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Abstract. An analysis is performed to study the MHD flow of an electrically conducting,
incompressible, viscous fluid past a semi-infinite verticalplate with mass transfer,
under the action of transversely applied magnetic field is carried out. The heat due
to viscous dissipation and the induced magnetic field are assumed to be negligible.
The dimensionless governing equations are unsteady, two-dimensional, coupled and
non-linear partial differential equations. A most accurate, unconditionally stable and
fast converging implicit finite difference scheme is used tosolve the non-dimensional
governing equations. The effects of external cooling (Gr > 0) of the plate by the free
convection are studied.
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1 Introduction

The natural convection flows are frequently encountered in nature. They have many
applications in Science and Technology. Extensive research work has been published
on flow past a vertical plate under different conditions. Theanalytical method fails to
solve the problem of unsteady two-dimensional natural convection flow past a semi-
infinite vertical plate. The advent of advanced numerical methods and the developments
in computer technology pave the way to solve such difficult problems. Finite difference
methods play an important role in solving the partial differential equations. The unsteady
natural convection flow past a semi-infinite vertical plate was first solved by Hellums
and Churchill [1], using an explicit finite difference method. Gebhart and Pera [2] ob-
tained the steady state solution for natural convection on avertical plate with variable
surface temperature and variable mass diffusion using similarity variables. Callahan and
Marner [3] gave a numerical solution for the problem of transient free convection with
mass transfer on an isothermal vertical plate by employing an explicit finite difference
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scheme. Numerical solution of transient free convection flow with mass transfer on
a vertical plate by employing an implicit method was obtained by Soundalgekar and
Ganesan [4].

The influence of magnetic field on viscous incompressible fluid of electrically con-
ducting is of importance in many applications such as extrusion of plastics in the manu-
facture of Rayon and Nylon, purification of crude oil, textile industry etc. In many process
industries the cooling of threads or sheets of some polymer materials is of importance in
the production line. The rate of cooling can be controlled effectively to achieve final prod-
ucts of desired characteristics by drawing threads etc., inthe presence of an electrically
conducting fluid subjected to magnetic field.

Soundalgekar et al. [5] analyzed the problem of free convection effects on Stokes
problem for a vertical plate under the action of transversely applied magnetic field. Nirmal
C. Sacheti et al. [6] obtained an exact solution for unsteadyMagneto hydrodynamics
free convection flow on an impulsively started vertical plate with constant heat flux.
Shanker and Kishan [7] discussed the effect of mass transferon the MHD flow past an
impulsively started vertical plate with variable temperature or constant heat flux. El-
bashbeshy [8] studied heat and mass transfer along a vertical plate under the combined
buoyancy effects of thermal and species diffusion, in the presence of the magnetic field.
Ganesan and Palani [9] obtained numerical solution of Unsteady MHD flow past a semi-
infinite isothermal vertical plate. Ganesan and Palani [10]studied numerical solution of
transient free convection MHD flow of an incompressible viscous fluid flow past a semi-
infinite inclined plate with variable surface heat and mass flux. The set of governing
equations are solved by using an implicit finite difference scheme. Orhan Aydin and
Ahmet Kaya [11] investigates mixed convection heat transfer about a permeable vertical
plate in the presence of magneto and thermal radiation effects, The set of governing
equations of the problem are solved using similarity variables. The problem of steady
laminar magneto hydrodynamic(MHD) mixed convection heat transfer about a vertical
plate is solved numerically by Orhan Aydin and Ahmet Kaya [12] taking into account
the effect of ohmic heating and viscous dissipation. In recent years, the effects of the
transverse magnetic field on the flow of an incompressible, viscous electrically conducting
fluid have also been studied extensively by many research workers. However, unsteady
natural convection flow over a semi-infinite vertical plate with MHD with isothermal heat
and mass transfer has not been given any attention in the literature. Hence it has been now
proposed to solve the transient free convection MHD flow pasta semi-infinite isothermal
vertical plate with mass transfer by an implicit finite difference scheme.

