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1 Introduction

The theory of almost periodic functions was introduced byatthBohr during 1924—-1926.
In his study of Dirichlet series he developed the notion ohdasmly almost periodic
functions. Later, Bochner extended Bohr's theory to gdnaatract spaces. Almost
periodic functions have been widely treated by Favard, taevj1] and Besicovich [2]
in their monographs. Amerio [3] extended certain result$-a¥ard and Bochner to
differential equations in abstract spaces. The concepsefigo almost periodicity is a
natural genelization of almost periodicity. The theory eépdo almost periodicity was
first treated by Zhang [4] around 1990. The existence anduemigss of pseudo almost
periodic solutions of differential equations have beenrefginterest to mathematicians
in the past few decades.

A cellular neural network is a nonlinear dynamic circuit sisting of many process-
ing units called cells arranged in two or three dimensionalya This is very useful in the
areas of signal processing, image processing, pattersifidasion and associative mem-
ories. Hence the application of cellular networks is of gjieterest to many researchers
( [5-8] have dealt with the global exponential stability ahd existence of a periodic
solution of a cellular neural network with delays using tleagral Lyapunov functional).
Many authors have established the almost periodic sokitddrellular neural networks
(9, 10] and references cited therein). The discrete ange@f continuous time cellular
network models are very important for theoretical analgsisvell as for implementation.
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Thus it is essential to formulate a discrete time analogueootinuous time network.
A most acceptable method is to discretize the continuous tietwork. For detailed
analysis on the discretization method the reader may cokakiamad [8], Stewart [11],
Broomhead and Iserles [12]. Huang et al. [13] have consitigtre following model of
neural network with piecewise constant arguments

T = + wa f] x] ])) + IZ([t])
The authors have proved the existence of an almost periedigesice solution for the
following discrete time analogue

—ai(n) m
mi(n—l—l):mi(n)e_“i(”)-f— {ZbU fJ zj(n ))—i—[,(n)}

Huang, Xia and Wang in [14] have considered the followinguoek model with the
piecewise constant arguments in the following equation,

All) — oyt +§jlbz-j @5 (a([5]r)) + 10, @

wherei = 1,2,...,m. The authors in [14] have proved the existence and uniqgesfes
a k-almost periodic sequence solution of the discrete an&of(l), and also shown the
exponential attractivity of the solution.

In this paper we study the problem of existence, uniqguenatggponential attrac-
tivity of a k-pseudo almost periodic solution of the following diffeti@hequation,

dm(;ft) = —a;(t)x; (ﬁ)‘f'z bij (t) f; (24(t)) +Z cij () fi (zj(t—7i5)) +Li(t), (2)

=1

wherez;(t) the potential of the cell at timet, f; is the nonlinear output functiot,;
andc;; denote the strengths of connectivity between the ¢ellsd;j at the instants and

t — 75, respectively. We have;; the time delay required in processing and transmitting
a signal fromj-th cell to thei-th cell. We denote théth component of an external input
source from outside the network to the cdlly I;.

2 Preliminaries

We consider a continuous time neural network consistingrafiterconnected cells de-
scribed by the following system of delay differential eqoas

LD ity + > 0155 (a4(0)

+ Z cij(t) f (xj (t— TLJ)) + 1;(1) 3
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fori € {1,2,...,m}, andt > 0. A discrete analogue @B) can be written as,

dﬁit) = —a;(t)x(t) + é bi; (£)f; (Ij ( [é] k))
+ écij(t)fj (mj ( [é] k— {%] k)) +I(t) (4)

fori =1,2,...,m, and[-] denotes the greatest integer function &ng 0 the transmis-
sion step size. Throughout the paper we impose the follosimglitions,

Assumptions:

(Al) a;(t) > 0, bi;(t), ¢i;(t) and I;(t) are pseudo almost periodic functions for
i,j=1,2,...,m.

