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Abstract. In this work we present a mathematical model for the bioregraactivity of
an E. coli based bioluminescent bioreporter. This bioreporter igtham a genetically
modified E. coli which harbors the recA promoter, a member of the bacteriagh SO
response, fused to the bacterial luminescergr) @enes. This bioreporter responds
to the presence of DNA damaging agents such as heavy metaB, &hd Nalidixic
Acid (NA) that activate the SOS response. In our mathematicalel we implemented
basic physiological mechanisms such as: the penetratitmedfA into the biosensor;
gyrase enzyme inhibition by the NA; gyrase level regulatioreation of chromosomal
DNA damage; DNA repair and release of ssDNA into the cytaptaS8OS induction and
chromosomal DNA repair; activation afx genes by the fuse@cA promoter carried on
a plasmidal DNA,; transcription and translation of the luesioence responsible enzymes;
luminescence cycle; energy molecules level regulation thedregulation of the ©
consumption.

The mathematical model was defined using a set of ordinarferdiitial
equations (ODE) and solved numerically. We simulated tstesy for different con-
centrations of NA in water for specific biosensors conceiuina and under limited @
conditions. The simulated results were compared to expetiah data and satisfactory
matching was obtained. This manuscript presents a proofon€ept showing that
real biosensors can be modeled and simulated. This setgdhadyto the next stage
of implementing a comprehensive physiological model ugirgerimentally extracted
parameters. Following the completion of the next stageijlithe possible to construct
a “Computer Aided Design” tool for the simulation of the ggcally engineered
biosensors. We define a term “bioCAD” for a Biological Syst&omputer Aided Design.
The specific bioCAD that is described here is aimed towardsdevtell biosensors which
are under investigation today for functional sensing. \@safithe bioCAD will improve
the biosensors design process and boost their performaltosill also reduce Non
Recurring Engineering (NRE) cost and time. Finally, usingasameterized solution
will allow fair and quick evaluation of whole cell biosensdor various applications.

Keywords: bioluminescence, enzymes, biosensor, promoting, remprtphotons,
luciferase, aldehyde, fatty acid.
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1 Introduction

Today, the design of biosensors does not include a compasadbsimulation stage as
a standard procedure similar to what was a standard use inemgmeering disciplines.

The current commonly-practiced “trial and error” methodiethis used for biosensor
design is a complex, expensive and time-consuming probesddils to guarantee the
required system performance. Therefore, currently treeeerieed for a computer aided
design (bioCAD) tool for biosensor engineering.

Any CAD tool is based on mathematical modeling of the resesiemd processes of
the corresponding object. The bioCAD for the whole cell bit®ors engineering has to
cope with cellular functions that are based on a large nurabehemical reactions and
transport processes that are regulated by proteins, erszygaeaetic and biomechanical
mechanisms [1-4]. The relatively simple mathematical n®deal with enzymes and
substrates by ordinary differential equations (ODE) [5-8]more sophisticated form,
considering diffusion, is based on the partial differdntiguation (PDE), as shown for
example in works describing a biosensor acting in a triggeden9] and in thevibrio
fishericontrol system [10]. The genetic and biomechanical meshasicould be found in
works depicting th&. coli SOS function [11-13] for damaged DNA repair. The modeling
could be stochastic or deterministic, depending on a nurobsubstrate and reactant
molecules [14-16] that are being taken into consideration.

Metabolism is commonly defined as a process in which nusiarg converted to
provide energy and the synthesis of new organic materialghf® cells maintenance
activity and reproduction [17,18]. Therefore, metabolisradeling usually appears in
most whole cell biosensors [16]. This modeling is usualigemplex and it is common
to derive algorithms for simplifying the metabolic netws(6, 19, 20]. The second major
issue is the modeling of the regulatory networks. For exaihlose were comprehen-
sively studied and modeled f&:. coli[6, 16,19, 21], and foBynechocystig2].

The other main parts of the biosensor mathematical model(gréhe interaction
of the analyte with the biosensor; (ii) the biosensor resporand (iii) the reporting
mechanisms. The analyte interaction with the biosensoichwis the initial link in the
detection chain of the bioreporter, has been reviewed iditd@ture, for example see
references [23, 24]. The biosensor response activateseffegting mechanism. The
SOS mechanism (a response tool for the repair of a DNA dambgdte analyte) is
described in a variety of works [11-13, 25, 26]. Other reggomechanisms models are
based on transcription of signaling proteins and enzymés2&]. In our research we
are investigating luminescent bioreporters that are basethe activation of bacterial
luminescence genebik) derived from marine luminescent bactevigrio fisheri all of
them are well-studied mechanisms [29-32].

We use “normally-off”E. coli based bioluminescence biosensors incorporated into
1-100 plL reaction chambers, densely packed on a biochip. Spegéikiidics on the
biochip are used for translocation of the tested liquid vdiffierent concentrations of
Nalidixic Acid (NA) into the reaction chambers. ,Gupply, which is vital for bacterial
metabolism and for bioluminescence, is relatively limitethe absence of excess O
supply makes the biosensors environment “unfriendly” amitihg the light generation
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efficiency.

The implementation of Stage-I of the biosensor ComputeedibDesign (bioCAD)
roadmap, see Fig. 1, is demonstrated in this work. The ropdmasists of three stages.
The Stage-I is for bioCAD proof of concept for the whole delicoli based biolumines-
cent biosensor. Only the main physiological processessed in Stage-I. In this stage
most of the reaction and process parameters are taken feolitettature or, alternatively,
assumed by some intelligent guess which is appropriatestphlysiological mechanism.
The simulated biosensor behavior matches in general tletiginfrom the experimental
results and therefore lays the ground to Stage-lI.