2 Formulation of the problem

We consider here the unsteady flow of a viscous incompressible fluid past a semi-infinite
vertical plate with mass transfer under the influence of transversely applied magnetic
field. Thex-axis is taken along the plate in the vertically upward direction and they-axis
is chosen perpendicular to the plate at the leading edge as shown in Fig. 1. The origin of
x-axis is taken to be at the leading edge of the plate. The gravitational accelerationg is
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acting downward. Initially (i.e., at timet′ = 0), it is assumed that the plate and the fluid
are at the same ambient temperatureT ′

∞
and the species concentrationC′

∞
. Whent′ > 0,

the temperature of the plate and the species concentration is maintained to beT ′

w (greater
thanT ′

∞
) andC′

w (greater thanC′

∞
) respectively. It is assumed that the effect of viscous

dissipation is negligible in the energy equation. The concentration of the diffusing species
in the binary mixture is assumed to be very small in comparison with other chemical
species, which are present, and hence we neglect Soret and Duffor effects. There is no
chemical reaction between the fluid and the diffusing species. A uniformly transverse
magnetic field is applied in the direction of flow. It is further assumed that the interaction
of the induced magnetic field with the flow is considered to be negligible compared to the
interaction of the applied magnetic field with the flow. The fluid properties are assumed
to be constants except for the body force terms in the momentum equations which are
approximated by the Boussinesq relations.
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Fig. 1. The physical coordinate system.

Based on these assumptions the continuity, momentum, energy and species equations
become [2–4]

∂u

∂x
+

∂v

∂y
= 0, (1)

∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂y
= gβ(T ′

− T ′

∞
) + gβ∗(C′

− C′

∞
) + ν

∂2u

∂y2
−

σB2
o

ρ
u, (2)

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2
, (3)

∂C′

∂t′
+ u

∂C′

∂x
+ v

∂C′

∂y
= D

∂2C′

∂y2
, (4)

whereu andv are the velocity components in thex andy directions respectively,C′

is the species concentration,D is the coefficient of diffusion in the mixture,T ′ is the
temperature of the fluid in the boundary layer,t′ is the time,β is the volumetric coefficient
of thermal expansion,β∗ is the volumetric coefficient of expansion with concentration,
ν is the kinematic viscosity,g is the acceleration due to gravity andα is the thermal
diffusivity, ρ is the density of the fluid,B2

o is the magnetic field strength andσ is the
electrical conductivity of the fluid.
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The initial and boundary conditions are

t′ ≤ 0: u = 0, v = 0, T ′ = T ′

∞
C′ = C′

∞
,

t′ > 0: u = 0, v = 0, T ′ = T ′

w C′ = C′

w at y = 0,
(5)

u = 0, T ′ = T ′

∞
, C′ = C′

∞
at x = 0,

u → 0, T → T∞, C → C∞ as y → ∞.

On introducing the following non-dimensional quantities:

X =
x

L
, Y =

y

L
Gr1/4, U =

uL

ν
Gr−1/2, V =

vL

ν
Gr1/4, t=

νt′

L2
Gr1/2,

T =
T ′ − T ′

∞

T ′

w − T ′

∞

, C =
C′ − C′

∞

C′

w − C′

∞

, Gr=
gβL3(T ′

w − T ′

∞
)

ν2
,

Gc=
gβ∗L3(C′

w−C′

∞
)

ν2
, P r=

ν

α
, Sc=

ν

D
, N =

Gc

Gr
, M =

σB2
oL2

ρν
Gr−1/2.

HereL is the length of the plate,Gr is the Grashof number,Gc is the modified Grashof
number,M is the magnetic field parameter,N is the buoyancy ratio parameter,Sc is the
Schmidt number andPr is the Prandtl number.

