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Abstract. Estimation of the distribution function under sampling avotoccasions
with a simple random sampling design on each occasion istigaed. Composite
regression and ratio type estimators are considered, ualngs of the study variable as
auxiliary information obtained on the first occasion. Théirgl estimator, in the sense
of minimal variance, is also obtained. A simulation studyséd on the real population
data, is performed and the proposed estimators are combpgr@dimple estimator for a
distribution function.
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1 Introduction

Consider a finite populatiof = {1, ..., N}. Lety be the study variable, defined on
the populatiori/ and taking valuegy., ..., yn}. The values of the variablgare not
known. We are interested in the estimation of the finite pafah distribution function
of the study variablg

A.

where for any given number (—oco < z < ), thesetd, = {l e U : y < z}, and
#A. denotes the number of elements in the4g(see [1,2]). Such a functiaf, (z) may
be of considerable interest whgns a measure of income and the population units are
individuals or households.

In sample surveys, supplementary information is often irs#te estimation stage to
increase the precision of estimators of the population noeaotal. Sincef’(z) is simply
a population proportion for any given value gfusual methods for estimating the means
such as the ratio and regression estimators taking advaofaxiliary information can
be used. Recently, several estimators of the populatidriliison function have been
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proposed, using auxiliary information in the estimatioaggt (see [3-7]). Most of the
studies related to a distribution function have been dgesldy assuming simple random
sampling or a stratified simple random sampling design.

When the investigation deals with variables such as inca@ometimes the same
population is sampled repeatedly on several occasiondarshaime study variable is mea-
sured on each occasion. Repeated sampling of populatioguiteé.common sampling
procedure in the official statistics.

Cochran (see [8, chapter 12]) considered sampling on twasiaes, using random
sampling at each of the occasions. He has found that cursémtages might be improved
by using the first occasion data. Some problems of estimatwstauction for sampling
on two occasions have been discussed (see [8-10]). In alittlthes, the parameter
estimated is a mean.

In this paper, we investigate sampling on two occasions;euinating on the estima-
tors of the distribution function. The aim of this paper isstfi to obtain some estimators
of the distribution function under sampling on two occasiothe ratio and regression
estimators; second, to obtain optimal composite estiradtothe sense of minimizing
the variance of the estimators; third, to investigate hoes sample matching fraction
influences precision of the distribution function estinsatising a sampling scheme on
two occasions, and, finally, to illustrate the theoretieslits by simulation study.

2 Estimation of the distribution function using a scheme of wo
occasions

Suppose we have a finite populatigh= {1, ..., N} of size N, which is assumed to
retain its composition over two-time periods.

Let us denote the study variable on the second occasign &yd the same variable
on the first occasion by with the valuegy;, andz;. Denote byn’ the sample size on the
first occasion.

On the second occasion, two independent samples are drawrhaing matched
with the sample of the first occasion and the other unmatchiéé. matched sample is
a subsample of size:, drawn from the previously selected units, and the unmatched
sample of size, is drawn fromN — n’ remaining units. Thus, the total sample on the
current occasion consists of= m + u units.

So, we have a two-phase sampling scheme. The first-phasdeselnop sizen’ is
drawn according to a certain sampling design witk'), i.e., the probability ok’ being
chosen. The corresponding first and second order inclusinvapilities arer;, 7, for
i,7 €U.

Givens’, on the second occasion, a matched sampl®ef sizem is drawn froms’
according to a certain sampling design, such fifat,|s’) is the conditional probability
of choosings,,,. The corresponding first and second order inclusion prditiebiarer; -,
7T'L'j g’

| The unmatched samplg of sizeu is drawn fromi/ \ s’ = s’¢ in accordance with a
certain sampling design, such thés,, |s") is the conditional probability of choosing.
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The corresponding first and second order inclusion probi@silarer; s, ;. The
whole sample on the current occasion is s,, U s,,.

We are interested in estimation of the finite populationritistion function using
a two occasion scheme, when a simple random sampling desigsed at each of the
occasions.

