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Abstract. We consider a delayed Kaldor-Kalecki business cycle model.We first
consider the existence of local Hopf bifurcation, and we establish an explicit algorithm
for determining the direction of the Hopf bifurcation and the stability or instability of the
bifurcating branch of periodic solutions using the methodspresented by O. Diekmann et
al. in [1]. In the end, we conclude with an application.
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1 Introduction and mathematical models

In a recent paper [2], we formulate a delayed Kaldor-Kaleckibusiness cycle model by
introducing the Kalecki’s time delay [3] in the Kaldor model[4] as follows:











dY

dt
= α

[

I
(

Y (t),K(t)
)

− S
(

Y (t),K(t)
)]

,

dK

dt
= I
(

Y (t− τ),K(t− τ)
)

− δK(t),

(1)

whereY is the gross product,K is the capital stock,α is the adjustment coefficient in
the goods market,δ is the depreciation rate of capital stock,I(Y,K) is the investment
function, S(Y,K) is the saving andτ is the time delay needed for new capital to be
installed.

The dynamics are studied in terms of local stability and of the description of the
Hopf bifurcation, that is proven to exists as the delay (taken as a parameter of bifurcation)
cross some critical value.

In this paper, we reconsider the model (1) and we establish anexplicit algorithm for
determining the direction of the Hopf bifurcation and the stability or instability of the
bifurcating branch of periodic solutions using the methodspresented by O. Diekmann et
al. in [1].
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The first model in this optic is proposed by Kalecki in [3, 1935]. The main characte-
ristic feature of his model is the distinction between investment decisions and implemen-
tation, i.e. there is a time delay after which capital equipment is available for production.

Besides the influence of Keynes in [5, 1936] and Kalecki in [6,1937], Kaldor in [4,
1940] presented a nonlinear model of business cycle by an ordinary differential equations
as follows:











dY

dt
= α

[

I
(

Y (t),K(t)
)

− S
(

Y (t),K(t)
)]

,

dK

dt
= I
(

Y (t),K(t)
)

.

(2)

In this model the nonlinearity of investment and saving function leads to limit cycle
solution (see also [7–9] for more information).

Based on the Kaldor model of business cycle and the Kalecki’sidea on time delay,
Krawiec and Szydłowski in [10, 1999] proposed the followingKaldor-Kalecki model of
business cycle:











dY

dt
= α[I(Y (t),K(t)) − S(Y (t),K(t))],

dK

dt
= I(Y (t− τ),K(t)) − δK(t).

(3)

The fundamental characteristics of this model is the nonlinearity of investment function
and the inclusion of time delay into the gross product in capital accumulation equation.

In [10, 11, 2000], Krawiec and Szydblowski investigated thestability and Hopf
bifurcation of a positive equilibriumE∗ of system (3) in the special case of small time
delay. In [12, 2001], they showed that for a small time delay parameter the Kaldor-Kalecki
model assumes the form of the Lienard equation. In [13, 2005], they investigate the
stability of limit cycle. Zhang and Wei [14, 2004], investigated local and global existence
of Hopf bifurcation for (3).

In this work, the dynamics of the system (1) are studied in terms of local stability
and of the description of the Hopf bifurcation, that is proven to exist as the delay (taken
as a parameter of bifurcation) cross some critical value. Additionally we establish an
explicit algorithm for determining the direction of the Hopf bifurcation and the stability
or instability of the bifurcating branch of periodic solutions using the methods presented
by O. Diekmann et al. in [1]. In the end, we give a numerical illustrations.

2 Steady state and stability analysis

As in [2,11], we consider some assumptions on the investmentand saving functions:

I(Y,K) = I(Y ) − βK,

and

S(Y,K) = γY,
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whereβ > 0 andγ ∈ (0, 1). Then system (1) becomes:










dY

dt
= α

[

I
(

Y (t)
)

− βK(t) − γY (t)
]

,

dK

dt
= I
(

Y (t− τ)
)

− βK(t− τ) − δK(t).

(4)

2.1 Steady state

In the following proposition, we give a sufficient conditions for the existence and unique-
ness of positive equilibriumE∗ of the system (4).

Proposition 1 ( [2]). Suppose that:

(i) there exists a constant L > 0 such that |I(Y )| ≤ L for all Y ∈ R;

(ii) I(0) > 0;

(iii) I ′(Y ) − γ < γβ
δ for all Y ∈ R.

Then there exists a unique equilibrium E∗ = (Y ∗,K∗) of system (4), where Y ∗ is the
positive solution of

I(Y ) −
(β + δ)γ

δ
Y = 0 (5)

and K∗ is determined by

K∗ =
γ

δ
Y ∗. (6)

2.2 Local stability and local Hopf bifurcation analysis

Let y = Y − Y ∗ andk = K −K∗. Then by linearizing system (4) around(Y ∗,K∗) we
have











dy

dt
= α

(

I ′(Y ∗) − γ
)

y(t) − αβk(t),

dk

dt
= I(Y ∗)y(t− τ) − βk(t− τ) − δk(t).