Equations (1)–(4) are reduced to the following dimensionless form

∂U

∂X
+

∂V

∂Y
= 0, (6)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T + NC +

∂2U

∂Y 2
− MU, (7)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
, (8)

∂C

∂t
+ U

∂C

∂X
+ V

∂C

∂Y
=

1

Sc

∂2C

∂Y 2
. (9)

The corresponding initial and boundary conditions in dimensionless form are as follows:

t ≤ 0: U = 0, V = 0, T = 0, C = 0, for all Y,

t > 0: U = 0, V = 0, T = 1, C = 1, at Y = 0,
(10)

U = 0, T = 0 C = 0, at X = 0,

U → 0, T → 0 C → 0 as Y → ∞.

Using the non-dimensional quantities specified in equation6, the local as well as average
values of skin-friction, Nusselt number and Sherwood number in dimensionless form are
as follows:

τ
X

= Gr3/4

(

∂U

∂Y

)

Y =0

, (11)
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τ = Gr3/4

1
∫

0

(

∂U

∂Y

)

Y =0

dX, (12)

NuX = − Gr1/4X

(

∂T

∂Y

)

Y =0

, (13)

Nu = −Gr1/4

1
∫

0

(

∂T

∂Y

)

Y =0

dX, (14)

Sh
X

= − Gr1/4X

(

∂C

∂Y

)

Y =0

, (15)

Sh = −Gr1/4

1
∫

0

(

∂C

∂Y

)

Y =0

dX. (16)

The derivatives involved in equations (11) to (16) are evaluated by using a five-
point approximation formula and then the integrals are evaluated by Newton-Cotes closed
integration formula.

3 Numerical procedure

The two-dimensional, non-linear, unsteady and coupled partial differential
equations (7)–(10) under the initial and boundary conditions (11) are solved using an
implicit finite difference scheme of Crank-Nicolson type which is fast convergent and
unconditionally stable. The finite difference equation corresponding to equations (7)–(10)
are given by:

[Uk+1

i,j − Uk+1

i−1,j + Uk
i,j − Uk

i−1,j + Uk+1

i,j−1 − Uk+1

i−1,j−1 + Uk
i,j−1 − Uk

i−1,j−1]

4∆X

+
[V k+1

i,j − V k+1

i,j−1 + V k
i,j − V k

i,j−1]

2∆Y
= 0, (17)
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i,j − Uk
i,j]
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+ Uk

i,j
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i−1,j ]

2∆X

+ V k
i,j

[Uk+1

i,j+1 − Uk+1

i,j−1 + Uk
i,j+1 − Uk

i,j−1]

4∆Y

=
1

2

[

T k+1

i,j + T k
i,j

]

+
N

2

[
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i,j + Ck
i,j

]

+
[Uk+1
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i,j+1 + Uk
i,j−1 − 2Uk

i,j + Uk
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2(∆Y )2

−
M

2

[

Uk+1

i,j + Uk
i,j

]

, (18)
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i,j ]

∆t
+ Uk

i,j
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i,j
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i,j+1
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i,j − Ck
i,j ]
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+ Uk

i,j

[Ck+1

i,j − Ck+1
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i,j − Ck

i−1,j ]

2∆X

+ V k
i,j

[Ck+1

i,j+1 − Ck+1
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i,j+1 − Ck
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=
1
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[Ck+1
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i,j + Ck+1

i,j+1 + Ck
i,j−1 − 2Ck

i,j + Ck
i,j+1]

2(∆Y )2
. (20)

The region of integration is considered as a rectangle with sidesXmax (= 1) and
Ymax (= 16), whereYmax corresponds toY = ∞, which lies very well outside the
momentum, energy and concentration boundary layers. The maximum of Y was chosen
as16 after some preliminary investigations so that the last two of the boundary conditions
(11) are satisfied. Here, the subscripti-designates the grid point along theX-direction,
j-along theY -direction and the superscriptk along thet-direction. During any one time
step, the coefficientsUk

i,j andV k
i,j appearing in the difference equations are treated as

constants. The values ofU, V, T andC are known at all grid points att = 0, from the
initial conditions.