Stage I — Proof of Concept

Reduced physiological model
o Coefficients from the Literature
o Coefficients assumed

Experiments with
Current
Biosensor

Output Kinetics
Matched?

No \ (in General)

Stage 11 — Precise Model

Comprehensive Model o Experiments with
Coefficients derived from the Output Kinetic Current

° . ¢ L Matched? N
experiments No (Precise) Biosensor

Yes,
Stage III — Biosensor Optimization
Computer Aided Design Genetic

e Biosensor design on a Computer »| Engineering of

e Computer Simulations match desired the Biosensor
performance

Fig. 1. Stages for development of computer aided design ifduminescentE.Coli
based biosensor.

During Stage-ll of the roadmap (Fig. 1), the mathematicableishould be ex-
panded to a “Comprehensive Physiological Model” while theameters should be ex-
perimentally measured for the specific biosensor used inetbearch. For the successful
completion of this stage the simulation should match exdb# experimental behavior.
Once completed, the model could be used for the computed @iegign to improve the
biosensor performance which is the main part of Stage-¢k (Sig. 1).

There is a diversity of factors that could be desired to bdlstperformance of
the biosensor. Here a few are mentioned: (i) shortening ¢élspanse time between
the analytes incursion and the reporting initiation; (i¢ieasing the reporting intensity;
(i) defining a selective response for specific analyteg) &djusting the amplitude of
the reporting response corresponding to the analytes otnatien, etc. Design and
simulation of the new biosensor will tremendously redua demands for time, labor
and financial resources. Once the desired performance istineeictual biosensor can
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be built and applied. Next, the bio sensor’s experimentabi®r should be compared to
that of the simulation, and the difference between themlshmeistudied. A good model
will yield a reasonable match, yielding a working functibbésensor applicable for
system interfacing. Under other circumstances, it is reargs (a) to check the physical
implementation of the biosensor and (b) to check the congprgitie physiological model
and repeat the evaluation process until the matching i®aeti

In this section we have presented a diversity of work dealifitp modeling of
various biological processes. However, the complete plhygical model of genetically
engineered biosensor basedm®rcoli, SOS response and luminescence reporting has not
been implemented yet. In the current work we did such an imptgation, successfully
validated it, and now it is possible to proceed with the 2ieg $bward biosensor computer
aided design development.

2 Biosensor mathematical model

In this work we build the complete model of a genetically emgired bioluminescent
E. coli based biosensor using subsets of equations describingititalghysiological
mechanisms. Note that, as described before, only to theeptmnal model is referred to,
where only the rate defining steps are taken into consideratSimplified models for
those steps have been used.

Those mechanisms are (i) analyte uptake and SOS respahsen(ilified metabo-
lism regulation model; (iii) simplified @ consumption; and (iv) light generation process.
All the aforementioned mechanisms have mutual dependematicg a network or a
biological feedback circuit. Activation of each mechanidapends also on the physio-
logical state of the biosensor. The physiological stateth@biosensor are described in
the following sub-section.

2.1 Biosensor’s physiological states

The biosensor under investigation referrers to bacteaate positioned within reactions
chambers on a chip. In this case the biosensors are typaailpsed within porous poly-
mer matrix, such as oxide Sol-Gel or agar, and we may assuahanitosis is prohibited.

Therefore, the possible main physiological states are@srsin Fig. 2.

Cell Death

Analyte
Intervention

Stress Stress too

Metabolic
Recovery

REY OIS

Fig. 2. Physiological states of the biosensor.
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Initially the biosensor is in an “Idle State”. Once analy&es introduced, the inter-
nal machinery of the biosensor is damaged and it becomeg ant&ress” condition.
Following the stress, the sensor enters into a “Recoverg’Stdn our particular case
the stress is actually DNA damage and hence the “Recovetg”Ssacombined of two
processes: (i) a SOS response and (ii) a “Metabolic Recbvétire stress induced injury
is above some threshold level the cell dies, i.e. enters@ledl Death State”. Otherwise it
generates a reporting response, i.e. enters the “Resptateé. Ihe processes of stress,
metabolic recovery and SOS, could continue while the seéesorthe “Response State”.
Once the stress and the recovery processes are completeghtba returns to the “Idle
State”.

2.2 Analytes uptake dynamics and SOS response activation

In this section the process of analyte uptake by the biosermod the activation of

the SOS response are shown. First the problem is reducedingla biosensor. The

model simplification is achieved by assuming uniform digttion of the biosensors and
analytes inside the reaction chamber. Each biosensoratettas a “reaction center” as
demonstrated in Fig. 3.

Fig. 3. Partitioning of the reaction chamber for “Per Baicter” sub-volumes.
Assuming a reaction chamber with volumigc and the biosensor concentration of
Cy, the number of the biosensors inside the reaction chaivpés:
Ny = Vgo - Cy. 1)

We also assume that the average volume of reaction chambsinfge biosensor,
VRC/b IS:

Vreyw = Vre /Ny = 1/C. (2)
In this case, the average distanfgy;,, between two adjustment biosensors is:

Loy = {/Vreo- 3)
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We assume that the concentration of the introduced anayiaiform through the
reaction chamber and each biosensor, in average, sharsartteeamount of the analyte
molecules. The analytes concentratioh,,— ., is given in “parts per million” (ppm)
that is equivalent to mg.. The average number of analyte moleculés, ;, per partition
sub-volumeVgc s is given by:

Can—ppm Can—ppm
an/b 1000MWan A RC/b 1000 - MWan A / b, ( )
whereMW,,, is a molecular weight of the analyte and, is an Avogadro number. For
example, forl ppm of Nalidixic Acid (NA) with M TWyx4 = 232 gr/mole, reaction cham-
ber with volumeVz- = 1 ul, biosensors concentrati@r), = 5e5 b/uL, the number of
the NA molecules per volume of reaction chamber utilized kingle bacterium is:

Nansp = lem -6-10%3 . Til(ﬁ =5.17 - 10° Molecules

The Nalidixic Acid (NA) analyte emulates a group of toxicathat damages the
chromosomal DNA of the bacterium. Note that NA is relativebfe for humans and,
therefore, preferably used to test the performance of simdehsors; consequently we
selected using NA in our work. The simplified scheme of the iale and SOS process
activation is depicted in Fig. 4.

