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Abstract. We consider a delayed Kaldor-Kalecki business cycle modéle first
consider the existence of local Hopf bifurcation, and welgh an explicit algorithm
for determining the direction of the Hopf bifurcation ane stability or instability of the
bifurcating branch of periodic solutions using the methpdssented by O. Diekmann et
al. in [1]. In the end, we conclude with an application.
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1 Introduction and mathematical models

In a recent paper [2], we formulate a delayed Kaldor-Kaldxiginess cycle model by
introducing the Kalecki's time delay [3] in the Kaldor modé] as follows:
dY
i a[I(Y(t),K(t) —S(Y(t), K())],

1)
% = I(Y(t—7),K(t — 7)) — 6K(t),

whereY is the gross producty is the capital stocke is the adjustment coefficient in
the goods markey is the depreciation rate of capital stodKY, K) is the investment
function, S(Y, K) is the saving and is the time delay needed for new capital to be
installed.

The dynamics are studied in terms of local stability and ef description of the
Hopf bifurcation, that is proven to exists as the delay (te&ea parameter of bifurcation)
cross some critical value.

In this paper, we reconsider the model (1) and we establigxalicit algorithm for
determining the direction of the Hopf bifurcation and thabdlity or instability of the
bifurcating branch of periodic solutions using the methpassented by O. Diekmann et
al. in [1].
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The first model in this optic is proposed by Kalecki in [3, 183Ehe main characte-
ristic feature of his model is the distinction between irtreent decisions and implemen-
tation, i.e. there is a time delay after which capital equépirs available for production.

Besides the influence of Keynes in [5, 1936] and Kalecki inl37], Kaldor in [4,
1940] presented a nonlinear model of business cycle by anamgddifferential equations
as follows:

dy
S = all(Y (), K1) = S(v(6), K)],

(2)
dK
o~ (Y0, K().

In this model the nonlinearity of investment and saving fiorcleads to limit cycle
solution (see also [7-9] for more information).

Based on the Kaldor model of business cycle and the Kaleities on time delay,
Krawiec and Szydtowski in [10, 1999] proposed the followkaldor-Kalecki model of
business cycle:

% = a[I(Y (), K(t)) — S(Y (t), K(t))],

3)
% = I(Y(t - ), K(t)) — 6K ().

The fundamental characteristics of this model is the neualiity of investment function
and the inclusion of time delay into the gross product in piccumulation equation.

In [10, 11, 2000], Krawiec and Szydblowski investigated #tability and Hopf
bifurcation of a positive equilibriunk* of system (3) in the special case of small time
delay. In[12, 2001], they showed that for a small time delargmeter the Kaldor-Kalecki
model assumes the form of the Lienard equation. In [13, 200&}y investigate the
stability of limit cycle. Zhang and Wei [14, 2004], investigd local and global existence
of Hopf bifurcation for (3).

In this work, the dynamics of the system (1) are studied imgeof local stability
and of the description of the Hopf bifurcation, that is pnote exist as the delay (taken
as a parameter of bifurcation) cross some critical valuedid@hally we establish an
explicit algorithm for determining the direction of the Hdgfurcation and the stability
or instability of the bifurcating branch of periodic solutis using the methods presented
by O. Diekmann et al. in [1]. In the end, we give a numericalsttations.

2 Steady state and stability analysis

As in [2,11], we consider some assumptions on the investarahsaving functions:
I(Y,K) =1(Y) - BK,

and
S(Y,K) =~Y,
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wheres > 0 andy € (0,1). Then system (1) becomes:

% — a[I(Y () - BE(t) — 7Y (1)),
dK @
T I(Y(t—7)) = BK(t—7)— 6K(t).
21 Steady state

In the following proposition, we give a sufficient condit®for the existence and unique-
ness of positive equilibriun* of the system (4).

Proposition 1 ( [2]). Supposethat:
(i) thereexistsaconstant L > 0 suchthat [I(Y)| < L forall Y € R;
(i) 1(0) > 0;

(i) I'(Y) -~y <2 foral Y €R.

Then there exists a unique equilibrium E* = (Y™*, K*) of system (4), where Y* is the
positive solution of

I(Y) - WTMY =0 ®)

and K™ is determined by

* ’y *
K*=-=-Y"
. ®)

2.2 Local stability and local Hopf bifurcation analysis

Lety =Y — Y*andk = K — K*. Then by linearizing system (4) arou(d*, K*) we
have

D a ()~ )ult) — aBk(t), o
%]: =I1(Y*)y(t —7) — Bk(t — ) — 5k(t).
The characteristic equation associated to system (7) is
A 4 aX + blexp(—AT) + ¢+ dexp(—AT) =0, (8)

where
a=6—a(l'(Y*)=7),
b= 3,
c= —aé(['(Y*) - 7),
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and

d = afy.

The local stability of the steady stak* is a result of the localization of the roots of the
characteristic equation (8). In order to investigate tlvalstability of the steady state, we

begin by considering the case without detay: 0. In this case the characteristic equation
(8) reads as

Mt (a+bA+c+d=0, 9)
hence, according to the Hurwitz criterion, we have the foilg lemma.