(A2) There exist positive constantd/; and L; such that|f;(z)] < M; and
|fi(x)— fi(y)] < L;lz—y|foreache,y e Randj = 1,2,...,m;i=1,2,...,m.

Definition 1. A continuous functiory: R — R is said to be almost periodic if for each
€ > 0,

T(f,e)={reR: |f(t+71)— f(t)] <e¢, forall t R} (5)

is relatively dense iflR. That is there exists a positive numbigsuch that any interval of
the lengthl, contains at least one point &1 f, ¢).

The set of all almost periodic functions frafto R are denoted byl P.
Denote

APy = {fEBC(R,R): Tllr&%/|f(t)|dto}.

Definition 2. A continuous functiory : R — R is said to be pseudo almost periodic if it
can be written ag = f; + f2, wheref; € AP andf; € AP,.

The set of all such functions is denoted BYAP. Now we have a similar definition
for pseudo almost periodic sequence.

Definition 3. A real sequence: Z — R is called almost periodic sequence if for each
e>0,

T(x,e)={r€Z: |x(n+7)—x(n)| <e forall neZ}

is relatively dense set ii. That is there exists a positive intedesuch that any interval
with the length contains at least one point @f(z, ¢).

The class of all almost periodic sequences is denoted By .
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Definition 4. A real sequence: Z — R is said to be inA P, S if

Definition 5. A real sequence: Z — R is said to be pseudo almost periodic sequence
if it can be written ax = x1 + xo, Wherez; € APS andzy € AP, S.

The set of all such sequences is denoted’byPS.

Definition 6. A real sequence : kZ — R is called k-almost periodic sequence if for
eache > 0,

T(x,e) ={r € kZ: |[x(v+7) —x(v)| < e forall v e kZ}

is relatively dense set ikZ. That is there exists a positive intedesuch that any integer
interval with lengthl. contains at least one point @Yz, ¢).

The set of all such sequences is denotedlliS,.

Definition 7. A real sequence: kZ — R is said to be inA Py Sy, if

i 5 3 1o

1=—n

Definition 8. A real sequence: kZ — R is said to be k-pseudo almost periodic se-
quence if it can be written as= x1 + x2, wherex; € APSy andzs € AP, Sy.

The set of all such sequences is denoted’yP S}

DenotePAPS]" the set of allz = (x1,z2,...,2,) in Which every component is
k-pseudo almost periodic sequence, thatiis PAPS, fori=1,2,...,m

Using the discretization scheme one can have the followiffigrdnce equations for
equation (4),

(n+1)k +1)k

- [ ai(w) du m
zi((n+1)k) = zi(nk)e n* / <wa s)fj(z;(nk))
nk
(n+1)k
- [ ai(u)du
+ Z cij(s fJ zj(n — )k) + Ii(3)> e ¢ ds, (6)
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wherei = 1,2,...,m andn € Z. Define the followings,

(n+1)k

- [ ai(u)du
Cz(n) = e nk ,
(n+1)k (n+1)k
- [ ai(u)du
Dij (n) = bij(s)e s dS,
nk
(n+1)k (n+1)k (7)
— [ ai(u)du
Eij(n) = cij(s)e = ds,
nk
(n+1)k (n+1)k
- [ ai(u)du
Fi(n) = / Ii(s)e % s

¥n+1)= Z () 1 (28 (n))
3 Big(n)fy (a0 — k) + Fi(n), ®)
fori=1,2,...,m, wherez(n) = z;(nk).
Denote:

C; =sup|Ci(n)|, I} =sup|L(t)],

neZ teR
D:jisup|DiJ( )|7 i *Sup|E2]( )|
neZ

Fr = iléIZ)|Fi(n)|v aj = tlgﬂgaz‘( )

bi; = sup [bi;(t)], i = sup|ci;(t)],
teR teR

P, = Z (D + Ej;)M; + Fy.
Definition 9. A solution z(v) = (z1(v),...,zm(v))T of (8) is said to be globally
attractive if for any other solutiop(v) = (y1(v), ..., ym(v))? of (8), we have

lim[; () — yi(v)| = 0.