9 0 0,000 % 99
9 89
P et ””

Halflife
’ ’ Channels ’ NNdin time 11/,
DNA | ]

Fig. 4. NA uptake and chain reactions of the SOS processliagiion.

We assume that the analyte transport in the liquid (free atosed in a porous
matrix), via diffusion or convection, is not the rate deterimg factor. For example, taking
the data in the abovementioned test case, the average dimefshe reaction chamber
volume utilized by the biosensor By, = ¢/1/C, = /1/(5-105-10°) - 10° =
12.6 pm. The diffusion coefficients of most water-soluble compdawith low molecular
mass are in the order @ ~ le — 5 cn?s~—! [24]. Therefore, the average diffusion time
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of such molecules,s; is

2
tyop ~ (Lev/2)° =0.15sec (5)
D

The uptake rate of the analyte like NA is faster in few orddnmagnitudes than the
resulted reaction)(15 sec versus minutes). Therefore, the transport of anaijdebIA is
not limited by diffusion and it is not taken into consideaati The analytes penetrate into
the bacterium through uptake channels available on the maerab of the biosensor. The
change of NA concentration inside the biosensor is expddsgéhe following equation:

dNA;,
dt = ktranA : (NAout - NAZ’IL)
NAin
T Hea (kgyra.na - GyrA - NAjavotar) - (Na - V), (6)

wherek,,..,_na IS @ concentration gradient coefficient indicating the patage of mo-
lecules transported through the cell membrane per secvAg,, NA,,; are theNA
concentration inside and outside the biosensor correspgiydH 4 is the half life time

of the NA molecule degradatiorka,-4. N4 IS @ constant rate of interaction between
NA and gyrase enzymes whose concentration is marke@ijpyAd. We also use molar
concentrationNA;,, a014- that is converted from the number of molecules per bacteria
using the Avogadro numbeé¥ 4 and the bacterium volunig,:

NAi'rLMola'r - NAin/(NA . %) (7)
Outside the biosensor the change in NA concentration islEsviog:
dNAout NAout
= —ktrn_na - (NAous — NAy,) — .
dt kt7 n—NA ( out in ) HNA (8)

The NA analyte inhibits the gyrase enzymes. The gyrase eazymesponsible for
unwinding supercoiled DNA during replication. However,evhgyrase is attached to the
DNA, but inhibited by NA, it fails to function and DNA lesiorsicreated in that region
[33]. In our model we assume that DNA polymerase enzymesrépadimers. The
repair is modeled by polymerase motion on the chromosomehatdauses the removal
of the lesions. We will relate to the lesion’s site as a “DNAnér”. Once the lesion is
detached and corresponding DNA fragment is repaired, theidis removed. The change
in the number of dimergyVy;,,,, could be expressed as:

deim deimfgen deimfrep

dt dt dt ©

where dNgim—gen aNd dNgim—rep are the number of dimers generated and repaired
correspondingly. The number of the generated dimers deygamthe number of inhibited
gyrase enzyme&yrA;,, attached to the chromosomal DN&{rA;.npna). The rate

of damage production is expressed by means of a rate coeffiGig, :

dei'rrL —gen
dt

= kdim - GyrAimnpna - Na - V. (10)
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The concentration of the inhibited gyrase molecules agdth DNA (GyrAinnpna)
is mediated by a constakt,- 4. pna, the gyrase half life timéZ,,» 4 and also decreases
through the dimers repair process:

dGyrAimnpna

I = kagyra.pNa - GYrAinn
_ GyrAinhDNA _ dei'rrL—gen . 1 ) (11)
HGyrA dt Na ' VE)

The change in the total number of the inhibited gyrase engyima function of the
NA < gyrase binding coefficierligy, 4. nva:

dG TAiTL
# = kGy'rA.NA ' G?JTA ' NAinMol(M‘
G TAin
- # - kGyrA.DNA : GyTAinh~ (12)
GyrA

The cell can regulate gyrase concentrations [34]. In oureha@ assume that the
gyrase concentration decreases due to NA inhibition aneésdfact on transcription. The
gyrase concentration and production rate deviates from tloemal valuesGyr Asorm,
and Tayr anorm, respectively. In this case the rate of gyrase producti@y, 4 is ac-
celerated. This rate is modeled by the following functiorsofne arbitrary coefficients
GyrAmin andPgy, 4, and alsaGyr A,orm Which was described before.

GyrATLOT‘TYL + GyrA'rni" ) PGy”.A . (13)

T rA = T rAnorm *
Gyra Gyra ( GyrA + GyrAmin

Next, we present the change in the gyrase concentratiomlépends on the gyrase
production ratelg,, 4, the inhibition of the gyrase by the NA and the half life time
HGy'r-A:

dGyrA
de

GyrA
HGyrA .

