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Abstract. This paper investigates the influence of both viscous and joules dissipation on
the problem of magnetohydrodynamic flow past a stretching porous surface embedded
in a porous medium. Analytic solutions of the resulting nonlinear non-homogeneous
boundary value problem in the case when the plate stretches with a velocity varying
linearly with distance, expressed in terms of confluent hypergeometric functions, are
presented for the case of prescribed surface temperature. Numerical calculations have
been carried out for various values of suction parameter, magnetic field, Prandtl number,
Eckert number and Schmidt number. The results show that increases in magnetic
parameter decrease both the dimensionless transverse velocity, longitudinal velocity and
also the skin friction coefficient. Also, formation of thin boundary layer is observed for
higher value of magnetic parameter.
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1 Introduction

The study of two-dimensional boundary layer flow, heat and mass transfer over a porous
stretching surface is very important as it finds many practical applications in different
areas. To be more specific, it may be pointed out that many metallurgical processes
involve the cooling of continuous strips or filaments by drawing them through a quiescent
fluid and that in the process of drawing these strips are sometimes stretched. Viscous
dissipation changes the temperature distributions by playing a role like an energy source,
which leads to affected heat transfer rates. The merit of theeffect of viscous dissipation
depends on whether the plate is being cooled or heated. Apartfrom the viscous dissipation
in MHD flows, the Joules dissipation also acts as a volumetricheat source. Heat transfer
analysis over porous surface is of much practical interest due to its abundant applications.
To be more specific, heat-treated materials traveling between a feed roll and wind-up
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roll or materials manufactured by extrusion, glass-fiber and paper production, cooling of
metallic sheets or electronic chips, crystal growing just to name a few. In these cases,
the final product of desired characteristics depends on the rate of cooling in the process
and the process of stretching. In view of all these aspects, the present work deals with
the effect of viscous and Joules dissipation on MHD flow, heatand mass transfer over a
porous surface embedded in a porous medium.

Recently, attention has been made on the effect of transversely applied magnetic
field on the flow of electrically conducting fluids with various properties associated with
the interplay of magnetic fields and thermal perturbation inporous medium past vertical
plate find usual applications in astrophysics, geophysicalfluid dynamics and engineering.
Researches in these fields have been conducted by many investigators. For example,
analytical results were carryout by Vajravelu and Hadjinicolaou [1] who took into account
the effects of viscous dissipation and internal heat generation. An analysis of thermal
boundary layer in an electrically conducting fluid over a linearly stretching sheet in the
presence of a constant transverse magnetic field with suction or blowing at the sheet was
carried out by Chaim [2]. The viscous and joules dissipationand internal heat generation
was taken into account in the energy equation.

Very recently, the viscous and joules dissipation and internal heat generation was
taken into account in the energy equation. Sajid et al. [3] investigated the non-similar
analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching
sheet. He found that the skin friction coefficient decreasesas the magnetic parameter
or the third grade parameter increases. A mathematical analysis has been carried out on
momentum and heat transfer characteristics in an incompressible, electrically conducting
viscoelastic boundary layer fluid flow over a linear stretching sheet by Abel et al. [4].
A numerical reinvestigation of MHD boundary layer flow over aheated stretching sheet
with variable viscosity has been analyzed by Pantokratoras[5].

The problem of viscous dissipation, Joule heating and heat source/sink on non-Darcy
MHD natural convection flow over an isoflux permeable sphere in a porous medium is
numerically analyzed by Yih [6]. The work of Sonth et al. [7] deals with the effect
of the viscous dissipation term along with temperature dependent heat source/sink on
momentum, heat and mass transfer in a visco-elastic fluid flowover an accelerating
surface. Chen [8] examined the effect of combined heat and mass transfer on MHD free
convection from a vertical surface with ohmic heating and viscous dissipation.