(7)

The characteristic equation associated to system (7) is

λ2 + aλ+ bλ exp(−λτ) + c+ d exp(−λτ) = 0, (8)

where

a = δ − α
(

I ′(Y ∗) − γ
)

,

b = β,

c = −αδ
(

I ′(Y ∗) − γ
)

,
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and

d = αβγ.

The local stability of the steady stateE∗ is a result of the localization of the roots of the
characteristic equation (8). In order to investigate the local stability of the steady state, we
begin by considering the case without delayτ = 0. In this case the characteristic equation
(8) reads as

λ2 + (a+ b)λ+ c+ d = 0, (9)

hence, according to the Hurwitz criterion, we have the following lemma.

Lemma 1. For τ = 0, the equilibrium E∗ is locally asymptotically stable if and only if
I ′(Y ∗) − γ < min(γβ

δ ,
δ+β

α ).

We now return to the study of equation (8) withτ > 0.

Theorem 1 ([2]). Let the hypotheses

(H1) |I ′(Y ∗) − γ| <
γβ

δ
and

(H2) I ′(Y ∗) − γ <
δ + β

α
.

Then there exists τ0 > 0 such that, when τ ∈ [0, τ0) the steady state E∗ is locally
asymptotically stable, when τ > τ0, E

∗ is unstable and when τ = τ0, equation (8) has a
pair of purely imaginary roots ±iω0, with

ω2
0 = −

1

2

(

α2
(

I ′(Y ∗)−γ
)2

+δ2−β2
)

+
1

2

[(

α2
(

I ′(Y ∗)−γ
)2

+δ2−β2
)2
−4
(

α2δ2
(

I ′(Y ∗)−γ
)2
−β2γ2

)]1/2
(10)

and

τ0 =
1

ω0

arctan
α[γδ−(αγ − δ)(I ′(Y ∗)−γ)]ω0+ω3

0

(αI ′(Y ∗)−δ)ω2
0+α2γδ(I ′(Y ∗)−γ)

. (11)

Theorem 2 ([2]). Assume that

(H3) I ′(Y ∗) − γ ≤ min

(

−
βγ

δ
,
δ2 − β2

α2

)

.

Then E∗ is locally asymptotically stable for all τ ≥ 0.

According to the Hopf bifurcation theorem [15], we establish sufficient conditions
for the local existence of periodic solutions.

Theorem 3 ( [2]). Under hypotheses (H1) and (H2) of Theorem 1, there exists ε0 > 0
such that, for each 0 ≤ ε < ε0, system (4) has a family of periodic solutions p(ε) with
period T = T (ε), for the parameter values τ = τ(ε) such that p(0) = 0, T (0) = 2π

ω0

and
τ(0) = τ0, where τ0 and ω0 are stated in Theorem 1.
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3 Direction of Hopf bifurcation

In this section we use a formula on the direction of the Hopf bifurcation given by Diek-
man in [1] to formulate an explicit algorithm about the direction and the stability of the
bifurcating branch of periodic solutions of (4).

Normalizing the delayτ by scalingt → t
τ and effecting the changeU(t) = Y (τt)

andV (t) = K(τt), the system (4) is transformed into











dU

dt
= ατ

[

I
(

U(t)
)

− βV (t) − γU(t)
]

,

dV

dt
= τ

[

I
(

U(t− 1)
)

− βV (t− 1) − δV (t)
]

.

(12)

By the translationZ(t) = (U, V ) − (Y ∗,K∗), system (12) is written as a functional
differential equation inC := C([−1, 0],R2),

Ż(t) = L(τ)Zt + h(Zt, τ), (13)

whereL(τ) : C → R2 the linear operator andh : C × R → R2 the nonlinear part of (13)
are given respectively by:

L(τ)ϕ = τ

(

α[(I ′(Y ∗) − γ)ϕ1(0) − βϕ2(0)]

I ′(Y ∗)ϕ1(−1) − βϕ2(−1) − δϕ2(0)

)

h(ϕ, τ) = τ

(

α[I(ϕ1(0) + Y ∗) − I ′(Y ∗)ϕ1(0) − βK∗ − γY ∗]

I(ϕ1(−1) + Y ∗) − I ′(Y ∗)ϕ1(0) − (β + δ)K∗

)

Let

L := L(τ0) : C
(

[−1, 0],R2
)

→ R
2.