2.1 Simple estimator

Let us define an indicator variabl€z) with the values

i(z) = .
0, if y; >2, —o00o<z< o0,

i=1,2,...,N,andits totak ., = Zf;l h;(z). Then the distribution function of the
study variabley can be expressed as:

Fy(s) = 20 NZh 1)

The whole second phase sampleonsists of two samples,, ands,,, for sampling
on two occasions each of them being a two-phase sample:

’
U— s — sp,

U—-U\S =5°— s,.

Under two-phase sampling, Sarndal et al. (see [2, chaptéa®e shown, that the
usual Horvitz-Thompson type estimator of the populatidaltoannot always be used in
practice, because the inclusion probabilities, assatiaiéh the second-phase sample,
should be known for each first-phase sample. The use* aéstimators is a possible
alternative, proposed by Sarndal et al. (see [2, chap}gid®the problem of estimation of
the population total. Using this idea, Rueda et al. (se€)[1dJe presented the quantities

i =P(s’: i€ 8)P(sm:i €sm | &) +P(s i€ 8)P(sy: i€ sy |5
= 7r;7ri|s« + ﬂgcwi‘s/c, 2)
wherern)© =1 — 7.

Using the samples, ands,,, the following unbiased™* estimator of the distribution
function (1) can be constructed

ﬁy(@:%Zhﬂ(z NZ NZ

1€Sm ISEM

B Z ! i Ti|s! Z T T|se z) 3)
N o 7T7TZ‘S/ N T W

1€ Sm ISEM
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for any sampling designs on both occasions.
Let us introduce new notation:

/
7T'7Ti\s/ . ~ hZ(Z) .
dyi = 0 € Sy Tney = E ———, unbiased
i 1€ Sm ﬂ-iﬂ-i‘sl
/c
T, ’/T,L"S/c . ~ ]/LZ(Z) .
dyi = ~—1 i€ 5y, Ty, = § - , unbiased
i ISEM Tri ilse

The coefficientsly;, d2; do not depend on for design of a simple random sample
on each occasions, for a two-occasion sampling scheme

dh‘:dl, ’ZGSm, d2i:d2, 1 € Sy.

Under the new notation, introduced before, the estimatdistfibution function (3)
can be expressed as

~ 1 . ~ 1  ~
Fy(z) = Ndlth(z)m + Nthh(z)u~ 4)

Assume that’ is a simple random sample from the populafiband its complement
§'¢ is also a simple random sample from the populatios,, is a simple random sample
from s’ and s, is a simple random sample fror¥. Then the first and second stage
inclusion probabilities are calculated as follows:

, n ,  n'n—1 m m(m —1)
T = AN T = NT AT 10 7TZ Sl = BVE 7TZ-'SI = YRR
‘N Y NN-1 ! n’ dl n'(n' —1)
e N-—n u u(u—1)
T = y o Tlste = 77— s Tjls'e = 7 7 )
N N-—n (N —-n/)(N—-n'-1)
. , e nm N-n u m u n
S A T e A A

and the coefficientd; andd, are:
di=—, doy= 2
n

In the case of simple random sampling, on each of the two aotsthe estimator (4)
of the distribution function can be rewritten as

~ m 1~ u 1l ~ m-— U——
y(2) = Eﬁth(z)m + Eﬁﬁh(z)u = gh(z)m + Eh(z)m %)
where
— 1 — 1
h(2)m = — > hiz), B(z), = " > ha(2).
1E€ESm 1ESy

318



Estimation of a Distribution Function under Sampling on T@eccasions

In the case of simple random sampling, on each of the two amtaighe resulting
sample of size» = m +w is also simple random sample. The variaWee(F), (z)) of the

distribution function, (= )estlmatorFy( z) (5) is expressed:

n

2
Var(ﬁy(z)) = (1 - %) M, (6)

where

1 al 2 1 &
S;QL(Z) T N_1 Z (h,-(z) - Mh(z)) y Mh(z) = N th(z)
i=1 i=1

Remark 1. We use the unbiased variance estimaI/Ef(ﬁy(z)) of the distribution func-
tion estimator (5) by replacingzl(z) in variance expression (6) with

o = g 20 (i) )% R, = - > h2)

i€s i€s

2.2 Regression type estimator

In sample surveys, auxiliary information is often used ateltimation stage to increase
the accuracy of estimators. Using sampling on two occasimgan construct distri-
bution function estimators with:; values from the first occasion sample as auxiliary
information.