Very Recently, the effect of viscous dissipation and Joule heating on MHD free
convection flow past a semi-infinite vertical flat plate in thepresence of the combined
effect of Hall and non-slip currents for the case of power-law variation of the wall tem-
perature is analyzed by Abo-Eldahab and El Aziz [9]. In 2005,Tak and Lodha [10]
analyzed the flow and heat transfer due to a stretching poroussurface in presence of
transverse magnetic field including heat due to viscous dissipation. The effects of viscous
dissipation on natural convection flow over a sphere in the presence of magnetic field and
heat generation for an electrically conducting fluid have been investigated theoretically
by Alam et al. [11]. Barletta and Celli [12] investigated themixed convection MHD flow
in a vertical channel with Joules and viscous dissipation effects. The study of nonlinear
hydromagnetic flow and heat transfer due to a stretching porous surface with prescribed
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heat flux and viscous dissipation effects was analyzed by Ganga et al. [13]. Hence the
present study investigates the effect of viscous and Joulesdissipation on MHD flow in a
porous medium with heat and mass transfer

2 Mathematical analysis

Two-dimensional, nonlinear, steady, MHD laminar boundarylayer flow with heat and
mass transfer of a viscous, incompressible and electrically conducting fluid over a porous
surface embedded in a porous medium in the presence of a transverse magnetic field
including viscous and Joules dissipation is considered forinvestigation. An uniform
transverse magnetic field of strengthB0 is applied parallel toy-axis. Consider a polymer
sheet emerging out of a slit atx = 0, y = 0 and subsequently being stretched, as in
a polymer extrusion process. Let us assume that the speed at apoint in the plate is
proportional to the power of its distance from the slit and the boundary layer approxi-
mations are applicable. In writing the following equations, it is assumed that the induced
magnetic field, the external electric field and the electric field due to the polarization of
charges are negligible. Under these conditions, the governing boundary layer equations
of momentum, energy and diffusion with viscous and Joules dissipation are

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
−

σB2
0u

ρ
−

ν

Kp
u, (2)

u
∂T

∂x
+ v

∂T

∂y
=

K

ρ Cp

∂2T

∂y2
+

ν

Cp

(

∂u

∂y

)2

+

(

σB2
0

ρCp

)

u2, (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
. (4)

The boundary conditions are

u = axm, v = vw(x), T = Tw(x) = T∞ + T0x
n,

C = Cw(x) = C∞ + C0x
n at y = 0,

u = 0, T = T∞, C = C∞ at y → ∞.

(5)

Hereu, v are components of velocity components in thex andy directions,ν is kinematic
coefficient of viscosity,Kp is permeability of the medium,σ is electrical conductivity of
the fluid,B0 is applied magnetic field,ρ is density of the fluid,T is temperature of the
fluid, Tw is wall temperature,T∞ is temperature far away from the surface,K is thermal
conductvity,Cp is specific heat at constant pressure,C is species concentration of the
fluid, Cw is species concentration near the wallC∞ is species concentration of the fluid
away from the wall,D is diffusivity coefficient,a, T0 andC0 are dimensional constants,
m is index of power-law velocity and n is index of power-law variation of wall temperature
which is constant.
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As in [10], we introduce the following similarity transformations

Ψ(x, y) =

[

2νxU(x)

1 + m

]1/2

F (η),

η =

[

(1 + m)U(x)

2νx

]1/2

y,

vw(x) = −λ

√

νa(m + 1)

2
x(m−1)/2,

n = 2m,

(6)

whereλ > 0 for suction at the stretching plate andΨ is the stream function.

The velocity components are given by

u =
∂Ψ

∂y
, v = −

∂Ψ

∂x
. (7)

It can be easily verified that the continuity equation (1) is identically satisfied and intro-
duce the non-dimensional form of temperature and the concentration as

θ =
T − T∞

Tw − T∞

, h =
C − C∞

Cw − C∞

. (8)

Now the equations (2) to (4) become

F ′′′ + FF ′′
− βF ′2

−

(

R−1
1 + M2

)

F ′ = 0, (9)

θ′′ + PrFθ′ − 2βPrF ′θ = −Ec Pr
[

F ′′2 + M2F ′2
]

, (10)

h′′ + ScF h′
− Sc mhF ′ = 0 (11)

with boundary conditions

F (0) = λ, F ′(0) = 1, F ′(∞)= 0,

θ(0) = 1, θ(∞) = 0, (12)

h(0) = 1, h(∞) = 0,
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where

β =
2m

m + 1
stretching parameter,

M2 = v
2σB2

0

ρa(1 + m)
magnetic parameter,

R1 =
Kpa

ν
permeability parameter,

Pr =
µCp

K
Prandtl number,

Ec =
a2

CpT0
Eckert number,

Sc =
ν

D
Schmidt number.

Equations (9), (10) and (11) with boundary conditions (12) constitute a non-linear
BVP, the analytical solution of which is not feasible for general value of parameterβ.
However, an analytical solution of these equations can be obtained whenβ = 1
(i.e. m = 1), as follows.