Lemmal. For 7 = 0, the equilibrium E* is locally asymptotically stable if and only if
I'(Y*) —~ < min(22, 2£8),

57 «

We now return to the study of equation (8) with> 0.
Theorem 1 ([2]). Let the hypotheses

(H1) |1(v*) ] < 2

and
1)
(H2) I'(Y*) -~ < %ﬁ.
Then there exists 7o > 0 such that, when 7 € [0, 7)) the steady state E* is locally
asymptotically stable, when = > 7y, E* is unstable and when 7 = 7, equation (8) hasa
pair of purely imaginary roots +iw, with

R = 5 (@ (I(V") =) 45— )

+%[(02(I’(Y*)*’7)2+52*62)274(04252(I’(Y*)77)276272)}1/2 (10)
and
_ 1 afyd—(ay = O)(I'(Y*) —y)lwo+wp
0=y AN L ) e e o T (V) ) ()

Theorem 2 ([2]). Assume that

0 o?

Then E* islocally asymptotically stable for all 7 > 0.

(H3) I'(Y*) —~ < min< L _62).

According to the Hopf bifurcation theorem [15], we estdblgifficient conditions
for the local existence of periodic solutions.

Theorem 3 ([2]). Under hypotheses (H1) and (H2) of Theorem 1, there exists g > 0
such that, for each 0 < ¢ < &, system (4) has a family of periodic solutions p(g) with
period T' = T'(¢), for the parameter values T = 7(¢) such that p(0) = 0, T'(0) = i—’; and
7(0) = 70, Where 7y and w are stated in Theorem 1.
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3 Direction of Hopf bifurcation

In this section we use a formula on the direction of the Hofiieation given by Diek-
man in [1] to formulate an explicit algorithm about the diien and the stability of the
bifurcating branch of periodic solutions of (4).

Normalizing the delay- by scalingt — ﬁ and effecting the chandé(t) = Y (vt)
andV (t) = K(rt), the system (4) is transformed into

% = ar[[(U(t)) - BV (t) — U (1)),
ar (12)
- = T[I(U(t—1)) =BV (t—1) =V (t)].

By the translationZ(¢t) = (U,V) — (Y*, K*), system (12) is written as a functional
differential equation irC' := C([—1, 0], R?),

Z(t) = L(1)Zy + h(Zy, 7), (13)

whereL(7): C' — R? the linear operator anl: C x R — R? the nonlinear part of (13)
are given respectively by:

Loy =+ LT =7)01(0) = Bpal0)]
I/(Y*)Wl(—l) - 5902(—1) - 5902(0)

hor) — 1 (A0 V) =IO )a(0) - K Y
’ I(p1(~1) +Y*) = I'(Y*)1(0) — (B + 6)K*

Let
L := L(r): C([-1,0],R?) — R2.

Using the Riesz representation theorem (see [15]), wembtai

0

Lp= / dn(0)¢(6), (14)
where
B a(I'(Y*) —~)s(0) —afB6(0)
n(6) = 7o ( SI(YS0+1) B8O+ 1)+ 55(9)) ’ (15)

6(.) denotes the Dirac function.
Let A(7) denotes the generator of semigroup generated by the liaeof(13) and
A= A(TQ).
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Then,

de _
Ap(8) = ) a8 (9) for 6 €[-1,0), (16)
Lo for =0

fOng = ((pl,gOg) eC.
From Theorem 1, a Hopf bifurcation occurs at the criticaueat = 7. By the
Taylor expansion of the time delay functiefe) near the critical valuey, we have

T(e) =710+ o 4+ 0(52). a7)

The sign ofr, determines either the bifurcation is supercritical{if> 0) and periodic
orbits exist forr > g, or it is subcritical (if, < 0) and periodic orbits exist for < 7.
The termm, may be calculated (see [1]) using the formula,

Re(c)
To = / , 18
> Re(qD2 My (iCo, 70)p) (18)
wherel| is the characteristic matrix of the linear part of (13),
A—T1a(l'(Y*) —~ Taf
M()()\,’T) = , (* ( ) ) , (19)
—7I'(Y*)exp(=A) A+ 78exp(—=A)+ 76

Dy My (iwg, 7o) denotes the derivative dff, with respect ta- at+ = 7, the constant is
defined as follows

1 . _

c= §quh(Oa TO)(P2(9)7 P(e))
+qD%h(O;T())(eoM()_l(OaT())D%h(oaT())(P(9>a?(9))vp(9>)
1 y 1/ -

+ 5qD%h(o, 7o) (€20 My ! (2iwo, 70) DR (0, 70) (P(6), P(0)), P(6)),
whereD'h,i = 2,3, denotes thé — th derivative ofh with respect tap, P(6) denotes
the eigenvector ofi, P(#) denotes it conjugate eigenvector ang are defined later.