Let us define a new indicator varialjéz) with the values

(2) if z; <z,
i(2) = .
g 0, if ;> =z,

i=1,2,...,N, and the totat ;) = Zf;lgi(z). Then the distribution functio’, (z)
can be expressed as:

Fi(s) = 2 Nzgz )

Using the first occasion samptéand the matched sampilg,, we can form a regression
type estimator of the distribution function

. 1 e 1. 1 - _
Fyfn?(z) - Nth(g) Nth(z)m + Nb(ﬁg(z)n’ - tg(z)m)7 (8)

with

~ hz 7 A ?
th(z)m = Z 771'75;5)” g(2)m — Z Tl"gﬂ'—“/’ 9(2), = Z g

1€Sm 1€5m i€s’
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andb is some constant.

A second estimataF,,,(z) of the distribution functiorf), (z) can be obtained from
the unmatched samplg.. It was already introduced in (5).

By a linear combination of?(z) and F,,,(z) we obtain a new type of composite
regression estimator

. 1, 1
Fy(z) = wpta), + (1= ) tnces ©)

wherew is a constanf0 < w < 1). The variance of the terrﬁ:(ej) depends on the

constanb. We can find,,; by minimizing the variancéfar(?,:fj) ).

N
2)g(z i— hi - z 7 - P
bope = 21102 _ iz (i) = ) (90(2) — Hy(e) 10)

2 N
S9(2) > im1(gi(2) — fg(z))?

where

1 & 1 &
i) = Zhi(z)v H(z) = Zgi(Z).
=1 =1

Since the values of indicator variableéz) andg(z) are not known in the population as
usual, we cannot calculate the coefficiégy;, so we need to estimate it from a sample.
The coefficient,,: can be estimated by

b S Dies, (hi(2) ~h(2)n)(6i(2) ~ 9(2),)
s > ice (9:(2) — 9(2),,)?

where

= 3 i(2),

1E€ESm

: (11)

h(z),, has been defined in (5).
In the case of simple random sampling on each of two occasestisnator (9) of

the distribution functiorF, (z), using a two-occasion scheme, can be expressed:

Fyeo(2) = w (R + bopt (9 — 9(3)) ) + (1 = 0)h(3),, (12)
where
Wz)n’ = % Zg’i(z)a @m = % Z gi(z)v

h(z),, andh(z), have been defined earlier by equalities (5).
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Proposition 1. In the case of simple random sampling on each of the two ozessi
an approximate variancé\Var(F;“/(z)) of regression type estimatdr;*?(z) (12) of
the distribution functiorF, (=) is expressed:

AVar(F\yTeg(z)) = wQ%AVar(a:(ef)m) +(1— W)Q%\/ar(?h(z)u)

1 o~
—+ 2(.4](]. — W)FCOV(%\;L(S)M,th(Z)U), (13)

reg 2 n'\ Siz) m\ $hie)
AVar(t;%) ) =N (1_N) o +(1_g) — |,

2
~ 9 U\ Sh(z) Treg 2
Var(in) = N (1 - N) o OV, the.) = ~Nsie,

N N
1 1
S2D(z) “N_1 Z <Di(z) - MD(Z))Q, HD(z) = 3 Z D;(z),
=1 =1

Sﬁ(z) has been defined earlier {6) and D, (z) = h;(2) — bopgi(2).

