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Abstract. An analysis is performed to study the MHD flow of an electticabnducting,
incompressible, viscous fluid past a semi-infinite vertipldte with mass transfer,
under the action of transversely applied magnetic field isied out. The heat due
to viscous dissipation and the induced magnetic field aranasd to be negligible.
The dimensionless governing equations are unsteady, itwerdional, coupled and
non-linear partial differential equations. A most accerainconditionally stable and
fast converging implicit finite difference scheme is usedsdodve the non-dimensional
governing equations. The effects of external cooli6g (> 0) of the plate by the free
convection are studied.
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1 Introduction

The natural convection flows are frequently encounteredaitune. They have many
applications in Science and Technology. Extensive rebeamrk has been published
on flow past a vertical plate under different conditions. HEmalytical method fails to
solve the problem of unsteady two-dimensional natural eotiwn flow past a semi-
infinite vertical plate. The advent of advanced numericahoés and the developments
in computer technology pave the way to solve such difficudtyems. Finite difference
methods play an important role in solving the partial défgial equations. The unsteady
natural convection flow past a semi-infinite vertical platasvirst solved by Hellums
and Churchill [1], using an explicit finite difference methoGebhart and Pera [2] ob-
tained the steady state solution for natural convection @ertical plate with variable
surface temperature and variable mass diffusion usindasiityivariables. Callahan and
Marner [3] gave a numerical solution for the problem of tiansfree convection with
mass transfer on an isothermal vertical plate by employmelicit finite difference
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scheme. Numerical solution of transient free convectiow fleith mass transfer on
a vertical plate by employing an implicit method was obtdil®y Soundalgekar and
Ganesan [4].

The influence of magnetic field on viscous incompressiblel fdielectrically con-
ducting is of importance in many applications such as eidrusf plastics in the manu-
facture of Rayon and Nylon, purification of crude oil, tegfihdustry etc. In many process
industries the cooling of threads or sheets of some polynaterals is of importance in
the production line. The rate of cooling can be controllddatively to achieve final prod-
ucts of desired characteristics by drawing threads et¢héampresence of an electrically
conducting fluid subjected to magnetic field.

Soundalgekar et al. [5] analyzed the problem of free coiwedctffects on Stokes
problem for a vertical plate under the action of transverapplied magnetic field. Nirmal
C. Sacheti et al. [6] obtained an exact solution for unsteddgneto hydrodynamics
free convection flow on an impulsively started vertical platith constant heat flux.
Shanker and Kishan [7] discussed the effect of mass transféhe MHD flow past an
impulsively started vertical plate with variable temperator constant heat flux. El-
bashbeshy [8] studied heat and mass transfer along a \giéta under the combined
buoyancy effects of thermal and species diffusion, in tles@nce of the magnetic field.
Ganesan and Palani [9] obtained numerical solution of laasté1HD flow past a semi-
infinite isothermal vertical plate. Ganesan and Palani ft0dlied numerical solution of
transient free convection MHD flow of an incompressible gisg fluid flow past a semi-
infinite inclined plate with variable surface heat and mags.flThe set of governing
equations are solved by using an implicit finite differenchesne. Orhan Aydin and
Ahmet Kaya [11] investigates mixed convection heat transf®ut a permeable vertical
plate in the presence of magneto and thermal radiationteff@he set of governing
equations of the problem are solved using similarity vdegab The problem of steady
laminar magneto hydrodynamic(MHD) mixed convection heansfer about a vertical
plate is solved numerically by Orhan Aydin and Ahmet Kaya][tBking into account
the effect of ohmic heating and viscous dissipation. Inmégears, the effects of the
transverse magnetic field on the flow of an incompressibdeptis electrically conducting
fluid have also been studied extensively by many researckemsr However, unsteady
natural convection flow over a semi-infinite vertical platéwHD with isothermal heat
and mass transfer has not been given any attention in thatiire. Hence it has been now
proposed to solve the transient free convection MHD flow pagmi-infinite isothermal
vertical plate with mass transfer by an implicit finite dif@ace scheme.