To study the direction of Hopf bifurcation, one needs to ghte the second and
third derivatives of nonlinear part of (13) with respectto

2 _ al”(p1(0) +Y*)1(0)x1(0)
P =7 (o L ) (20)
and
_ oI (¢1(0) +Y*)11(0)x1(0)v1(0)
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Then

D3h(0, o)X = [TOOJH(Y*)QZ” 0a(0) ((1)>

#ar(r -0 (]| @2)

and

D0, ) w = [l (Vi O0a(0)er(0) ()

# ol -0 (] | @3)

= (1/1171/)2)7 X = (X17X2)7 U= (U17U2) € C([*170]7R2)-

As iwg is a solution of (8) at = 7, theniwy is an eigenvalue ofl and there exist a
corresponding eigenvector of the fo{6) = pe~°? wherep = (p1, p2) € C2, satisfy
the equations:

Mp=20
with

M = My(iwo, 70). (24)
Then one may assume

p1=1,
and calculate

—iwy + Toa(I'(Y*) —7)
P2 = .
Toa3

So, from (22) and (23), we have

D2h(0,70)(P(6), P(6)) = moI”(Y™) (i‘) (25)
D2h(0,70)(P(6), P(6)) = moI"(Y™) (exp (O‘ZZ_WOD (26)

and
D3h(0,70) (P2(0), P(6)) = 7oI" (V™) (exp (:,wo)) : (27)
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Now, considerd*, a conjugate operator of, A*: C([0, 1], R?) — R2, defined by,

dl1/}( ) for s € (0,1],

/1/) )dn(s) for s =0,

= (¢1,2) € C([0, 1], R?).

(28)

Let Q(s) = ge*°* be the eigenvector fal* associated to the eigenvalie), ¢ =

(q1,92)". One needs to choogesuch that the inner product (see [15]),

<Q,P>=1,
where
0 6
<Q.P>=OP0) - [ [alc-0)anoP©
—-10

If we takeqe = 0, theng; = 1 and from (27), we have

1 _
SaDh(0,70) (P2(6), P(8)) = 21" (Y™),
From the expression dff; in (19), we have
_ 1 T0(8 + 9) —af
My 0,7) =
0 0 = BT 8 —er (] (m’(y*) —any(I(Y?)
and
M (2i ) = 1
140,70 det Mo (2iwo, 7o)
2iwg + Tof exp(—2iwg) + d70 —1003
oI’ (Y*) exp(—2iwp) 2iwy — Toa(I'(Y*) — )

From (25), (26), (30), (31), we deduce,
gDh(0,70) (¢ M ' (0,70) DTR(0,70) (P(9), P(6)), P(6))
_ Tadl’ (V)2
~(BH8)y—oI'(Y)

and
1 . _ . —
§quh(O,TO)(62M“MO ! (2iwo, 70) DI1(0,70) (P(0), P(0)), P())
2 2711 *\2
5”1 (Y™) '
= m[(B(STO + QCwQ) + Z(QBLUO — C(STO)],
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where

B = —4dwj — ad(I'(Y*) = )75 + 2B7owo sin(2wp) + aBy7g cos(2wy),

C = 201wy — 2a (I’(Y*) — fy) Towo — aByTa sin(2wp) + 2B7owo cos(2wp).
Then

QTY 1y 1 ra ol I" (Y*)? I’ (Y*)?
=—I"(Y B 2 . 4
Now, from (19) we have
. dA
Re(quMo(zwo,To)p) = Re 4 (70),
and from the proof of Theorem 1, we have
Re(ﬂ) (0) > 0.
dr

Consequently we deduce the following result:
Theorem 4. Assume (H1) and (H2). Then,

(i) the Hopf bifurcation occurs as 7 crosses 7y to the right (supercritical Hopf bifur-
cation) if Re(¢) > 0 and to the left (subcritical Hopf bifurcation) if Re(c) < 0;
and

(i) thebifurcating periodic solutionsis stable if Re(¢) > 0 and unstableif Re(c) < 0;
where Re(c) isgiven by (34).

Note that, Theorem 4 provides an explicit algorithm for détey the direction and
stability of Hopf bifurcation.

4  Application
Consider the following Kaldor-type investment function:
exp(Y)
I(Y)= ———.
) = T o)

Theorems 1 and 4 imply:

Proposition 2. If
a=3 =02 6=01, =02,

then system (4) have the following positive equilibrium
E* = (1.31346,2.62699).

Furthermore, the critical delay correspondingto (4) is7p = 2.9929 and Re(c) = 0.2133.
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By the previous proposition, we haverif< 2.9929, then system (4) have a stable
equilibrium pointE*. Fig. 1 shows that behavior of system (4) is stablerfes 2. If we
increase the value of then we find a stable periodic solution occurs@at 2.9929 and
E* becomes unstable far> 2.9929. Fig.2 show that ig2* unstable forr > 2.9929.

35
2.8
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2.5
< g
2.4 5
2.2 15
2 1
1 1.2 1.4 1.6 -1 0 1 2 3
Y(t) Y(t)
Fig. 1. The steady state™ of (4) is Fig. 2. The steady state™ of (4) is
stable wherr = 2. unstable when = 3.
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