Proof. The variance of the composite regression type estimataq@als

~ 1 . 1.
Var(F;eg(z)) = wQWVar(ﬁ'L(f)m) +(1- w)QWVar(th(z)u)

1 N
+2w(l — w)mCov(%\;(ezg)m,th(z)u). (14)

The known approximation of th\éar(i;:(ef)m) (see[2])is

AVar () ) = > (mi; — i)

i,j€U

+E< Z (mijls — Tijsr i) l?i(Z) o )v (15)

ijes’ TiMils' T js’

hi(z) hj(2)

/ /
7

Uy s j

with Di(z) = hi(z) = bopmgi(2). Var(i(),) and covarianc&ov(t;?) tnc),) =
Cov(th(z),.»th(=),) are expressed, respectively, as
t) hi(z) hy;
Var(i) = 37 (o5 - iemy) P )

ij J
i,jEU i J

+E< Z (Tijlsre = ilsrejjsre) o) M) 4o

/c . /C .
ijes'e T, ﬂ-lelc 7Tj 7T]|5/c
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and

Cov(i]9) i) = — Z (), — ml)) hi(z) hj(z)' an

(2) if i%J /
ijeU i j
Replacingr values in (14), (15) by the corresponding values, obtaimedifsim-

ple random sampling design on each of the two occasions, t&noan expression of
approximate variance (13) of the distribution functiorirastor (12). O

Remark 2. We use variance estimat@/’ra\r(ﬁé‘eg(z)) of the composite regression type
distribution function estimator (12), replacib(z) ands%(z) in theAVar(E;’L‘(ej)m) of (13)
by the estimates below

o 1 7

Fom = ——= > (hi(2) = 1(2),,)", h(2),, = % > hil2),

1€ Sm 1€ Sm

~ 1 ~ = 2 = 1 ~
b =1 2 (Di2) = D(2),,)", D(2)y, = — > Dif2),
1€Sm

whereD;(z) = hi(z) — boptgi(2).

In the Var(t4(.), ), $h(») IS replaced by

Fio = 7 3 (i)~ TE,)% T, = 3 hale),

€Sy €Sy

andin theCov(tA,:(ej)m,tAh(z)u), 5h(» IS replaced by

Ry = o 3 (2~ R, R, = - hi(e).

i€s i€s

We use a constant, in the expression of regression type estimator (12) of the
distribution functionF, (z). Its optimal valuev,,; can be found in the sense of minimal
variance (13).

Proposition 2. In the case of simple random sampling on each of the two caessihe
optimal valuev,,: in (12)is expressed:

Var(ty(z),) = Covl(tyi) tn(:),) 18)

Var(?,:(ezg)m) + Var(fh(z)u) - QCOV(EZ(GZQ)M, th(z))

Wopt =

on the two-occasion sampling scheme.
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Proof. DifferentiatingVar(F,“?(z) in (14) with respect to the coefficientand equating
the derivative to zero, we get the optimal valug, of the coefficientv. O

Replacing the coefficient by the coefficienty,,; in the distribution function esti-
matorﬁ;”eg(z) given by (12), we obtain an optimal composite regressioe g&timator
of the distribution function. In the case of simple randommphng on each of the two
occasions:

~ J— J—

Ey0(2) = wopt (B + bopt (900 = 9(),0) ) + (1= wop)h),. (19)

Proposition 3. In the case of simple random sampling on each of the two omessi
the approximate minimal varianc&Var(F, Y .(z))m: Of the regression type estimator

y opt
F;";E]’Dt(z) (19) of the distribution functiorF, (z) is expressed:
- 1 Var; Vary — Cov?
AVar(Fred L 20
Var( y opt(z))wmn N2 (Varl + Va,I‘g . QCOV)’ ( )

~

whereVar, = AVar(t;(ef)m), Vary = Var(tAh(z)u), Cov = Cov(tA;(ef)m,fh(z)u).

Proof. By inserting the optimal value,,: (18) ofw into the expression of approximate
variance (13), we obtain (20). O

Remark 3. The coefficientv,,; depends on unknown variances and the covariance, and
we estimate it by
Var(tp (., ) — COV(tA;(ef)m,tAh(z)u)

Var(t; ¢4 ) + Var(tncz),) — 2Cov(t ) ne),)

Wopt =

(21)

We use the approximate minimal variance estimmﬁ(ﬁgeg(z))min of the composite
optimal regression type distribution function estimatb®)(replacingVar;, Var,, and

~

Cov in AVar(ﬁ;(ef)m),,m” of (20) by the corresponding estimatdrsr;, Var,, andCov.

