt numberNuX increases with increasing values of
Pr and this is clear from Fig. 8. The variation of the local skin-friction parameterτX and
the local Nusselt numberNuX in the transient period at various positions on the surface
of the cone (X = 0.25 and1.0) and for different values ofm are shown in Figs. 9 and 10.
It is observed from Fig. 9 that the local skin-friction parameter decreases with increasing
values ofm and that the effect ofm on the local skin-frictionτX is more near the apex of
the cone and reduces gradually with increasing the distancealong the surface of the cone
from the apex. From Fig. 10, it is noticed that near the apex, the local Nusselt number
NuX reduces with increasing values of but this trend is slowly changed and reversed as
the distance increases along the surface from apex.
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Finally, Figs. 11 and 12 illustrate the effects ofm andM on the average skin-friction
parameterτ and the average Nusselt numberNu in the transient period. The average skin-
friction parameterτ is more for lower values ofm. It is observed from Figs. 11 and 12
that the values of the average skin-friction parameterτ and the average Nusselt number
Nu decrease with increasing values ofM . In addition, it is clear from the Fig. 12, the
effect ofm is almost negligible on the average Nusselt numberNu.

5 Conclusions

This paper deals with unsteady laminar free convection flow of an electrically-conducting
fluid past a vertical cone with non-uniform surface heat flux in the presence of a transverse
magnetic field. The dimensionless governing boundary-layer equations are solved nu-
merically using an implicit finite-difference method of theCrank-Nicolson type. Present
results are compared with available results from the open literature and found to be in
very good agreement. The following conclusions are drawn:

• The time taken to reach steady state increases with increasing values ofPr, m and
M .

• The velocityU increases when the controlling parametersPr, m andM are reduced.

• The surface temperatureT reduces as the values ofM decrease and the values of
Pr, m increase.

• The momentum and thermal boundary layers become thick for lower values ofPr
or higher values ofM .

• The values of the local skin-friction parameterτX and the local Nusselt numberNuX

reduce asM increases.

• The local skin-friction parameterτX decreases while the local Nusselt numberNuX

increases with increasing values ofPr.

• The local and average skin-friction parameters increase when the value ofm is
reduced.

• The average skin-friction parameter and the average Nusselt number reduce when
the values ofM increases.

• The effect ofm on the average Nusselt numberNu is almost negligible.
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