V—00

The following Lemmas are easy to verify:

287



S. Abbas

Lemma 1. Supposethat g; € AP fori = 1,2, then Ty (g1, €) N Tk(g2, €), Trz(g1, €) and
Trz(g1,€) N Tz (go, €) arerelatively dense, where

Ti(gi,e) = {7 € R; |g:(t + k7) — g:(t)| < € for @l ¢t € R}
and
Tz (giye) ={m € Z; |g:(t + k1) — g:(t)] < e forall t € R}.

If g; € PAPS fori = 1,2, then we can decompogein two componentg;; and
gio, first one is almost periodic sequence and other idiy.S.

Lemma 2. Supposethat g; € PAPS for i = 1,2, then ¢;|kZ € PAPSy, thatis for all
e>0,

T(gi1,e) = {7 €kZ: |gn(v+ 1) —gn(v)| <e foral v e kZ}
isrelatively dense set in kZ and

o1&
nh};o% Z |gi2(v)| = 0.

v=—n

Also T'(g11,€) N T(g21,€) isrelatively dense set in kZ.

Forz € PAPS), denotingz®(n) = x(nk) for all n € Z, the following properties
are true for sequence’:

e © € PAPS, ifandonlyif2* € PAPS.
e f € PAP,thenf|l'y, € PAPS;.
e Any x € PAPS, is bounded.

3 Pseudo almost periodic solutions

Lemma 3. Suppose assumption (Al) holds, then C;, Dy, Eyj, F; € PAPS for
i,j=1,2,...,m.

Proof. Because:; is pseudo almost periodic, one have= a;; + a;2 wherea;; € AP
anda;, € AP,. Foranyr € Z, we have

(n+74+1)k (n+1)k (n+1)k
/ ai1(s)ds — / ai1(s)ds = / (aﬂ(s +kT) — aﬂ(s)) ds. 9)
(n+7)k nk nk

a;1 1S almost periodic so given> 0,7 = 1,2, ..., m, we have the set

Tkz(a,-l,e) = {T € 7, |ai1(t + k'T) — a,-l(t)| < ¢ foreacht e R}
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is relatively dense. Next, one can easily observe that

L (UDE (I+1)k (n+1)k
Z / a;2(s)ds| < Z / laia(s)]ds < /|a12 |ds+/ |aiz(s)| ds
I==nl jk —nk nk
<L+ IL. (10)

As we know that;» € AP,, we have

lim —/|a12 )| ds = 0.

n—oo 2n
—nk

Also because,; is bounded, we get

(n+1)k
1
nlingo% / |aiz(s)|ds = 0.
nk

Combining these two one have

| 0Dk
. 1
7}1_{1;0% Z / a;2(s)ds| = 0.
I==nl g
(n+1)k
Thuswe have [ a;(s)ds € PAPS.

nk
Becausel; € PAPS, thus we havel;, = I;; + I;2, wherel;; € APS and

Is € AP,S. Forl;; € APS, we have for any € Z,

|Fi1(n+7) — Fix(n)]

(nt7+1)k (ntr+1)k (n+1)k (n+1)k
= / Iix (s)e_ [t ds — / I,-l(s)e_ [t ds
(nt7)k nk
(n+1)k
< / [Ti1(s + k7) — L1 (s)| ds
nk
(n+1)k (n+1)k
+ / |I,-1(s)|< / |air (u+ k7) — a1 (u)] du) ds <, (11)
nk s
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because of almost periodicity df;(¢) anda;;(¢t). Now we show thatF;; € AP,S.
Consider

" n (I+1)k (z+f1)k @
— a;(u)du
Z |Fia(D)| = Z Iiz(s)e = ds
l=—n l=—n Ik
" (I+1)k (I+1)k " (I+1)k
— ai(u)du
<> v/ |Ii2(s)|}e d ds< Y / |Ii2(s)| ds
I==n == Jj
nk (n+1)k
—nk nk

Thus we get the following

) 1 n
i 5 3 Il =0

Hence, we conclude thdf; ¢ PAPS. By similar argument one can show thag; and
E;; are pseudo almost periodic. O

Lemma 4. Under the assumptions (A1), (A2), every solution of (8) is bounded.