2.3 Ratio type estimator

A particular case within the regression type estimator érttio type estimator. Dis-
tribution function estimators of the regression type anibriype differ in the choice
coefficientd in (8).

Using the first occasion sampiéand the matched sampig,, we can form a ratio
type estimator of the distribution function

Fyn(2) = NA?L(z)m = lo). B2), (22)
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where
~ gi(z) 3 thz)m
9(2) Z o ’
e T FOM
~ hi(z)  ~ 9i(2)
th(z)m = Z T e = Z pr
€Sy 0 ils’ i€sm T ils’

which corresponds to the choite= 2&m — R(2).

tg(2)m
A second estimatoF,,(z) (5) of the distribution functionf,(z) can be obtained
from the unmatched sampig. By linear combination of7/, () andFy,(z), we obtain
a new composite ratio type estimator

nr 1 ng 1~
Fy (Z) = )\Nth(z)m + (]. — )\>Nth(z)u’ (23)

where is a constanf0 < A\ < 1).

In the case of simple random sampling on each of the two ocmessithe ratio
type estimator (23) of the distribution functidfj,(z), using the two-occasion scheme
is expressed:

Fy(2) = NG, R(:) + (L= N ), (22)
where

=~ ; hz z

R(Z) _ Zzesm ( )

Ziesm gl(z) 7
\is a constant0 < \ < 1), andg(2),,,, h(z), have been introduced in (12).

Proposition 4. In the case of simple random sampling on each of the two ceessi
the approximate variancéVar(F}(z)) of the ratio type estimatof () (24) of the
distribution function#),(z) is expressed:

~ 1 -~ 1 —~
AVar(FyT(z)) = )\QWAVar( Z(Z)m) +(1- )\)QFVar(th(z)u)

1 o n
+2M(1 - /\)WCOV(%(ZWth(z)«r)’ )
where
_ , n' Si(z) m Sé(z)
AVar (f, ) ) = N?| (11— ~) o )= ) (26)
N N
) 9 Z'* hL(Z)
2 — i - o &
shio = o1 20 ()~ REai)" Rle) = SRS
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COV(tZ(Z)m 5 th(z)“’) = 7NS}2L(Z)’
Var(ty(,),) and 57, are given in(13)and (6).

Proof. The variance of the composite ratio type estimator (23) isqua
~ 1 . 1 .
Var(Fy (z)) = )\QWVar(t;L(Z)m) +(1- A)QmVar(th(z)u)
1 . —~
+ 2)\(1 — )\)WCOV (t;z(z)m B th(Z)u) . (27)

The approximation o¥ar(#: h(z),,) IS given:

" hz z h,j z
AVar(ty .y ) = Z (xl; — mie)) (2) hj(z)

ij ity / /
ijEU T T
Ri(2) R;(2)
B D (T — mieme) ; (28)
ijes’ TiMils' T js’

with Ri(z) = hi(2) — R(z)gi(2). R(z) defined in (24). Var(ty(.),) and
Cov( h(2)m th(z) )= Cov(th (2)m th( .) are givenin (16) and (17).

Replacmgw values in (27), (28) by the corresponding values, obtained simple
random sampling design on each of the two occasions, we gekjaression of the
approximate variance (25) of the distribution functiorirastor (24). O

Remark 4. We use variance estimaté/fﬁ(ﬁr( )) of the composite ratio type distri-

bution function estimator (24) replacmﬁ( ) sR( ) in the AVar(t/ ) of (25) by the

h(z)m
Correspondlng estimates

B = 7 2 (i) - BE)ai(2)”, R(e) =

1€Sm

Dics,, Mil2)
ZiESm gt(Z) ’

§fb(z)m are given in Remark 2.

The estimatorsVar(f,(.),) and @(?Z(Z)m Ah(z)) = (fo\v(iz(ef)m ,th(z),) have
been obtained for the variance estima¥er (£ (z)).