It may be noted that, whenβ = 1 or m = 1, the velocity of the stretching plate is
ax, i.e. the plate stretches with a velocity varying linearly with distance. In this case, the
equations (9), (10) and (11) are reduced to

F ′′′ + FF ′′
− F ′2

−

(

M2 + R−1
1

)

F ′ = 0, (13)

θ′′ + Pr F θ′ − 2Pr F ′θ = −Ec Pr
[

F ′′2 + M2F ′2
]

, (14)

h′′ + ScF h′
− 2Sc hF ′ = 0 (15)

with the boundary conditions given in (12).
Equation (13) with boundary conditions (12), is independent of (14) and admits a

solution of the form (following Chakrabarti and Gupta [14])

F (η) = A + Be−αη,

where

A =
α2

− (R−1
1 + M2)

α
, B =

−1

α
, α =

λ +
√

λ2 + 4(1 + M2 + R−1
1 )

2
.

Hence the exact solution is

F (η) =
1

α

[

α2
−

(

R−1
1 + M2

)

− e−αη
]

. (16)

In order to solve energy equation (14), a new independent variableξ is introduced

ξ =
−Pr

α2
e−αη. (17)
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Using (16) and (17), equation (14) yields

ξ
d2θ

dξ2
+ [(1 − K1) − ξ]

dθ

dξ
+ 2θ = −

Ecα
2(α2 + M2)

Pr
ξ (18)

with corresponding boundary conditions

θ(ξ = 0) = 0, θ

(

ξ =
−Pr

α2

)

= 1,

whereK1 = Pr
α2 [α2

− (M2 + R−1
1 )]

Equation (18) is confluent hypergeometric equation with non-homogeneous part, the
solution of which may be expressed as follows

θ(ξ) = −

Ec α2(α2+M2)

2Pr(2−K1)
ξ2 +

[

1+ Ec Pr(α2+M2)
2α2(2−K1)

]

ξK1

1F1(−2+K1; 1+K1; ξ)
(

−Pr
α2

)K1

1F1

(

− 2+K1; 1+K1;
−Pr
α2

)

.

Functionθ in terms of variableη can now be expressed as

θ(η) = −

Ec Pr(α2 + M2)

2 α2(2 − K1)
e−2αη

+

[

1 + Ec Pr(α2+M2)
2 α2(2−K1)

]

e−αK1η
1F1

(

− 2 + K1; 1 + K1;
−Pr
α2 e−αη

)

1F1

(

− 2 + K1; 1 + K1;
−Pr
α2

) . (19)

The dimensionless surface heat transfer rate may be derivedas

θ′(0) =
Ec Pr(α2 + M2)

α(2 − K1)
− αK1

[

1 +
Ec Pr(α2 + M2)

2α2(2 − K1)

]

+
Pr

α

(

K1 − 2

1 + K1

)

[

1+ Ec Pr(α2+M2)
2α2(2−K1)

]

1F1

(

− 1+K1; 2+K1;
−Pr
α2

)

1F1

(

− 2+K1; 1+K1;
−Pr
α2

) . (20)

To obtain the solution of equation (15), a new variableζ is introduced which is
defined as

ζ−1 = −

α2eαη

Sc
.

Now equation (15) can be written as

ζ
d2h

dζ2
+

dh

dζ
[(1 − K2) − ζ] + 2h = 0, (21)

whereK2 = Sc
α2 [α2

− (R−1
1 + M2)] with the corresponding boundary conditions

h

(

ζ =
−Sc

α2

)

= 1, h(ζ = 0) = 0. (22)
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The solution of equation (21) subject to the boundary condition (22) is obtained in
terms of confluent hypergeometric function

h(ζ) =
ζK2

1F1(K2 − 2; 1 + K2; ζ)
(

−Sc
α2

)K2

1F1

(

K2 − 2; 1 + K2;
−Sc
α2

)

.

Functionh in terms of variableη can now be expressed as

h(η) =
e−αK2η

1F1

(

K2 − 2; 1 + K2;
−Sc
α2 e−αη

)

1F1

(

K2 − 2; 1 + K2;
−Sc
α2

) . (23)

The dimensionless surface mass transfer rate may be derivedas

h′(0) = −αK2 +
Sc

α

(

K2 − 2

1 + K2

)

1F1

(

K2 − 1; 2 + K2;
−Sc
α2

)

1F1

(

K2 − 2; 1 + K2;
−Sc
α2

) . (24)

The non-dimensional form of skin-friction at the wall can becalculated as

τ∗ = µ

(

∂u

∂y

)

y=0

= F ′′(0) = −α. (25)

3 Results and discussion

In order to have a physical point of view of the problem, numerical calculations were
carried out for different values of suction parameterλ, magnetic parameter (M2), Prandtl
number (Pr), Eckert number (Ec) and Schmidth number (Sc).