2 Formulation of the problem

We consider here the unsteady flow of a viscous incompresfitidl past a semi-infinite
vertical plate with mass transfer under the influence ofdvarsely applied magnetic
field. Thez-axis is taken along the plate in the vertically upward dimtand they-axis
is chosen perpendicular to the plate at the leading edgeoassh Fig. 1. The origin of
x-axis is taken to be at the leading edge of the plate. The tgtaomal acceleratiop is
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acting downward. Initially (i.e., at tim& = 0), it is assumed that the plate and the fluid
are at the same ambient temperaffifeand the species concentratiof),. Whent’ > 0,
the temperature of the plate and the species concentratioaintained to b&, (greater
thanT/ ) andC, (greater tharC’ ) respectively. It is assumed that the effect of viscous
dissipation is negligible in the energy equation. The catregion of the diffusing species
in the binary mixture is assumed to be very small in comparisih other chemical
species, which are present, and hence we neglect Soret dfat Biflects. There is no
chemical reaction between the fluid and the diffusing secie uniformly transverse
magnetic field is applied in the direction of flow. It is furtressumed that the interaction
of the induced magnetic field with the flow is considered to égligible compared to the
interaction of the applied magnetic field with the flow. Thedlproperties are assumed
to be constants except for the body force terms in the momeeguations which are
approximated by the Boussinesq relations.

Fig. 1. The physical coordinate system.

Based on these assumptions the continuity, momentum,\eaedyspecies equations
become [2-4]
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wherewu andwv are the velocity components in theandy directions respectively¢”
is the species concentratioh), is the coefficient of diffusion in the mixturd)”’ is the
temperature of the fluid in the boundary layérs the time,3 is the volumetric coefficient
of thermal expansion3* is the volumetric coefficient of expansion with concentrafi
v is the kinematic viscosityy is the acceleration due to gravity andis the thermal
diffusivity, p is the density of the fluid32 is the magnetic field strength amdis the
electrical conductivity of the fluid.
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The initial and boundary conditions are

<0: u=0, v=0, T'=T, C' =0C.,,

t'>0: u=0, v=0, T'=T, C=C, aty=0, )
u=0, =T, C'=C atx=0,
u — 0, T —>Ty, C—Cyx asy— oo.
On introducing the following non-dimensional quantities:
T Y 4 1/4 ~ul ) oL _Vt/ 1/2
X E, Y—EG’I"/ s U—7GT / s V—TGT’/ 5 t_ﬁGT/ 5
T —T' e L3 T T
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Ge= gﬁ ( w oo)7 Pr:57 50:17 N:—C, M:U o GT'_l/Q.
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Here L is the length of the plate&zr is the Grashof numbegc is the modified Grashof
number,M is the magnetic field parametéy, is the buoyancy ratio parametéfs is the
Schmidt number anér is the Prandtl number.

Equations (1)—(4) are reduced to the following dimensissferm

ou oV

6_X+8_Yio’ (6)
oUu oU oU 02U
oT oT oT 1 0T
U4V - (8)

ot 0X oY  Pr oy?’

oC oC oC 1 62C
ot PVax tVay T s ave ©)

The corresponding initial and boundary conditions in disienless form are as follows:
t<0: U=0, V=0, T=0, C=0, foralY,
t>0: U=0, V=0, T=1, C=1, atY =0,
U=0, T=0 C=0, at X =0,
U—0, T—0 C—0 asyY — occ.

(10)

Using the non-dimensional quantities specified in equaidhe local as well as average
values of skin-friction, Nusselt number and Sherwood numbdimensionless form are
as follows:

wra [OU
T, = Gr5/4<—> , (11)
Y )y_y
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1
7= Gri/* / g—U) dXx, (12)
Y =0
0
Nux = — Gr1/4X(a—T) , (13)
a Y =0
[ (or
Nu— /e [ (2L
w=—Gr / < 8Y>Y=o dx, (14)
0
Sh, =—Gri/tx oc , (15)
aY Y =0
1
Sh=—-Gr'/* / oc dXx (16)
0 aY Y =0

The derivatives involved in equations (11) to (16) are eatdd by using a five-
point approximation formula and then the integrals areuatald by Newton-Cotes closed
integration formula.