Proof. This Lemma is a direct consequence of Theorem 3.1 of [14].
A brief summary is as follows: One can easily observe thatelation

Ci(n)zi(n) — Ri < af(n+1) < Cy(n)a} (n) + Ry,

(2

whereR; = " | (D}; + Ej;) + F; holds. Considering the following difference equa-
tions

#n+1) = Gz (n) + R

wherez?(0) = 2¥(0) one get the following estimate

R; R;
— | _ - k k -
|27 0)] = T =7 < @i () < |27 (O] + 7=
O
Consider the following difference equations
2} (n +1) = Ci(n)ay (n) + Fi(n). (13)

Lemma 5. Under assumption (Al), there exists a k-pseudo almost periodic sequence
solution of (13).
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Proof. Using the induction argument, one obtain

v¥m+1)=[[Citn-kb0)+> J[ CikF®n-1)

k=0 =0 k=n—I+1
(7L}1)k (w)d oo (n—m+1)k (n}l)k wa
— a;(u)du — a;(u)du
=e 0 z¥(0) + Z Ii(s)e = ds.
m=0 (n—m)k
Consider the sequence
(n—m)k nk
> - [ ai(u)d
i¥(n) = Z Ii(s)e = T s,
m:()(nfmfl)k
Since
(n—m)k nk
o0 (o) *
— [ ardu 1 — e%k . IF
|Z¥(n)| < Z / Ife = “ s = Z 7i e~ ke < —.
a,t- ai
'rr“L:()(’r17777471)]C m=0
Thus the sequence (n) is well defined. It is easy to verify that
&7 (n+1) = Ci(n)a7 (n) + Fy(n).
Hence the sequendé = {¥(n)} is bounded. Next consider
‘jf(n +7)— ff(n)‘
(n—m)k nk nk
> — [ ai(utkr)du — [ ai(u)du
= Z Li(s+kr)e = —Ii(s)e = ds
mzo(n—m—l)k
(n—m)k nk
> — [ ajdu
<> (m(smﬂ ~ L)l
m:O(n—m—l)k
T as(uthr) T astw
— a;(u+kt)du — ai(u)du
+1Ile * —e = ) ds
(n—m)k (n—m)k nk nk
> y © —0 [ aj(u+7*) du—(1-0) [ a;(u)du
<y [y o |
m:O(n—m—l)k m:O(n—m—l)k

nk

X /|ai(u +77) —a;(u)| duds
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‘:%f(nJrT) fﬁck(n)‘

%

(n—m)k

o] 1_ e—a;fk . i * o
<e Z — e~ mk + IZ*G Z / (nk _ S)eai (s—nk) ds

m=0 i m:o(nfmfl)k

(m+1)k

1 . —ats 1 I7
<e— +el] Z se”%7ds < —e+ —5e6, 0<O <L (14)

@i m=0 % a;

- mk

Thusz¥ is ak almost periodic sequencelif anda; arek almost periodic sequences. That
is for I;; anda;; this is an almost periodic sequence, denote itfy

Consider
(I—m)k Ik
n n [eS) — [ ai(u)du
Z ) = Z Z / I;(s)e / ds
I=—n l=—mn m=0 (I—m—1)k

(I—m)k

< zn: i / Ii(s)e o (=) g, (15)

==nm=0 1)k
Now we can easily observe that
lk—s>(—=l4+mk=mk>0, se[l—m-—1k, (—m)k].
Thus above inequality becomes

" (I—m)k

AR IDY / I(s) ds

I=—n l=—nm=0 ¥ |\,
nk (n—1)k
< / I;(s)ds + / Li(s)ds+ ...

g/[i(s)der / Li(s)ds+.... (16)

For I, we have

nk —nk

S libol< [ a@last [ ia@lds ...