The dimensionless transverse and longitudinal velocity profiles for different values
of magnetic parameter with constant suction parameter and permeability parameter are
presented in Figs. 1 and 2. It is observed that the velocity rose steadily and then converge
closely for transverse velocity but different trend is noticed in the longitudinal velocity and
also observed that both the transverse and longitudinal velocity of the fluid are decreased
for increase in the value ofM2, since the magnetic field exerts a restraining force on the
fluid which tends to impede its motion.

The influence of suction parameter over the non-dimensionaltransverse and longi-
tudinal velocity profiles are shown in Figs. 3 and 4. It is seenthat the effect of suction
parameter enhances the transverse velocity but it decelerates the longitudinal velocity.
However the trend of suction effect over longitudinal velocity is different from the trans-
verse velocity.

In the subsequent analysis, the temperature profiles are discussed due to its primary
importance in astrophysical environments. Figs. 5–8 display the temperature profiles
for different values suction parameter, magnetic parameter, Prandtl number and Eckert
number. Fig. 5 shows that higher value of magnetic parametercaused a rise in tempera-
ture. But increase in the suction parameter recorded a decrease in temperature (which is
shown in Fig. 6). An increase in Prandtl numberPr is associated with a decrease in the
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temperature distribution which is displayed in Fig. 7. We observed from Fig. 8 that an
increase in Eckert numberEc enhances the temperature because the heat energy is stored
in the liquid due to the frictional heating. Comparing the Figs. 5–8 it is observed that the
formation of the thin boundary layer is observed far away from the wall for higher values
of magnetic parameter.

In Figs. 9–11, the behavior of the dimensionless concentration is presented for var-
ious material parameters;M, λ andSc. It is noticed that the concentration of the fluid
increase with increase of magnetic parameter as shown in Fig. 9. The concentration of
the fluid decreases with increase of suction parameter (which is evident from Fig.10).
Fig. 11 display the effect of Schmidt numberSc, on the concentration profile. Increase
in Schmidt number decreases the concentration. Comparing the Figs. 8 and 11, it is
observed that while the effect of Eckert number is to enhancethe temperature, the effect
of Schmidth number is to decrease the concentration.
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Variation in skin friction coefficient against magnetic parameter and suction parame-
ter are displayed in Figs. 12 and 13. It is noted that the skin friction decreases as magnetic
parameter increases. The effect of suction is to decrease the skin friction coefficient
(which is evident from Fig. 13). The rate of heat transferθ′(0) as a function of the
Eckert number for different magnetic parameter are shown inFig. 14. It is observed
that the rate of heat transfer enhances for increase in both magnetic parameter and Eckert
number. Fig. 15 illustrates the variation of rate of heat transfer θ′(0) against theEc

for different suction parameter. The rate of heat transferθ′(0) of the fluid reduces with
increase of suction parameter. In Fig. 16, the effect of Eckert numberEc over the rate
of heat transferθ′(0) for different values of Prandtl numberPr is demonstrated. It is
apparent that increase inPr decreases the rate of heat transferθ′(0).
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4 Conclusion

The effects of viscous and joules dissipation on MHD flow withheat and mass transfer
past a stretching porous surface embedded in a porous mediumis analyzed in the present
study. In the absence of porous medium, Joules dissipation and mass transfer these
results agree quantitatively with the earlier result of Takand Lodha [10]. The important
conclusions of the study are summarized below:

• The effect of magnetic parameter is to decrease both the dimensionless transverse
velocity, longitudinal velocity and also the skin frictioncoefficient.

• In the presence of viscous and Joules dissipation, the effect of magnetic parameter is
to increase the temperature, concentration and the heat transfer rate.

• While the effect of suction parameter is to decrease the non-dimensional longitudinal
velocity, temperature, concentration, skin friction and rate of heat transfer, its effect
is to accelerate the dimensionless transverse velocity.

• Prandtl number reduces both the temperature distribution and heat transfer rate for
its increasing values.

• Formation of thin thermal boundary layer is observed faraway from the plate for
higher value of suction parameter.

• The flow of heat becomes faster when the Eckert number increases. An increase in
Schmidt number results in lowering the concentration distribution steadily.
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