The computations ofU, V, T andC at time level (k + 1) using the values at previous
time level (k) are carried out as follows: The finite difference equation (20) at every
internal nodal point on a particulari-level constitute a tridiagonal system of equations.
Such a system of equations are solved by Thomas algorithm as described in Carnahan
et al. [13]. Thus, the values ofC are found at every nodal point for a particulari at
(k + 1)th time level. Similarly, the values ofT are calculated from equation (20). Using
the values ofC andT at (k + 1)th time level in the equation 19, the values ofU at
(k + 1)th time level are found in a similar manner. Thus, the values ofC, T andU are
known on a particulari-level. Finally, the values ofV are calculated explicitly using the
Equation (18) at every nodal point on a particulari-level at(k + 1)th time level. This
process is repeated for variousi-levels. Thus the values ofC, T, U andV are known, at
all grid points in the rectangular region at(k + 1)th time level.

Computations are carried out until the steady-state is reached. The steady-state
solution is assumed to have been reached, when the absolute difference between the values
of U , as well as temperatureT and concentrationC at two consecutive time steps are less
than10−5 at all grid points. After experimenting with few sets of meshsizes, they have
been fixed at the level∆X = 0.05, ∆Y = 0.25, and the time step∆t = 0.01. In this
case, spatial mesh sizes are reduced by 50 % in one direction,then in both directions,
and the results are compared. It is observed that, when mesh size is reduced by 50 % in
X-direction andY -direction the results differ in fourth decimal place. Hence, the above
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mentioned sizes have been considered as appropriate mesh sizes for calculation. The local
truncation error isO(∆t2 + ∆Y 2 + ∆X) and it tends to zero as∆t, ∆Y , and∆X tend
to zero, which shows that the system is compatible. Also the Crank-Nicholson system
is always unconditionally stable. Thus the compatible and stability ensures convergence.
Hence, the present employed scheme is always convergent.

4 Discussion of results

In order to ascertain the accuracy of the numerical results,the present study is compared
with available solution in the literature. The velocity profiles for Pr = 0.1, Sc = 0.7,
N = 2.0, M = 0.0 are compared with the available solution of Callahan and Marner [3]
using explicit finite difference scheme in Fig. 2. It is observed that the present results are
in good agreement with the solution.
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0.75

1

0 2 4 6

Y

U

Present Results

Callahan and Marner [3]

Pr = 1.0

Sc = 0.7

N = 2.0

M = 0.0

t = 3.67*

t = 0.6

Fig. 2. Comparison velocity profiles atX = 1.0 (∗ – steady state).

Transient velocity profiles are shown in Fig. 3 for differentvalues of buoyancy ratio
parameterN and the magnetic field parameterM at the upper edge of the plate viz. at
X = 1.0. WhenN increases the combined buoyancy force increases. Therefore velocity
increases withN near the plate. Time taken to reach the steady state increases with
the increasing value of the magnetic field parameterM . From Fig. 3, we observe that
the magnetic parameterM has a retarding effect on velocity. The difference between
temporal maximum and steady state decreases marginally asM increases. No temporal
maximum is observed for higher values of magnetic field parameterM . The effect of a
transverse magnetic field on an electrically conducting fluid give rise to a resistive type
force called Lorentz force. This force has tendency to slow down the motion of the fluid
and to increases its temperature. To illustrate the effectsof Schmidt number and Prandtl
number, the steady state velocity distribution near the plate at X = 1.0 is presented
in Fig. 4. The velocity gradient for air (Pr = 0.7) is always greater than the water
(Pr = 7.0). Physically, this is true because the increase in the Prandtl number is due
to increase in the viscosity of the fluid which makes the fluid thick and hence causes a
decrease in the velocity of the fluid. An increase inSc leads to a fall in the velocity. The
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transient temperature profile atX = 1.0 for different values ofN andM are presented in
Fig. 5. Temperature increases with the increasing value of the magnetic field parameter
M . An increase inN leads to a fall in the temperature. Fig. 6 shows the effect ofSc and
Pr on the steady state temperature distribution. Temperatureincreases asSc increases.
Thermal boundary layer decreases for the larger value ofPr.
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Fig. 3. Transient velocity profiles at
X = 1.0 for different N and M