3 Numerical procedure

The two-dimensional, non-linear, unsteady and coupled tigbardifferential
equations (7)—(10) under the initial and boundary condgi¢11) are solved using an
implicit finite difference scheme of Crank-Nicolson typeialhis fast convergent and
unconditionally stable. The finite difference equatiorresponding to equations (7)—(10)
are given by:

k k k k
[Ui;l - Uij_ll,j + Uf]- - Ui]il,j + Ui,;j1 - Uij_ll,jfl + Uilfjfl - Uikfl,jfl]
4AX
+ [V;I,CJJFI B V;]fjtll + V;Iacj B Vilacj_l] =0 (17)
2AY -
k+1 k k+1 k+1 k k
[Ui,j - Ui,j] n k. [Ui,j - Uiq,j + Ui,j - Uifl,j]
At J 2AX
k+1 k+1 k k
Lyk [Ui,j+1 - Ui,jfl + Ui,j-i-l - Ui,j—l]
hd 4AY
_l[TkJrl +Tk} +E[ck+1+ck }
T oty ¥ 9 LY ¥
N U 20Ut + UbEL + UF, - 208 + UFL
2(AY )2
M k+1 k
-5 Ui+ Uy, (18)
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The region of integration is considered as a rectangle viitessX .« (= 1) and
Ymax (= 16), whereYy,.x corresponds t&@” = oo, which lies very well outside the
momentum, energy and concentration boundary layers. Thkama of Y was chosen
as16 after some preliminary investigations so that the last tiube boundary conditions
(11) are satisfied. Here, the subscriftesignates the grid point along thé&direction,
j-along theY -direction and the superscriptalong thet-direction. During any one time
step, the coefficientéfi’fj and V;’fj appearing in the difference equations are treated as
constants. The values &f, V,T andC are known at all grid points a@t = 0, from the
initial conditions.

The computations df/, V, T'andC at time level ¢ + 1) using the values at previous
time level ) are carried out as follows: The finite difference equatiaf)(at every
internal nodal point on a particulaflevel constitute a tridiagonal system of equations.
Such a system of equations are solved by Thomas algorithnesgilded in Carnahan
et al. [13]. Thus, the values af are found at every nodal point for a particufaat
(k + 1)t time level. Similarly, the values &F are calculated from equation (20). Using
the values ofC and T at (k + 1) time level in the equation 19, the values Gfat
(k + 1)t time level are found in a similar manner. Thus, the value§'df andU are
known on a particulai-level. Finally, the values of are calculated explicitly using the
Equation (18) at every nodal point on a particuldevel at(k + 1) time level. This
process is repeated for varioisevels. Thus the values @f, 7', U andV are known, at
all grid points in the rectangular region(@t -+ 1)*" time level.

Computations are carried out until the steady-state ishezhc The steady-state
solution is assumed to have been reached, when the absiffetertce between the values
of U, as well as temperatufiéand concentratio®' at two consecutive time steps are less
than10~° at all grid points. After experimenting with few sets of meshes, they have
been fixed at the leveh X = 0.05, AY = 0.25, and the time step\t = 0.01. In this
case, spatial mesh sizes are reduced by 50 % in one direttiom,in both directions,
and the results are compared. It is observed that, when nesisseduced by 50 % in
X-direction andY -direction the results differ in fourth decimal place. Henthe above
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mentioned sizes have been considered as appropriate mesliiaicalculation. The local
truncation error i€)(At? + AY? + AX) and it tends to zero a&t, AY, andA X tend
to zero, which shows that the system is compatible. Also ttenkzNicholson system
is always unconditionally stable. Thus the compatible aaHikty ensures convergence.
Hence, the present employed scheme is always convergent.