= TGy'rA - kGy'rA.NA : GyTA : NAi'rLMola'r - (14)

The dimer removal rate depends on the average distancedlieatides) between the
damaged DNAL 424, the velocity of DNA polymerase (DNAP) movement on the DNA,
vs, and the delay.y;,., that takes to repair the damaged part of the DNA:

dN, im—re 1
—AIMITD — 9 Kying - DNAP -

_, 15
dt tdim + (Lde/'US) (15)

where theD NAP is the number of DNA polymerase enzymes in a cell apg, is a
binding probability of those enzymes to the chromosomal DNKAe coefficient2 that
appears in equation (13) is due to the two replication fohles &ire moving in opposite
directions at similar rates. The average distance betweernlimers is a ratio between
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the lengths in nucleotides of chromosomal DNB,.-pna) to the current number of
dimers:

Lasa = Lenrpna/Naim. (16)

The DNA repair process or SOS response detaches the damageg@rts. As
a result, ssDNA fragments are released to cytoplasm. Thé Remlecules that are
normally under stable, low concentration bind the ssDNAfnents and are transformed
into protease enzymes with constant faje,.c.s.. The protease enzymes interacting with
LexA proteins cause the autodigestion of LexA with a constateky.,4. The LexA
protein is a direct repressor of ther A andrecA genes therefore the rate of synthesis of
the LexA and RecA proteins is proportional to the DNA templatthelex A /recA locus
that is free from the repressor [11]. In the absence of theesspr, the LexA production
rate isT... 4 and the RecA production rate1%;.. 4, while EK ., o andEK g..4 are the
corresponding equilibrium constants. The changes in thearations of thes D NA,
Protease, LexA and RecA, considering theH,spna, Hproteases Hieea @anNd Hreea
half life time constants, are expressed by a set of the fatigwquations:

dssDNA  dNaim—rep

— kprotease - RecA - ssDNA

e dt
ssDNA Protease ’ (17)
HssDNA HP7'—dcmp
dProtease Protease Protease
——————— = kprotease - RecA - ssDNA — — , 18
dt prot HP'r—dcmp HP'rotease ( )
dLexA Treza LezA
= — kLeza - Lex A - Protease — , 19
de L+ EKpega o4 Lex A (19)
dRecA TRecA
= *kro ease * A - DNA
at 1T ERpuon LenA  Fwrotease - fecd - ss
RecA Protease (20)

HRecA HPrfdcmp

We just have shown the SOS process where the kinetics afdhel protein con-
centration depends on the Nalidixic Acid analyte induceramtration Cyr,—ppm ). Later
we show how thd ez A level influences the intensity of the bioluminescence.

2.3 Metabolism as a function of DNA damage

We found, experimentally, that upon exposure to NA conegiatn above a certain level,
the initial (background) luminescence activity decreas€sir assumption is that the
DNA damage, that initiates the SOS process, also distudsate of normal-baseline
metabolism. This baseline metabolism is also respongibblthé generation of reducing
power and energy molecules like ATP, FMNH2 and NADPH, whiahwill refer to as
ENRG, (Fig. 5).
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PolDNA . HATP| | FMNH, | [ NADPH

Energy Molecules (ENRG)
R Mctabolism o
Enzymes [

Fig. 5. Energy molecules and DNA polymerase velocity retijjutescheme.

In our model we express the ENRG concentration as a funcfistheonumber of
dimersNy;.,, using the following arbitrary fitting function:

1 Pdim
ENRG = ENRGyorm <m) , (21)

where, Py, is a fitting coefficient. The ATP, FMNH2 and NADPH are also reszgy
for the light generation process. The ATP is also a drivirrgédor the DNA polymerase.
Therefore, the decrease in ENRG concentration is also teflés the velocity of DNA
polymerase movement on the DNA also expressed using asbiiitang function:

PeNRG—w
Vs = Us—max (M> 3 (22)
ENRGnorm

where Pgyra—o IS a fitting coefficient and;_,,,4, is the maximal DNA polymerase
velocity. The DNA polymerase promotion velocity influendles rate of DNA repair and
ssDNA generation, as described in the SOS section.

2.4 Molecular oxygen consumption

The biosensors described in the current work are encapslifb the reaction chambers
of the biochip [35]. In the current system configuration,liiechip is sealed and therefore
a constant oxygen supply is not obtainable. The only thdahlaioxygen for the reaction
is present in the sample to be analyzed. Normal concentrafiaissolved oxygen in
water isCO5 given in [mg/L] units. It corresponds to molar concentration of:

Co,—Molar = Co, [MWo,, (23)

where, MWy, is a molecular weight of the molecular oxygen. The numbehef®,
molecules per litetNo, —i4, IS:

Nngltr = 00271\/Iolar : NA (24)
and the number of the{Omolecules per bacterium is:

No,—b = No,—i1r/Cs, (25)
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We assume that Ofreely diffuse through the bacterial membranes inside hedet
fore the internal @ concentration is equal to that of the medium of the reactiantoer.
The oxygen consumption by bacterium in an aerobic conditidt, —...:, [36] where it
is expressed in [molémin/cell] units. We transform this into [moleculésed/cell] units
and getKOznorm:

KOgnorm = (Kngmol . NA)/GO (26)

The O; is consumed by the bacterium in two pathways. The first is duetmal
aerobic metabolic activity and the second is due to the hiolescence reaction. We
assume that bacteria can regulate its level of aerobicrabmeactivity and decrease the
level of O, consumption correspondingly to ti@, concentration fitted byo, uptake
coefficient. Therefore, the change @ molecules available per bacterium could be
expressed as follows:

dOs O (t) Poguptake Nphotons (t)
—=—| K norn Y I 27
dt ( Oanorm (NOQb + QEluc ( )

where Nphotons 1S the number of photons emitted p&rtime and@ E;... is a quantum
efficiency of the bioluminescence process.