I=—n —nk (—n—1)k
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As we know thatl;» € AP,S and bounded, we get

lim —/|Izg ) ds =0

n—oo 2
—nk
and
—nk
tim oo [ a(e)lds < Jim o Ea] =0
im — i2(s)|ds < lim —||I;2]| =
n—oo 2N 2 n—oo 2n 2
(—n—1)k

One can easily observe that every finite sum of these integrah divided by2n and
passing limit as: — oo is zero. Thus we have

n

. 1
Jm 5 2

Therefore we get thatt; = ;1 + ;2 IS ak-pseudo almost periodic sequence solution of
equation (13). O

Theorem 1. Suppose assumptions (A1), (A2) holds. There exists a unique k-pseudo
almost periodic sequence solution of (8) which is globally attractive, if

11<nizi>§n{0 +ZD + E};) }<1.

Proof. Denote a metrid: PAPS]" x PAPS]" — R*, by
k

d(x,y) = sup max |2 (n) — y; (n)]-
Now define a mapping': PAPS]* — PAPS]" by Fx = y, where

Fz = (Fiz, Fox, ..., Fpz)”
such thatF;z = y; andy; = {y¥(n)}. Define

yi (n +1) = Ci(n)if (n)

+ 3 [Dig(n) fi (25 (n) + Bij(n) i (25 (n = k)] + Fy(n),
j=1

wherez is k-pseudo almost periodic sequence solution of (13). Usingrbha 3 and

assumption (A2), one can observe thamapsk-pseudo almost periodic sequences into
k-pseudo almost periodic sequences. Now denote

lgliaggn{c +ZD +E }—7“, 121%};5_7
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and

o — ]| = sup max |2 (n) — & (n)].
Define the set

BA; = {:C € PAPS: |lx — | < PYE%JFZ)}
Note that forr € BA?,

1 2
o] < lle & + ) < v+ 2D - 2T

Also we have,

|Fx — 2| <sup max |yZ (n+1) —zF (n+1)]
ez, 1<i<m

< sup max

nez 1<isSm
m
Z ))"’Eu( )f]( (n k*))]’
m
< * * .
sup 2 [Ci(mat ()] + max, (C +2, (D Ey) )'x“
2 1
<ytr 0 :’Y( Jrr)' (17)

1—7r 1—7r
Thus we conclude thdtz € BA;j. Forz,y € BA;, we have

HFx—nyH—SupInw<§:\ (@5 (n) = (45 ()

1<i<m

+Bij(n) (fi (5 (n—k") = f; (4 (n—k"))) ]|

m

< * K
p s 3140~ 400
+ EjL; |:c — k) fy;?(nfk*)
<rllz -yl (18)

HenceF is a contraction. It follows that equation (8) has a unigupseudo almost
periodic sequence which satisfies
o (L)
|z —2f < o,
r
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Let y be any sequence satisfying equation (8). Consigler) = z*(n) — y*(n), then we
get

Qi(n+1) = +ZDU )~ £ (yE ()
Eij(n)(f; (2§ (n—k") = f; (v (n—k7))). (19)

Taking modulus both side one have

Qi(n + 1) < C7|Qi(n)| +ZD Li1Q; (n |+Z 5Li1Q;(n — k7).
DefineQ(n) = maxi<i<m |Q:(n)|, we have

[Qn+1)| < CFQ(n |+ZD:;L Q(n Z n) <rQ(n).  (20)

By induction we have
Q(n) <r"Q(0).
Hence
lz¥(n) — yF(n)] -0 asn — oo.