4 Discussion of results

In order to ascertain the accuracy of the numerical redhispresent study is compared
with available solution in the literature. The velocity fikes for Pr = 0.1, Sc¢ = 0.7,

N = 2.0, M = 0.0 are compared with the available solution of Callahan andeia3]
using explicit finite difference scheme in Fig. 2. It is ohaat that the present results are
in good agreement with the solution.

= Present Results

® Callahan and Marner [3]

Pr=10
Se=0.7
N=20
M=0.0
t=3.67*
t=0.6

Y

Fig. 2. Comparison velocity profiles af = 1.0 (x — steady state).

Transient velocity profiles are shown in Fig. 3 for differeatues of buoyancy ratio
parameterV and the magnetic field parametef at the upper edge of the plate viz. at
X =1.0. WhenN increases the combined buoyancy force increases. Thenredtycity
increases withV near the plate. Time taken to reach the steady state incredte
the increasing value of the magnetic field paraméter From Fig. 3, we observe that
the magnetic parametéd has a retarding effect on velocity. The difference between
temporal maximum and steady state decreases marginallyy m&reases. No temporal
maximum is observed for higher values of magnetic field patanl/. The effect of a
transverse magnetic field on an electrically conductinglfgive rise to a resistive type
force called Lorentz force. This force has tendency to slowrdthe motion of the fluid
and to increases its temperature. To illustrate the effefcBchmidt number and Prandtl
number, the steady state velocity distribution near théepdd X = 1.0 is presented
in Fig. 4. The velocity gradient for airH{r = 0.7) is always greater than the water
(Pr = 7.0). Physically, this is true because the increase in the Rrandchber is due
to increase in the viscosity of the fluid which makes the flhidk and hence causes a
decrease in the velocity of the fluid. An increaseinleads to a fall in the velocity. The
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transient temperature profile &t = 1.0 for different values ofV andM are presented in
Fig. 5. Temperature increases with the increasing valubefrtagnetic field parameter
M. Anincrease inV leads to a fall in the temperature. Fig. 6 shows the effe&dnd
Pr on the steady state temperature distribution. Temperatareases a$c increases.
Thermal boundary layer decreases for the larger valuerof

0.8 0.6
M=10
=17 Sc=05 =549
(=4.76% Se=07 t=521
0.6 M =20 t=565% Sc=05 t= 6.?0
4 M=1.0t=549% 04 Sc=50 t=652 N=i
Pr=07 Sc=07 = 653 M 1o
M=30t=696* Sc=05 Se=100 t=6.55
M=20t=7.57* U
M=3.0t=9.60*
02 Sc=50 t=496
Sc=100 t=5.50
=023
0 0
0 2 4 6 8 0 2 4 6 8
Y Y

Fig. 3. Transient velocity profiles at Fig. 4. Steady state velocity profiles at
X = 1.0 for different N and M X = 1.0 for different Pr andSc.
(x — steady state).

W————— M=30t=9.60% > Sc=100 t=655
075 N+ M=20t=7.57% 075 ————— Sc=50 (=652
- M=30 t=696* Pr=07 =521
Sc=0.5 o B
M=10 Se=05 (=549
=195 Sc=10.0 =550
05 - T0S Sc=50 =496
t=549* (=653
T t=4.76% o
t=0.13
025 t=0.11 025
0 = 0
0 2 4 6 8 0 2 4 6 8
Y Y

Fig. 5. Transient temperature profiles Fig. 6. Steady state temperature profiles
at X = 1.0 for different N and M at X = 1.0 for different Pr and Sc.
(x — steady state).