2.5 Bioluminescence generation process

The bioluminescence generation process implements tlogetieg part of the biosensor.
The detailed description of the process presented in Agpewthile in this section we
implement a simplified model, see Fig. 6(b). Bioluminesesgeneration occurs due to
the presence of enzymes generateduyydenes and a number of substrates participating
in a “Light Generation Cycle” (LGC), as shown in Fig. 6(a).

The substrates required for the LGC are: (i) energy molecule’P, NADPH
and F M N H, along with (ii) other moleculesD,, H.O and activated fatty acyl groups
(RCO.ACP). In this work we assume that substrates are in excess, Eefaregnergy
molecules and-.

There are two groups of thiewx related enzymes participating in LGC. The first
group is a complex of three enzymes: transferase, synthatasreductase, presented as
triangular in Fig. 6 with letters “t” “s” and “r" correspondgly. The primary function of
those enzymes is the generation of luciferin from the sabestr The second group con-
sists of single enzyme luciferase, “I", responsible for gemeration of the light emission
from the luciferin.

The induction mechanism, indicated by an arrow “PromotiorFig. 6(a), is diffe-
rent for each kind of the promoter. For thecA promoter, used in the current work, the
promoter activation is repressed by the LexA protein bounthé recA activation site.
Therefore, the promotion intensity is a function of the Lepedtein concentration in the
cell, described in the SOS sub-section. We represent thegifon intensity,/p,., by the
following expression:

LexA,orm — Lex A

I T LexA) =1 r—min )
pr(lexd) P + LexAyorm — LexAmin

(28)
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where Ip,_ ., iS the basic promotion intensity antex A, IS @ concentration of
LexA for the non-induced state of the biosensor. TherA,,;, is an experimental
parameter taken from the literature [11, 37].

|FMN;112| [NADPH|
Energy Molecules (ENRG)

(a) (b)

Fig. 6. Bioluminescence reporting part of the bacteriatbiwsor.

The enzymes are generated through plasmidal DNA trangmmiphd then the trans-
lation process. The number of plasmids in the c¥};qsm.as, iS controllable during the
biosensor genetical engineering. First, mRNA contairdingA BC D E coding sequence
is transcribed with the maximal rate @f, multiplied by the number of plasmid copies
and by the promotion intensity factor. The mRNA concenbratconsidering the mRNA
half-life time Hr a4, is expressed by the following differential equation:

w = 1Vplasmids * IPT (LGIA) : Tc - mBNA

. 29
Hrna (29)
Next, the enzymes are translated by ribosomes moving on RigAmpatterns with
an enzymes generation rate’if Enzymes, like all protein molecules, are going through
degradation processes and are therefore characterizedibyaa rate or half-life time.
The luciferase enzyme is considered as a stable proteirhaithife time H,,, while the
transferase, synthetase and reductase are unstablexpnoitti half life time ofH,,,, [38].
The concentrations of the luciferagg and reductase, synthetase, transfetgsg; are
expressed by the following differential equations:
dFE; E; dFE

s Er oy
— — mRNA-T, — and —2%L — ;RNA - T) — =22t (30)
dt H.y dt Hup

The simplified LGC, see Fig. 6(b), consists of enzymes, ezlenputs, interme-
diate products and output as photon emission. The inteateegiroduct Fatty Acid
(or RCOOH), whose concentration is signed By, is created by transferade, and
luciferaseFE; enzymes activity. The Fatty Acid is converted to Luciferimbiose concen-
tration is marked by, by means of synthetase and reductase enzyiies The con-
version process requires also ATP and NADPH energy molecwleose concentration is
signed byE N RG. Finally, luciferase converts the Luciferine moleculeiptoton. This
reaction requires also molecular oxygespandF' M N H, energy molecule.
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The change in the concentration of Fatty Acid depends orghetion constants that
relate to transferasé;, luciferase k; and synthetase-reductase,, activities and Fatty
Acid half life time Hg 4:

dFA FA

— =k Ey+k-L-E—ks FA E. — ——. 31
AT S Foa (31)

The luciferine is generated from the fatty acid in a chainctiea mediated by
synthetase and reductase enzymes and also depends on ptinauny luciferase and
the luciferine half life time H;#,:

dL L
& ks FA Ey—ky-L-E— .
de ) ! : chfr

(32)

The k; reaction coefficient relies on reaction constant,,.;. and also treats the
situation where the product is above saturation conceotratA,,;:

FAsat

kt = ktfbasic '

The generated product fatty acid is used as a substratediferime product gen-
eration mediated by synthetase-reductadse, reaction coefficient. This coefficient is
expressed through reaction constant ,.s:., adjusted by substrate saturation concen-
tration F' A, and availability of the energy molecules:

1 < ENRG >PENRG

34
FA+ FAsat ENRGnorm ( )

k'rs = k'rs—basic '

The same is for luciferase related reaction coeffickgntvhile it is also adjusted by
availability of the molecular oxygen.

1 EN PeNRG Po,
ki = ki—pasic - . ( RG ) ) <$> ) (35)
L + Lsat ENRGnorm 02—n0'rm

The number of the generated photons per unit time is prapwtio thek; constant
and number of the luciferine molecules along with luceferaszyme and quantum effi-
ciency of the light emissio E;,... The number of the emitted photong,, is expressed
in the next manner:

Nphotons = (Na - Vi - QEjyc - ki - L - Ey) dt. (36)
We have expressed a photons emission process that depehds dnE' N RG and
O+ input levels. This section completes the puzzle of modetirgphysiological pro-

cesses of the genetically engineered biosensor descrilibd current work. Following,
it is shown how this model is implemented as a computatioragjmam.
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3 Numerical implementation of the mathematical model

In this section we show an implementation of the biosensparse mathematical model.
First, we show the general technique of the numerical smlutsing iterations, following
reaction constants and initial conditions are presented,fimally the outcomes of the
simulations are shown.