Thusz is a uniquek-pseudo almost periodic sequence solution of (8) whichabajly
attractive. O

Theorem 2. Suppose the assumptions (A1), (A2) holds. There exists a unique k-pseudo
almost periodic sequence solution of (8) which is exponentially attractive, if

m

—kaj L

1r§r}%>§n{e Jrzlk(b” +C”)L]} < 1.
]:

Proof. Let = be the uniqué-pseudo almost periodic sequence solution gibe a arbi-
trary sequence solution of (8). Dend¢n) = z*(n) — y*(n), we get

Bi(n +1) = () +>_[D 2§ (n) = £;(y5 (n)))

j=1

+ Eij(n) (fj (xj (n— ku)) — fj (yf(n - ku))ﬂ
Letg;(®;(n)) = fj(xF(n)) — f;(y} (n)), then we have

m

Bi(n+1) = +ZDU §(n) + Eij(n)g; (®;(n — k%))
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Using induction we have,

n m n n
=[[cie0+> > [ Cin)[Dij(n—1)g;(®;(n—1))
k=0 j=11=0 k=n—I+1 .
(nt+1)k (nt Dk
— [ ai(u)du m "7 — [ aj(u)du
—e o T 0) 4303 e v (D (n—1)g; (@ (n—1))
j=11=0 .
+E”(nfl)g](®j(nflfk ))]
" e
=e 0 30
m n (n—141)k (n}l)k
— a;(u)du
+ K / bij(s)e  * d5> 9i(®;(n 1))
j=11=0 (nl)k
(n—=I4+1)k (n+1)k
— [ ai(u)du .
+ cij(s)e = ds |g;(®;(n—1—k"))|. (21)
(n=0)k
Taking the norm both side we have,
(n+1)k
- [ ai(u)du
|®i(n+1)]<e © @i (0)]
m n ("*lJFl)k* _ (nj‘l)k a;(u)du
+ / bie (U ds | Lj|®,(n —1)]
J=11=0 L\ T
n—I+1)k (n+1)k
( U - [ ai(u)du
+ / cije (DR ds | L;|®,;(n—1—Fk")]
(n=0)k

m n
< e UKD (0)] + > kb L Y e | Di(n — 1)
j=1 =0

+§:kcfjlszn:e_a:lk|q)i(n—l—k*)|. (22)
j=1 =0
Defining
m m
a= 1gi§flm{af}v = klrgnizgin { ;bfjlfj}7 g = klrgr;ag}fn { ;C;‘ij},
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we get

Y 1@i(n+ 1)) < e RS a(0)
=1 =1
m n

+ Z Z (cre™ %D (n — 1)| + aze” *|D;(n — 1 — k¥)]).
i=11=0
Assuming that
m
Zn+1) =Y |®i(n+1)],
i=1
we have
m n
z(n+1) < emalntbk Z z(0) + (are™ " 2(n — 1) + aze™™z(n — 1 — k¥)).
i=1 =0
Define

Vin+l)=e* ”*UkZV Z e z(n—1) + ase”z(n— 1 — k%))

=0
andV(0) = z(0) for n > 0. Itis easy to note that

V(n) > z(n), V(n)>z(n-—k") forall n>0.

kY (n) + aqz2(n) + anz(n — k¥)

e
< (e*“k + oy + ag)V(n) < (e*“k + oy + ag)nH

V(0). (23)

Assuming(y = (e~ 4+ a1 + az), one get:(n + 1) < (I 2(0), finally we have

m

Dl ) —yfn)| < ek (0) — yf(0)[¢5-
=1 =0

Thusy converges exponentially to the unigkipseudo almost periodic sequence solution
x if

—ka* * *
 max {e i+ Zk(bij + c,t-j)L]} <1

j=1
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Fork = 1 we can easily observe that the discrete analogue of (3) wllasvk,

(n41) (n+1)

zi(n+1) = zi(n)e / aq,(,u)du / <Zb” s)f;(zj(n))

n
(n+1)
— [ ai(u)du

+ Z cij(s)fi(zj(n — k%)) + Iz-(s)>e s ds. (24)

From Theorem 1 and Theorem 2 it is easy to generalize thetsefsulpseudo almost
periodic sequence solution.