Using the same ideas as for obtaining a composite optimedssipn type estimator
of the distribution function, we obtain a composite optimadio type estimator of the dis-
tribution function. In the case of simple random samplingdach of the two occasions:

~

e

F;opt( ) = )‘optg(z)n'R(Z) + (1 - )‘opt)N w (29)
where
Var(?h(z)u) - COV(&(Z)MJA}L(Z)U)
)\opt =

Var(?g(z)m) + Var(tAh(z)u) — ZCOV(?Z(Z)M,?,L(Z)U)'
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The approximate minimal varianc&ar(F v opt (2))min Of the ratio type estimator

Er (2) (29) of the distribution functiotF), (z) is expressed:

y opt

i 1 Var; Vary — Cov?
Var (Fy opt( ))min = N2 <Var1 + VaI‘Q — 2(]OV>7 (30)

whereVar; = Var(t] h(z)m ) Var2 = Var(tAh(Z)i) Cov = Cov(t} h(2)m th(z)u).
The coefﬂment}\opt depends on unknown variances and covariance, and we have to
estimate it by

)

S Var(?h(z) ) — Cov( b th(z)u> (31)
opt — —/— =~ 17 4 '
Var(t;;(z)m) + Var(th(z)u) — ZCOV(tz(Z)m;th(z)u)

Finally, we use the minimal variance estima@(ﬁr( ))min Of the composite
optimal ratio type estimator (29) of the distribution fuutm:t repIaC|ngVar1, VaI'Q, and
Cov in Var(t ,’L (ej) )min Of (30) by the corresponding estimatdfsr, Vary, andCov.

3 Simulation study

In this section, we present a simulation study for the colsparof the performance of
several distribution function estimators using the schefrte/o-occasion sampling, with
simple random sampling on each of the two occasions.

We study real household data of Statistics Lithuania. Tadyspopulation consists
of N = 2932 households. The data are available for two occasions. Thablas of
interest,y andx, are the total household gross income; the valygshe first occasion)
refer to the population in 2005, the valugqthe second occasion) refer to the population
in 2006. The correlation coefficient between the variahleand y in the household
population isg(z, y) = 0.86. It means a strong linear relationship. To construct the
estimatorfy(z), we have chosen the following poinis:

z1 = Koo, 22 =Ko, 23=Kos0, 24=Kors, 25=Kooo,

whereK, is theg-level quantile of the study variabigein the household population.

We have selected® = 10000 samples of size:’” = 200 on the first occasion
under simple random sampling, with different matchingfiats on the second occasion:
n = 2 (m=50,u=150), 2 =1 (m=100,u = 100)andZ = 2 (m = 150, u = 50)
under simple random sampllng as well. For each sample we atenspveral estimators of
the population distribution function: a simple estimaiy(z), ratio and regression type
estimatorsﬁ;(z) andﬁ;‘eg(z), respectively, with the coefficient = 0.5 andA = 0.5, as
well as optimal ratio and regression type estima@j‘gﬂ( andFij,’t( z), respectively,
in the sense of minimizing variance with the optimal coeffittsw,,; and;.

For each estimator, we have calculated estimates of thébdison function of the
study variabley at the pointsKy.19, Ko.25, Ko.50, Ko.75, and Ky 99. Thus, for each
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estimator we have0 000 estimates Oﬁy (Z) for z=Ko.10, Ko.25, Ko.50, Ko.75, and K g0.
For these estimates we have calculated a relative biasiveetaot mean square errors,

and a relative efficiency of the estimators. For each esﬂjm%(z) we define the relative
bias as

N 1 1 &
RB(0,(z)) = 7o 2) <§Z (65 (2) Fy(z))>7

Y

the relative root mean square error as

1 1

B
RMSE (8, (z)) = T\ E Z (65 (2) - Fy(2))?,

where@(f) (z) is thei-th estimate at the point, calculated for the estimatai,(z), the
relative efficiency with

_ RMSE(F(2))

RE (‘gy (Z)) RMSE(@/ (2)) ,

whereRMSE(F,(z)) is the relative root mean square error defined for the simple e
timator F,(z). For each estimator also we define efficieli®, (z)), the ratio of the

RMSE(F,(z)) andRMSE(6,(z)) with the corresponding formulae based variances.
Table 1 illustrates the relative bias of proposed estinsatbithe population distri-
bution function. For non-optimal estimators of a distribatfunction, the relative bias is
decreasing when the level of the population quantile is increasing. The simpie a
regression type estimators,, (z) and F;“(z), respectively, in all cases behave in a

similar way, but in most casd@;eg(z) has the lowest relative bias. The regression type

estimatorﬁ;‘eg (z) is less biased than the ratio type estima?g(z), especially for a low
q level of the population quantile and for a low matching fi@et» /n. The optimal ratio
and regression type estimatofg;)pt(z) andﬁ;fgt(z), respectively, have the highest bias
in most cases.