Concentration profiles & = 1.0 for different values of buoyancy ratio paramepér
and magnetic field parametgf are shown in Fig. 7. The species concentration decreases
asN increases. From Fig. 7, we conclude that the transient cdrat®n increases ay/
increases. In Fig. 8, steady state concentration profiteglatted for various values ¢fc
andPr. As expected concentration is lower for system with largdues ofSc. Species
concentration increases with increasing value of Prangtitver of the fluid. In Fig. 9,
values of local shear stress are plotted for various valfiesfferent values parameter
occurring into the problem. As the buoyancy ratio paraméfeincreases, local skin
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friction increases. Local skin friction is reduced by thergasing value of magnetic
parameterM, because velocity decreases with the increasing valu¥ afs shown in
Fig. 3. The local wall shear stress increases with incrgagitue of Schmidt number.
Also it is observed that local skin friction decreasesPasincreases. In Fig. 10, local
Nusselt number i.e., local heat transfer rate is plottednsgthe axial co-ordinat& at

the steady state level. It increasesX¥sncreases. Larger values of Nusselt number are
observed for higher values étr. It decreases ad/ increases. Also it is observed that

local Nusselt number decreasesSasncreases. An increase i, local Nusselt number
is also found to increases.

T M=30 t=9.60*

073 e M=201=757 Pr=07 073

M=3.0 t=696% Se=03

05

025

Y Y
Fig. 7. Transient concentration profiles  Fig. 8. Steady state concentration profiles
at X = 1.0 for different N and M (x — at X = 1.0 for different Pr and Sc.
steady state).
1
M=10
1é 1 =50 Pr=70Sc=07 M=10
=3.0
4 Pr=07
Sc=0.7
12 .
s o M=10
& M=20
0.8 M=3.0
Pr=0.7 Sc=50 M=10
% Pr=70 Sc=07 M=1.0 025
04 FI¥
§ Pr=07
Sc=0.7 il Pr=0.7Sc=5.0 M= 1.0
0 0¥
0 0.25 0.5 0.75 1 0 0.25 05 075 1
X
Fig. 9. Local skin friction. Fig. 10. Local Nusselt number.

Steady state local Sherwood number are shown in Fig. 11 aftows values of’r,
Sc, N andM. The effect ofSc is greater on the local Sherwood number than any other
parameter. It is observed that local Sherwood number deeseasPr increases. From
the figure, we see that localSherwood number increases kdtintreasing value av.
Average skin friction, average Nusselt number and averagens®od number are plotted
in Figs. 12, 13, 14 respectively for various parameters.rége skin friction decreases
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as M or Sc decreases throughout the transient period. Also ibéerved that average
skin friction increases a& increases. In Fig. 12, the average Nusselt number is same at
a particular time level in the initial period for various uak of other parameters. This
shows that there is only heat conduction in the initial tienel. Average Nusselt number
decreases a&/ increases. The same trend is also notice for average Sheémvoober.

An increase in the value d¥, the average Nusselt number increases. The same trend is
also observed for average Sherwood number.

0.8

06}  Pr=07Se=50M=10 .

Pr=708c=07M=1.0

0 025 05 075 1 0 2 4
X t

Fig. 11. Local Sherwood number. Fig. 12. Average skin friction.

N=10
—N=20

Sh/Gr'™*

o
W =
coo

Nu/Gr'"
S

04 . . 03

Fig. 13. Average Nusselt number. Fig. 14. Average Sherwood mumber.

5 Conclusions

Finite difference study has been carried out for the flow pasmi-infinite vertical plate
with MHD with heat and mass transfer. The dimensionless igorg equations are solved
by an implicit finite difference scheme of Crank-Nicolsopéy A comparison between
the present numerical results and available solution &ralsde. The agreement between
the two result is found to be very good. The effect of velgdi#ynperature, concentration
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fields for different parameters are studied. The transiefdoity, temperature and con-
centration profiles all reach maximum values before degrgatightly to their respective
steady-state values. The local as well as average skimfridNusselt number and Sher-
wood number are shown graphically. The difference betweetgmporal maximum and
steady state decreases marginalljaicreases. No temporal maximum is observed for
higher values of\/. It is observed that the contribution of mass diffusion t® bluoyancy
force increases the maximum velocity significantly. Lods¢ar stress gets reduced by
the increasing value of magnetic field parametér
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