Theorem 3. Suppose (A1) and (A2) holds. There exists a unique pseudo almost periodic
sequence solution of (24)which is globally attractive, if

m 670’:)
@ 71/4 1.
max qe +Z L <

K2

Theorem 4. Suppose (A1) and (A2) holds. There exists a unique pseudo almost periodic
sequence solution of (24) which is exponentially attractive, if

m
% b* 1.
11;1%)5” { + Z + c } <

4 Example

We consider the following pseudo almost periodic cellukunmal network,

21(t) = — (2 + sin V2t + #)ml(t) +0.2sint f(z2(t))
+0.2f (1 (t — 0.1)) + 2sin v2t,
Fa(t) = —(4 + cos)za(t) + 0.2( Gt + - JitQ)f(ml(t))

+0.2f (22t — 0.1)) + 2 cos V/3t,

(25)

where

1

al(t) = 2+Sln\/§t+ m,

as(t) =4 + cost,

1
bio = 0.2sint, b21—02(cost+cosx/_t+1+t2)

€11 =c20 = 0.2, I =2sinV2t, 2cosV/3t.
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Itis easy to verify that these functions are pseudo almastgie. Consider the following
nonlinear activation functiong;(z) = f(x) = tanh(z), ¢« = 1,2. The discrete time
analogues are

1 ((n + 1)k:) = C1(n)z1(nk) + D12 tanh 2o (nk)

+ By tanh s (n {0—;})1@) + Fi(n),
22((n + 1)k) = Co(n)ea(nk) + Da; tanh o1 (nk)

+ Bt (- [22])) o

We have outl; = 1,7 = 1, 2, and the constants are as follows,

(26)

(n}l)k( V2 )d (n}l)k( 1
_ 2+4sin vV2t+—L)dt B tcost) dt
Cl (n) ¢ "k e ) CQ(?’L) =€ nk ’

(n+1)k (771);;( e -

- 24-sin v/ 2t+ —5-) dt

Dia(n) = / 0.2 sin se s (1+t2) ds,

nk

(n+1)k (n«}l)k( s -

- 24-sin vV/2t4+ — 5~ ) dt

Eii(n) = / 0.2¢e s (1+2) ds,

nk

(n+1)k (n}l)k( . |

- 2+4sin V2t+—L5) dt

Fi(n) = / 2sin v/2se s (1+t2) ds,

nk

(n+1)k (n}m( |

1 - 4+4cost) dt
Dy (n) = / 0.2( coss + cos v2s + e J ds,
(1+s2)
nk
(n+1)k (n+1)k
— [ (4+cost)dt

Ess(n) = / 0.2¢ = ds,

nk

(n+1)k (n?)k( )

- 44-cost) dt

Fy(n) = / 2 cos V/3se s ds.

nk

We also have

Cr < e 2k, C; < e 3k,

* 1 - * 1 -
D12§1—0(1*€ 2k), DQISE(].*G 3k),

* 1 - * 1 -
Eugl—o(lfe k), Egzgﬁ(ke ),
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2 .
Fr<(1—e?), F5< 5(1 —e ).
We can easily observe that
Ci+Dig+Ef <1, Ci;+Di+FEs<1.

Thus from Theorem 1, there exists a unique k-pseudo almogidie sequence
solution of (16). Next we calculate

e* 4 k(bry + c12) < e R 4 E(0.2+0.2) = e 4 0.4k
and

e 4 k(b1 + 22) < e 4 R(0.640.2) = e + 0.8k
Thus

max {672]6 + 0.4k, e 3% + O.Sk} <1

for sufficiently smallk. Thus from Theorem 2, there exists a unique exponentiahgat
tive k-pseudo almost periodic sequence solution of thealewatwork model (26).
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