Table 2 shows a relative root mean square error of estimfiptke real household
population and several matching fractions on the secondstme. As to the efficiency,
measured by the relative root mean square error, the régnetype estimatorr';*(2)

is more efficient than the ratio type estimaﬁj(z), especially for a lowy level of the
population quantile and a low matching fraction. This iskbly due to the specificity
of variablesg(z) andh(z). In most cases, a simple estima®y(z) of the population
distribution function has a high relative root mean squarer@specially for a low match-
ing fraction and a higly level of the population quantile. The estimatdi,,,(») and

-~

F, o5 (2) are usually more efficient in most cases, th@niz) andF*9(z), respectively.

The relative efficiency for the proposed estimatcﬁ;(z), ﬁ;‘eg(z), ﬁ,;‘opt(z),

F,o5:(z) and for the simple estimatd, () of the population distribution function, using

a two-occasion scheme, is presented in Table 3. The estisrfﬁ}gt (2) andﬁ;'(fgt(z) are
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Table 1. Relative biasRB) of estimators

Estimator Ko.10 Ko.25 Ko .50 Ko.7s Ko.90
m 1
m T 1
Fy 0.01148 0.00009 —0.00052 —0.00038 —0.00041
F; 0.02512 0.00394 0.00086 0.00019  —0.00010
E;es 0.01131 0.00077  —0.00009 —0.00013 —0.00046
yopt —0.01278  —0.00287 0.00148 0.00348 0.00376
F;f,z",’t —0.02036 —0.00478 0.00117 0.00361 0.00403
m 1
w32
F, 0.01429 —0.00055 —0.00025 0.00015 0.00015
F; 0.01614 0.00171 0.00063 0.00031 0.00014
F;e 0.01504 0.00046 0.00027 0.00022 0.00012
yopt —0.01740 —0.00546 0.00082 0.00300 0.00379
F;f,gt —0.01804 —0.00689 0.00049 0.00298 0.00393
m 3
w =1
F, 0.01636 0.00112 0.00135 0.00025 0.00045
Fy 0.01682 0.00153 0.00146 0.00023 0.00040
Fje9 0.01560 0.00129 0.00141 0.00024 0.00040
yopt —0.02234 —0.00827 0.00105 0.00313 0.00500
Fyroegt —0.02415 —0.00865 0.00098 0.00315 0.00502
Table 2. Relative root mean square erl@MSE) of estimators
Estimator Ko.10 Ko.2s Ko.50 Ko.7s Ko.90
m 1
w1 R
F, 0.2066 0.1206 0.0688 0.0397 0.0233
Fy 0.2340 0.1192 0.0667 0.0393 0.0233
ﬁy”g 0.2160 0.1171 0.0659 0.0392 0.0299
yopt 0.2207 0.1136 0.0639 0.0378 0.0299
F;;;’t 0.2173 0.1131 0.0637 0.0381 0.0233
m 1
w32 R
F, 0.2083 0.1195 0.0693 0.0401 0.0299
Fy 0.1996 0.1115 0.0642 0.0376 0.0214
E;e9 0.1969 0.1110 0.0640 0.0375 0.0214
wopt 0.2065 0.1119 0.0638 0.0378 0.0223
ﬁyrfgt 0.2040 0.1113 0.0636 0.0378 0.0224
m 3
n 4 e
F, 0.2069 0.1194 0.0687 0.0394 0.0228
E; 0.2377 0.1371 0.0787 0.0455 0.0264
F;e9 0.2368 0.1370 0.0786 0.0454 0.0263
yopt 0.2192 0.1159 0.0655 0.0385 0.0244
e 0.2175 0.1155 0.0654 0.0385 0.0244

yopt
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Table 3. Relative efficiencyRE) of estimators