3.1 Numerical solution by iterations

We implemented the modules of the mathematical model, destin the previous sec-
tion, using numerical method. First, we defined interacstepdt and a number of
iterations according to the total simulation time requiesn’’;,,, that is usually no
longer tharb hours. Next, we ran loops? ef,,;, iterations:

Nintr = Tszm/dt (37)

Most equations used in the model are expressed in the formdih&ry Differential
Equation (ODE)dX (t)/dt = F(X(t)). In order to implement them numerically, we
calculate the chang&X for single iteration;, and the value of th& for next iteration —
X+ 1):

dX = F(X(i))dt,

(38)
X(i+1) = max (0, X (i) + dX).
We have to usenax (0, X (i) + dX') becauseX represents a concentration or number
of molecules that cannot be negative. The precision of thatsons solution, as well as
run time, is a function oflt value. We found thadiz of 1 sec provides a smooth enough
solution and reasonable run-time (abdu000 iterations per minute on.6 GHz PM
processor).

3.2 Experimental inputs, initial conditions, reaction codficients and variables

For conversion of the mathematical model developed in tegipus section we need to
substitute initial conditions and coefficients for the eipres presented there. Parts of the
values are available from references. The other part wa®uand in references and either
should be experimentally measured or assumed. In this wazkimg data was estimated
based on expected values and adjusted to yield a good behavio

In this subsection the values used in the mathematical recatel gathered into
the tables. First, the experimental inputs are presentdalite 1. Next, intermediate
variables are gathered into Table 2. Then we put initial @@ s used for the variables
into Table 3. After that, we show the fitting coefficients, Jable 4, and finally, rates of
synthesis, reaction constants and coefficients are platedéble 5.
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Table 1. Experimental inputs

Variable Description Values Range Typical
Vre Reaction Chamber Volume 0.1pL:1mL 1pul
Cy Concentration of biosensors led : 1e7 b/uL 5e5 b/uL
Vi Volume of bacterium le—16:5e — 14 L le—15L
Can—ppm Concentration of analyte in ppm 0 : 1000 mg/L
MWna Molecular weight of NA analyte 232 g/Mole
D Diffusion coefficients of le — 5 cm? /sec
water-soluble compounds
Npiasmids Number of luminescent 1-200 100
plasmids in the cell
Table 2. Variables
Variable Description Units
Ny Number of bacteria inside the reaction chamber bacteria
Vreys Volume of reaction chamber per bacteria L
Loy Distance between two adjacent bacteria um
Nanso Number of analyte molecules per volume molecules
utilized by bacterium
MWean Molecular weight of the analyte /&ole
ktrn—na Percentage of molecules transported %/Amolecules
though membrane per given concentration gradient
NAout Number of the NA molecules outside bacterium molecules
NA;, Number of the NA molecules inside bacterium molecules
NA:w Molar Concentration of the NA molecules inside bacterium M
GyrA Gyrase enzyme concentration M
GyrAinn Inhibited Gyrase by NA M
GyrAi.npna Inhibited Gyrase attached to chromosomal DNA M
Teyra GyrA production rate Msec
Naim Number of dimers on chromosomal DNA dimers
dNgim—gen Number of created dimers per unit time dimers
dNdim—rep Number of repaired dimers per unit time dimers
La2d Average distance between dimer to dimer bp
Vs—maw Velocity of DNA polymerase movement on DNA Jgec
ssDNA Single Stranded free DNA fragment inside the cell M
RecA RecA protein concentration M
Lex A LexA protein concentration M
Coy—Molar Concentration 00- in Molars M
No,—itr Number ofO2 molecules per liter molecules
No,—b Number ofO, molecules available per bacteria molecules
Koynorm Normal consumption 00- moleculegsed/cell
O- Consumption of @ as function of Q moleculegsed/cell
concentration and emission intensity
Ip, Promotion coefficient of lux genes expression Unitless
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mRNA Concentration of lux genes related mRNA
E; Luciferase enzymes concentration
Ersq Reductase, synthetase, transferase enzymes M
FA Faty Acid concentration M
concentration
L Luciferase concetration M
ky Transferase reaction coefficient as function of FA <ec
krs Reductase-synthetase reaction coefficient as (Mseg™!
function of FA, and energy molecules
k; Luciferase reaction coefficient as functioniof M sec)’1
energy and)2 molecules
Table 3. Initial conditions
Variable Description Value References
GyrAnorm Normal gyrase concentration 1,000 molecules [39]
GyrAmin Minimal concentration of gyrase 100 molecules Assumption
due to regulation
GyrA(0) Gyrase concentration at tinte GyrAnorm [39]
GyrAinn Inhibited gyrase concentration at 0 M Assumption
time 0
GyrAi..npna  Inhibited gyrase attachedto DNAat O M Assumption
time 0
DNAP DNA Polymerase enzymes 20 enzymes [11]
LenrDNA Length of the chromosomal DNA 4.72e6 bp [11]
of E.Coli
RecA(0) RecA concentration at time 1.8¢e —5M [11]
LexAnorm LexA concentration in non-induced 1.45e — 6 M [11]
biosensor
LexAmin LexA concentration for maximum 1.45e —7M [11,37]
induction
LexA(0) LexA concentration at time LexAnorm [11]
ssDNA(0) ssDNA concentration at timg oM Assumption
Naim Number of dimemrs at time 0 Assumption
Protease(0) Protease concentration at tie oM Assumption
ENRGnorm Normal concentration of energy le —3 M Assumption
molecules
ENRG(0) Energy Molecules at time ENRGnorm Assumption
02(0) Koynorm 40 amol/(mincell)  [36]
mRNA(0) mRNA by lux genes expression at 0 Assumption
time 0
E . s+(0) Concentration of lux related en- 0 Assumption
zymes at time)
Co, Molecular Oxygen ©Q-) 9.5 mg/L [40]
Tetradecanoyl-ACP (RCO.ACP) In excess Assumption
FA(0) Fatty acid RCOOH) at time0 oM Assumption