Using the Riesz representation theorem (see [15]), we obtain

Lϕ =

0
∫

−1

dη(θ)ϕ(θ), (14)

where

dη(θ) = τ0

(

α(I ′(Y ∗) − γ)δ(θ) −αβδ(θ)

−I ′(Y ∗)δ(θ + 1) βδ(θ + 1) + δδ(θ)

)

, (15)

δ(.) denotes the Dirac function.
LetA(τ) denotes the generator of semigroup generated by the linear part of (13) and

A = A(τ0).
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Then,

Aϕ(θ) =







dϕ

dθ
(θ) for θ ∈ [−1, 0),

Lϕ for θ = 0
(16)

for ϕ = (ϕ1, ϕ2) ∈ C.
From Theorem 1, a Hopf bifurcation occurs at the critical value τ = τ0. By the

Taylor expansion of the time delay functionτ(ε) near the critical valueτ0, we have

τ(ε) = τ0 + τ2ε
2 + o(ε2). (17)

The sign ofτ2 determines either the bifurcation is supercritical (ifτ2 > 0) and periodic
orbits exist forτ > τ0, or it is subcritical (ifτ2 < 0) and periodic orbits exist forτ < τ0.
The termτ2 may be calculated (see [1]) using the formula,

τ2 =
Re(c)

Re(qD2M0(iζ0, τ0)p)
, (18)

whereM0 is the characteristic matrix of the linear part of (13),

M0(λ, τ) =

(

λ− τα(I ′(Y ∗) − γ) ταβ

−τI ′(Y ∗) exp(−λ) λ+ τβ exp(−λ) + τδ

)

, (19)

D2M0(iω0, τ0) denotes the derivative ofM0 with respect toτ atτ = τ0, the constantc is
defined as follows

c =
1

2
qD3

1h(0, τ0)
(

P 2(θ), P (θ)
)

+ qD2
1h(0, τ0)

(

e0M−1

0 (0, τ0)D
2
1h(0, τ0)

(

P (θ), P (θ)
)

, P (θ)
)

+
1

2
qD2

1h(0, τ0)
(

e2iω0M−1

0 (2iω0, τ0)D
2
1h(0, τ0)

(

P (θ), P (θ)
)

, P (θ)
)

,

whereDi
1h, i = 2, 3, denotes thei − th derivative ofh with respect toϕ, P (θ) denotes

the eigenvector ofA, P (θ) denotes it conjugate eigenvector andp, q are defined later.
To study the direction of Hopf bifurcation, one needs to calculate the second and

third derivatives of nonlinear part of (13) with respect toϕ,

D2
1h(ϕ, τ)ψχ = τ

(

αI ′′(ϕ1(0) + Y ∗)ψ1(0)χ1(0)

I ′′(ϕ1(−1) + Y ∗)ψ1(−1)χ1(−1)

)

(20)

and

D3
1h(ϕ, τ)ψχυ = τ

(

αI ′′′(ϕ1(0) + Y ∗)ψ1(0)χ1(0)υ1(0)

I ′′′(ϕ1(−1) + Y ∗)ψ1(−1)χ1(−1)υ1(−1)

)

(21)
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Then

D2
1h(0, τ0)ψχ =

[

τ0αI
′′(Y ∗)ψ1(0)χ1(0)

(

1

0

)

+ τ0I
′′(Y ∗)ψ1(−1)χ1(−1)

(

0

1

)]

(22)

and

D3
1f0(0, τ0)ψχυ =

[

τ0αI
′′′(Y ∗)ψ1(0)χ1(0)υ1(0)

(

1

0

)

+ τ0I
′′′(Y ∗)ψ1(−1)χ1(−1)υ1(−1)

(

0

1

)]

, (23)

ψ = (ψ1, ψ2), χ = (χ1, χ2), υ = (υ1, υ2) ∈ C
(

[−1, 0],R2
)

.

As iω0 is a solution of (8) atτ = τ0, theniω0 is an eigenvalue ofA and there exist a
corresponding eigenvector of the formP (θ) = peiω0θ wherep = (p1, p2) ∈ C2, satisfy
the equations:

Mp = 0

with

M = M0(iω0, τ0). (24)

Then one may assume

p1 = 1,

and calculate

p2 =
−iω0 + τ0α(I ′(Y ∗) − γ)

τ0αβ
.

So, from (22) and (23), we have

D2
1h(0, τ0)

(

P (θ), P (θ)
)

= τ0I
′′(Y ∗)

(

α

1

)

(25)

D2
1h(0, τ0)

(

P (θ), P (θ)
)

= τ0I
′′(Y ∗)

(

α

exp(−2iω0)

)

(26)

and

D3
1h(0, τ0)

(

P 2(θ), P (θ)
)

= τ0I
′′′(Y ∗)

(

α

exp(−iω0)

)

. (27)
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Now, considerA∗, a conjugate operator ofA, A∗ : C([0, 1],R2) → R2, defined by,

A∗ψ(s) =























−
dψ

ds
(s) for s ∈ (0, 1],

−

0
∫

−1

ψ(−s) dη(s) for s = 0,
(28)

ψ = (ψ1, ψ2) ∈ C([0, 1],R2).
LetQ(s) = qeiω0s be the eigenvector forA∗ associated to the eigenvalueiω0, q =

(q1, q2)
T . One needs to chooseq such that the inner product (see [15]),

< Q,P > = 1,

where

< Q,P > = Q(0)P (0) −

0
∫

−1

θ
∫

0

Q(ξ − θ) dη(θ)P (ξ) dξ.