(∗ – steady state).
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Fig. 4. Steady state velocity profiles at
X = 1.0 for differentPr andSc.
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Fig. 5. Transient temperature profiles
at X = 1.0 for different N and M

(∗ – steady state).
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Fig. 6. Steady state temperature profiles
atX = 1.0 for differentPr andSc.

Concentration profiles atX = 1.0 for different values of buoyancy ratio parameterN

and magnetic field parameterM are shown in Fig. 7. The species concentration decreases
asN increases. From Fig. 7, we conclude that the transient concentration increases asM
increases. In Fig. 8, steady state concentration profiles are plotted for various values ofSc

andPr. As expected concentration is lower for system with larger values ofSc. Species
concentration increases with increasing value of Prandtl number of the fluid. In Fig. 9,
values of local shear stress are plotted for various values of different values parameter
occurring into the problem. As the buoyancy ratio parameterN increases, local skin
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friction increases. Local skin friction is reduced by the increasing value of magnetic
parameterM , because velocity decreases with the increasing value ofM as shown in
Fig. 3. The local wall shear stress increases with increasing value of Schmidt number.
Also it is observed that local skin friction decreases asPr increases. In Fig. 10, local
Nusselt number i.e., local heat transfer rate is plotted against the axial co-ordinateX at
the steady state level. It increases asX increases. Larger values of Nusselt number are
observed for higher values ofPr. It decreases asM increases. Also it is observed that
local Nusselt number decreases asSc increases. An increase inN , local Nusselt number
is also found to increases.
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Fig. 7. Transient concentration profiles
at X = 1.0 for differentN andM (∗ –

steady state).
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Fig. 8. Steady state concentration profiles
atX = 1.0 for differentPr andSc.
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Fig. 9. Local skin friction.
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Fig. 10. Local Nusselt number.

Steady state local Sherwood number are shown in Fig. 11, for various values ofPr,
Sc, N andM . The effect ofSc is greater on the local Sherwood number than any other
parameter. It is observed that local Sherwood number decreases asPr increases. From
the figure, we see that localSherwood number increases with the increasing value ofN .
Average skin friction, average Nusselt number and average Sherwood number are plotted
in Figs. 12, 13, 14 respectively for various parameters. Average skin friction decreases
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asM or Sc decreases throughout the transient period. Also it is observed that average
skin friction increases asN increases. In Fig. 12, the average Nusselt number is same at
a particular time level in the initial period for various values of other parameters. This
shows that there is only heat conduction in the initial time level. Average Nusselt number
decreases asM increases. The same trend is also notice for average Sherwood number.
An increase in the value ofN , the average Nusselt number increases. The same trend is
also observed for average Sherwood number.
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Fig. 11. Local Sherwood number.
Fig.12 Average skin friction
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5 Conclusions

Finite difference study has been carried out for the flow pasta semi-infinite vertical plate
with MHD with heat and mass transfer. The dimensionless governing equations are solved
by an implicit finite difference scheme of Crank-Nicolson type. A comparison between
the present numerical results and available solution is also made. The agreement between
the two result is found to be very good. The effect of velocity, temperature, concentration
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fields for different parameters are studied. The transient velocity, temperature and con-
centration profiles all reach maximum values before decreasing slightly to their respective
steady-state values. The local as well as average skin-friction, Nusselt number and Sher-
wood number are shown graphically. The difference between the temporal maximum and
steady state decreases marginally asM increases. No temporal maximum is observed for
higher values ofM . It is observed that the contribution of mass diffusion to the buoyancy
force increases the maximum velocity significantly. Local shear stress gets reduced by
the increasing value of magnetic field parameterM .
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