520



Mathematical Modeling of a Bioluminescent E. Coli Baseddgiasor

L(0) Long-chain aliphatic aldehyde or 0 M Assumption
lucefirine (RC' HO) at time0
ENRGnorm Adenosine tro-Phosphate " P) le—3M Assumption
ENRGnorm Reducing powerYADPH) le—3M Assumption
ENRGnorm Reduced Flavin mononucleotide 1e — 3 M Assumption
(FMNH>)
Table 4. Fitting coefficients (current work assumptions)
Variable Description Value
Payra Gyrase production regulation fitting 1
Piim Fitting energy molecules concentration versus dimers rumb 1/4
Penra—v Fitting velocity of DNA Polymerase versus N RG concentration 1/4
Penrc Fitting enzyme-substrate reaction coefficient requidfyy RG molecules 1/4
Po,uptake Fitting O, consumption regulation 2
Po, Fitting luciferase reaction coefficient verslis concentration 1/4
Table 5. Rates, constants and coefficient
Variable Description Value Reference
Ny Avogadro Number 6e23 particleyM
Hna Half life time of the NA molecule 1,500 sec Assumption
kGyra.na Rate of reaction between NA and1 (secM)™* Assumption
gyrase molecules
Edim Rate of DNA damage by attached0.01 dim/se¢/micl Assumption
inhibited gyrase
kecyra.pna Rate of gysrase molecules attachmerd.0l1 sec™! Assumption
to DNA
Hayra Gyrase half life time 3350 sec Assumption
Tcyranorm  Normal rate of gyrase synthesis 0.2985/(Na V4) Assumption
Kbind Binding probability of DNAP to chro- 0.5 Assumption
mosomal DNA
tdim Time to repair damaged part of thel0 sec Assumption
DNA
Vs—maz Velocity of DNA polymerase move- le3 bp/sec [11]
ment on DNA
kprotease Rate of RecA and ssDNA transforma-6.2e3 (secM) ™! [11]
tion to Protease
Hsspna Half life time of ssSDNA decomposition le — 2 sec! Assumption
Hprotease Half life time of Protease autodigestion 1le — 3 sec™! Assumption
Hpr—dcmp Half Protease decomposition time 9¢ — 3 sec’! [11]
Hrieza Half life time of LexA autodigestion 2.18¢ — 4 sec! Assumption
TrLezA LexA maximum production rate 2.323¢ — 8 M/sec  Assumption
EKreza LexA equilibrium constant 5e7 Mt [11]
HReca Half life time of RecA autodigestion ~ 2.14e — 5 sec™* [11]
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Treca RecA maximum production rate 2.79¢ — 7 M/sec [11]
EKReca RecA equilibrium constant 5e8 M /sec [11]
Koy—mol Consumption of @ in aerobic condi- 40 amol/(mincell) [36]
tion per bacteria
QE..c Photon emission quantum efficiency 2% [41]
Ipr—min Promotion of lux genes expression at0.0075 Assumption
non-induction condition
T, Maximal transcription rate of lux 2.5 — 10 M/sec [38]
mRNA
T Maximal translation rate of lux related 0.25 enz/sec [38]
enzymes
Hrna MRNA half life time 600 sec Assumption
Hg, Half life time of stable protein 3,600 sec [38]
Hyyp Half life time of unstable protein 600 sec [38]
Hpag Half life time of Fatty Acid 100 sec Assumption
Hicypr Half life time of Luciferase 1000 sec Assumption
kt—basic Basic value of transferase - substratde2 sec™* Assumption
reaction coefficient
krs—basic Basic value of reductase-synthetase +e2 sec’! Assumption
Fatty Acid reaction coefficient
ki_basic Basic value of luciferase — luciferin 1el sec* Assumption
reaction coefficient
Lsat Saturation concentration for luciferase le — 2 M Assumption
FAgat Saturation concentration for fatty acid le —2 M Assumption

3.3 Simulation results

In this section we present results of simulation runs of tleghmmatical model imple-
mented in this work. We used reaction coefficients and initiditions mapped in the
previous section. The simulation input was set accordinthéoexperiment presented
in the next section and it corresponds to the typical valae§able 1. The following
concentrations of the NA analyte were usédppm, 0.78 ppm, 3.13 ppm, 12.5 ppm,
25 ppm,50 ppm and1l00 ppm.
At the first stage the simulation takes the biosensors totdasly state. This steady
state emulates preparation of the biosensors under ideabating conditions without
limit in O2, nutrients and absence of toxic materials in the medium. grbeess lasts
about150 minutes. The luminescence reaches a stable base level griakiossible to

pass to the second stage of simulation, where the bioseasdmncapsulated into the
observation chambers without additioal and nutrients supply and are challenged with
various concentrations of the NA analyte.