If we takeq2 = 0, thenq1 = 1 and from (27), we have

1

2
qD3

1h(0, τ0)
(

P 2(θ), P (θ)
)

=
ατ0

2
I ′′′(Y ∗). (29)

From the expression ofM0 in (19), we have

M−1

0 (0, τ0) =
1

ατ2
0
[(β + δ)γ − δI ′(Y ∗)]

(

τ0(β + δ) −αβτ0

τ0I
′(Y ∗) −ατ0(I

′(Y ∗) − γ)

)

(30)

and

M−1

0 (2iω0, τ0) =
1

detM0(2iω0, τ0)

×

(

2iω0 + τ0β exp(−2iω0) + δτ0 −τ0αβ

τ0I
′(Y ∗) exp(−2iω0) 2iω0 − τ0α(I ′(Y ∗) − γ)

)

. (31)

From (25), (26), (30), (31), we deduce,

qD2
1h(0, τ0)

(

e0M−1

0 (0, τ0)D
2
1h(0, τ0)

(

P (θ), P (θ)
)

, P (θ)
)

=
τ0αδI

′′(Y ∗)2

(β + δ)γ − δI ′(Y ∗)

(32)

and

1

2
qD2

1h(0, τ0)
(

e2iω0M−1

0 (2iω0, τ0)D
2
1h(0, τ0)

(

P (θ), P (θ)
)

, P (θ)
)

=
τ2
0α

2I ′′(Y ∗)2

2(B2 + C2)
[(Bδτ0 + 2Cω0) + i(2Bω0 − Cδτ0)],

(33)
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where

B = −4ω2
0 − αδ

(

I ′(Y ∗) − γ
)

τ2
0 + 2βτ0ω0 sin(2ω0) + αβγτ2

0 cos(2ω0),

C = 2δτ0ω0 − 2α
(

I ′(Y ∗) − γ
)

τ0ω0 − αβγτ2
0 sin(2ω0) + 2βτ0ω0 cos(2ω0).

Then

Re(c)=
ατ0

2
I ′′′(Y ∗)+

τ0αδI
′′(Y ∗)2

(β+δ)γ−δI ′(Y ∗)
+
τ2
0α

2I ′′(Y ∗)2

2(B2+C2)
[(Bδτ0+2Cω0)]. (34)

Now, from (19) we have

Re
(

qD2M0(iω0, τ0)p
)

= Re

(

dλ

dτ

)

(τ0),

and from the proof of Theorem 1, we have

Re

(

dλ

dτ

)

(τ0) > 0.

Consequently we deduce the following result:

Theorem 4. Assume (H1) and (H2). Then,

(i) the Hopf bifurcation occurs as τ crosses τ0 to the right (supercritical Hopf bifur-
cation) if Re(c) > 0 and to the left (subcritical Hopf bifurcation) if Re(c) < 0;
and

(ii) the bifurcating periodic solutions is stable if Re(c) > 0 and unstable if Re(c) < 0;
where Re(c) is given by (34).

Note that, Theorem 4 provides an explicit algorithm for detecting the direction and
stability of Hopf bifurcation.

4 Application

Consider the following Kaldor-type investment function:

I(Y ) =
exp(Y )

1 + exp(Y )
.

Theorems 1 and 4 imply:

Proposition 2. If

α = 3, β = 0.2, δ = 0.1, γ = 0.2,

then system (4) have the following positive equilibrium

E∗ = (1.31346, 2.62699).

Furthermore, the critical delay corresponding to (4) is τ0 = 2.9929 and Re(c) = 0.2133.
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By the previous proposition, we have ifτ < 2.9929, then system (4) have a stable
equilibrium pointE∗. Fig. 1 shows that behavior of system (4) is stable forτ = 2. If we
increase the value ofτ, then we find a stable periodic solution occurs atτ0 = 2.9929 and
E∗ becomes unstable forτ > 2.9929. Fig.2 show that isE∗ unstable forτ > 2.9929.

1 1.2 1.4 1.6
2

2.2

2.4

2.6

2.8

Y(t)

K
(t

)

Fig. 1. The steady stateE∗ of (4) is
stable whenτ = 2.

−1 0 1 2 3
1

1.5

2

2.5

3

3.5

Y(t)

K
(t

)

Fig. 2. The steady stateE∗ of (4) is
unstable whenτ = 3.
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