Estimator  Ko.10 Ko.2s Ko .50 Ko.7s Ko.90
m 1
=1
F, 1.000 1.000 1.000 1.000 1.000
FJ 0.883 1.012 1.032 1.012 1.003
Fgeg 0.956 1.030 1.043 1.014 1.017
B, 0936 1062 1076 1050  1.020
Fyrsgt 0.951 1.067 1.079 1.044 0.999
m 1 ’
=3
F, 1.000 1.000 1.000 1.000 1.000
EY 1.044  1.072 1080  1.067  1.070
e 1.058 1.077 1.083 1.069 1.070
yopt 1.009 1.068 1.087 1.060 1.027
F;sgt 1.021 1.074 1.090 1.062 1.021
m 3
n 1 =N
F, 1.000 1.000 1.000 1.000 1.000
v 0.871 0.871 0.873 0.867 0.866
Eje9 0.874 0.872 0.874 0.868 0.867
- 0.944  1.031 1048  1.023  0.936
Fres, 0.952  1.034 1051  1.025  0.937
Table 4. Efficiency E) of estimators
Estimator  Ko.10 Ko.o5 Ko .50 Ko.7s Ko.90
m 1
n 1 N
F, 1.000 1.000 1.000 1.000 1.000
FJ 0.781 1.004 1.075 1.017 1.002
Fgeg 0.995 1.074 1.113 1.043 1.039
"ot 1133 1163 1195 1171  1.219
F;sgt 1.187 1.196 1.213 1.183 1.237
m 1 ’
=3
F, 1.000 1.000 1.000 1.000 1.000
ﬁyr 1.092 1.148 1.170 1.145 1.139
ﬁyreg 1.126 1.163 1.179 1.151 1.150
yropt 1.141 1.180 1.204 1.177 1.206
F;sgt 1.183 1.200 1.216 1.185 1.221
m 3
n 1 =N
F, 1.000 1.000 1.000 1.000 1.000
v 0.755 0.761 0.764 0.761 0.760
e 0.758 0.762 0.765 0.762 0.761
zjopt 1.119 1.121 1.129 1.117 1.152
Fred 1.135 1.128 1.134 1.121 1.159

yopt
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as usual more efficient thaﬁ;(z) and ﬁjeg(z), respectively, in most cases. Optimal
estimators mostly have a higher bias shown before. That eason why sometimes
the efficiency is decreasing, compared with other estirsafbine relative efficiency of a
simple estimator is higher for the lowegtevel of the population quantile with a lowest
and highest matching fraction. The relative efficiency &f tiptimal distribution function
estimators at the median are highest with any samplingidrast

The efficiency, ratio of th(RMSE with the corresponding formulae based vari-
ancesVar(EF} (2)), Var(F7¢9(2)), Var(EJ, ,(2)), Var(Fp<9,(2)) andVar(E,(2)) of the
population distribution function, using a two-occasioheme, is presented in Table 4.
Efficiency of proposed optimal estimators using ratidRMSE with the corresponding
formulae based variance is grows up comparable with relatificiency. Average esti-
mates of the variances of the proposed optimal ratio an@ssgm estimators are smaller
than the empirical variances. The Taylor series expansidheoratio and regression
estimators are used for the expressions of approximatanaes. If higher order terms
of Taylor expansion would be taken into expression of the@amate variances of these
estimators, one can expect to improve the accuracy of thezjopation of the variances.

4 Conclusions

We have proposed composite regression and ratio type dstirfar a distribution func-
tion, as well as optimal estimators, in the sense of miningizhe variance for a two-
occasion sampling scheme with a simple random samplingyaesi each occasion.
Simulation has been studied on the real population of Litiarahouseholds of Statistics
Lithuania. The simulation results show that the proposedpmsite estimators using
auxiliary information can be used for improving the accyrat distribution function
estimates. The efficiency of the estimators proposed dependhe matching fraction
and on the level of quantiles for two-occasion sampling.
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