The simulation results for the second stage are presenteigsn 7, 8. Each figure
contains sub-plots exhibiting kinetics of components useédle model. The components
are identified according to the title on the top of the sult-plbhe first, Fig. 7, shows
results of the SOS process; while the second, Fig. 8, dematestkinetics of the light
generation cycle. The-axis for each sub-plot is time in minutes.
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Fig. 8. Simulation results: light generation cycle.
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In the next section actual results for the same NalidixicdA@ncentrations, as in
simulations, are presented and compared. The experinrestdts contain only kinetics
of emission intensity versus time. Therefore it is extrgnoblallenging to analyze bottle-
necks for experimental results, while, as could be seen fhisisection, using simulation
is very friendly.

4 Experimental results and discussions

4.1 The experimental setup

The measurements were performed on a Victor-1l luminonisté¥allac Inc. using 884
chambers microtiter plate. To avoid cross-lighting, eaatosd chamber was utilized for
the experiment. The working chambers were fully filled by mon containing Luria
Bertani (LB) medium, bacteria under concentrationse® bacterigdmL and different
concentrations of Nalidixic Acid (NA). The working chambeslume is about0 pL,
and therefore included aboRi5e7 bacteria. The top of the microtirtle plate was sealed
by a transparent film to avoid oxygen supply (in order to emeutdochip condition).
We used the following NA concentration8:ppm, 0.1, 3.13,12.5, 25,50, 100 ppm. In
addition, chambers with water only and with water and LB owlre prepared. Four
repetitions were set up for every NA concentration. Thetligkensity from the each
reaction chamber was sampled oncé iminutes.

4.2 Experimental results

The experimental results are demonstrated in Fig. 9. Thasjisthe total collected light
intensity in [photons/sec] units and the x-axis is the tinmeea analytes intervention in
minutes. There is an individual curve for each NA conceitrat The experiment was
performed durin@40 minutes similarly to the time of the simulation.

4.3 Discussions

As can be seen, the kinetics of simulation matches quiteonedidy the experimental
results (see Fig. 10 and Fig. 9). The biosensors are in Sietabolic Recovery and SOS
states (see Section 2.1) for the fidSt minutes. The luminescence intensity reaches the
same order of magnitude:7 [photong'sec] during the “Response State” and finally the
luminescence activity discards after ab®80 minutes correspondingly to the reversion
of the biosensor to the “ldle State”. Even though the kirgeis a function of NA
concentration did not match precisely, the main goal of tlweent work, Stage-I, has
been achieved (see Fig. 1 in Section 1). We still have to ratethe quality of results
during the Stage-Il can’t be fully estimated. This is due emplexity of the presented
model from one side and simplifications of the biologicalqgasses from the other, as
well as possibility of non-unique solutions for the fittinfexperimental data.
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Fig. 10. Simulation results: light intensity vs. NA conaetion.

5 Conclusions

In this work we have presented a design of the mathematicalemaf the response
of a whole cell based biosensor, as well as simulation regidherally matching the
simulation. We have defined the three stages for implenientaf Biological Computer
Aided Design (bio-CAD) software and successfully fulfilldee first stage. The com-
pletion of the next two stages would require collaboratiwknof (i) bio-mathematical
modeling; (i) molecular biologists; and (iii) engineef&his extremely challenging task,
considering obstacles such as complexity of the model andumique solutions for the
inverse problems and may dematitlto 20 man years of R&D. However, once the bio-
CAD software would be available, the development of the whadll based biosensors
will be boosted in a few orders of magnitude.
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Appendix. Comprehensive model of light generation cycle

In this appendix the information from the prior-works [5,3Q, 42] is integrated into

a comprehensive LGC chemical and mathematical model. Tbisegs is illustrated in
the chart below. Théux enzymesE;, E,., E; and E; are generated by corresponding
geneduxAB,C, D, E with the generation ratds, g, k¢, kp andkg. Those generation
rates are different to each gene and have units ofsgd/Pr]. The enzymes are marked
by a triangular shape. The enzymes are also having halfififie tonstants:.q 5.

The transaction between the reactions compounds are aatiadpwith the chemical
reaction rate constart..;. (see Table below). Part of the reactions are reversible and
their constants are marked.,..;. correspondingly.

Legend ¢ o
A enzyme " (T
- liberation RCO.AMP RCO.AMP
L6 T
[Ppi]

reaction rate

7
RCOOH |8
“ l

reaction

I

4
‘—ViV— FMNH,O, |# RCHO
<

The names of molecules participating in the LGC are preséntthe Table:

Formula Instance Formula Instance
RCO.ACP Tetradecanoyl-ACP RCO.E,.E; Tetradecanoyl Synthe-
saze — Reductase com-

plex
RCO.ACP.E; Tetradecanoyl-ACP- RCO.E, Tetradecanoyl
transferase intrmediate Reductase complex
RCO.E, Cleaved Tetradecanoyl NADPH Reducing power
ACP Acyl carrier protein RCHO Luciferine or Aldehide
RCO.H20.E; Cleaved Tetradecanoyl FM NH20>.FE; Flavin oxiginated lu-
intermediate with water ciferase intermediate
H>O Water FMNH>0. Flavin oxiginated alde-
E,.RCHO hide luciferase interme-
diate
RCO Fatty acid residue FMNH, Reduced Flavin mono-
nucleotide
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RCOOH Fatty acid FMN Flavin mononucleotide

RCOOH.E; Fatty acid intermediate O» Molecular Oxygen
with Synthesaze

RCO.AMP Fatty Acyl-AMP RCHO Long-chain  aliphatic

aldehyde or lucefirine
RCO.AMP. Fatty Acyl-AMP Syn-

E,.E; thesaze — Reductase
complex
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