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Abstract. A method of weighted bootstrapping in the presence of anilinformation
has been studied and named as saddlestrapping becausesxistsea saddlepoint.
Comparisons of saddlestrapping with the bootstrappingeuifferent situations are
performed and discussed. FORTRAN code for doing bootsitngmgnd saddlestrapping
are provided. A huge scope of further studies has been siaghes
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1 Introduction

Bradley Efron is a statistician best known for proposinglibetstrap re-sampling tech-
nique, which has had a major impact in the field of statistio$ artually every area of
statistical application. The bootstrap was one of the fisshguter-intensive statistical
techniques, replacing traditional algebraic derivatianth data-based computer sim-
ulation. He received numerous awards on this and relatettilbotions in the field
of statistics as cited in the free online encyclopedia letitVikipedia. It was named
bootstrapping because it involves resampling from theimaiglata set. The bootstrap is
a form of a larger class of methods that resample from ther@figlata set and thus
also called resampling procedure. For details, one cowdd e¢fer to the books on
bootstrapping by Efron and Tibshirani [1] and Chernick [2].

Casella [3] provides an introduction to the Silver Anniaagsof the Bootstrap.
Efron [4] discusses a second thought on bootstrapping.dbawt al. [5] have a critical
review on recent developments in bootstrap methodologngtine year 2003. Beran [6],
Lele [7], Shao [8], Lahiri [9], and Politis [10] explain thepact of bootstrap on statistical
algorithms and theory, estimating functions, sample sigvemall area estimation and
time series, respectively. Ernst and Hutson [11] and Ruéda §12, 13] discuss appli-
cation of bootstrapping for quantile estimation. Holme4][and Soltis and Soltis [15]
discuss applications of bootstrapping in phylogenetiedr@nd phylogeny reconstruction
respectively. Holmes et al. [16] provide an overview of aeBation on bootstrap
between Bradley Efron and other good friends.
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The use of auxiliary information in survey sampling has annemt role to improve
methods of sample selection and use them to estimate vgravameters of interest. In
this paper, we are introducing a new method called saddlgsitng which makes the use
of auxiliary information correlated with the study varialib select different bootstrapping
samples from the first given original sample selected by anypding scheme. It is also
shown that the bootstrapping method due to Efron [17] is aiapease of the proposed
saddlestrapping method. Barbe and Bertail [18] have plubtis monograph on weighted
bootstrapping which presents an account of the asympteti@or of the weighted
bootstrap — a new and powerful statistical technique. Rekess and advanced graduate
students studying bootstrap method will find this a valuab#hnical survey which is
thorough and rigorous. The main aim of their monograph isn®aeer two questions:
how well does the generalized bootstrap work? What are tfiereinces between all
the different weighted schemes? Lee and Young [19] haveusssd pre-pivoting by
weighted bootstrap iteration. Johnson [20] has given aintceduction to bootstrapping.
The proposed saddlestrapping is a kind of weighted bogigitng. The purpose of this
paper aims to see the effect of correlation between the stndyauxiliary variable on the
distributions of sample mean and sample variances; thi$ ¢drstudy has recently been
performed by Johnson [20]. Likewise, Hesterberg [21] tduglvery valuable course
entitled, “Bootstrap methods and permutation tests” dyitie conference of Statisticians
at San Antonio, TX.

In the next section, we develop a theory that will be usedérstibsequent sections to
show comparisons of the proposed saddlestrapping methbdheibootstrapping method
due to Efron [17].

2 Proposed methods

Let Y and X be the study and auxiliary variables in a finite populatidof N units
having positive linear correlation with each other. Cossitthe problem of estimation of
population mea” = % > _icq i Of the study variablg while using information on the
auxiliary variabler. Note that the distribution of the study variaiMewill depend on the
value of its correlation with the auxiliary variahfé.

Let Soriginat = {(yi,zi): 4 = 1,2,...,n} be a random sample taken from the
population2 by using any sampling scheme among the list of 50 samplingrseb
available in Brewer and Hanif [22]. Let us define
pi=" (1)
wherez = ZiESmgml x; is the total of the auxiliary variable in the original sample
Soriginal,» @S the probability of selecting thieh unit from the original sample. We call
such a method saddlestrapping. Obviously, the maximum eummbsaddlestrapping
samples will be® = n™ if each saddlestrap sample is of the size of original sanipée s
of n units. Note that fop; = 1/n the proposed saddlestrapping method leads back to the
original bootstrapping method. We suggest the use of Cuivel@otal Method to select
saddlestrapping samples. However, in case of large sarizgletbe use of Lahiri [23]

X
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method could be beneficial. To learn more about the proltapitoportional to size and
with replacement (PPSWR) sampling one can refer to Hansgharvitz [24].
Now we have the following theorems:

Theorem 1. An unbiased saddlestrapping (ss) estimator of the population mean of the
study variable Y is given by:

_ 1 Yi

1E€Ssaddle

Proof. Let F; and F, be the expected values over all possible original sampldkat
could be taken with any Inclusion Probability Proportiorial Size (IPPS) design
P(Soriginal), original = 1,2,...,® from the given populatiorf2, and over all pos-
sible saddlestrapping samples 44 that could be taken from the given original sample
Soriginal,» F€Spectively. Note that total number of original sampg@<ould be either
N™ or(f{) depending upon whether the original sampleg;4ina: is selected using with
replacement or without replacement sampling from the gpapulation(2 of V units.
Then taking expected value on the both sides of (2), we have

_ _ 1 Yi
E(Y,,) = E1E2(F,s|Soriginal) = E1 B2 <ﬁ Z p_i|soriginal>

1E€Ssaddle

1 _
= El (E Z yt) = El (yoriginal|50”‘i$]’i7ml)

1€Soriginal

= Z p(Somgmal ) (yoriginal) =Y

original=1
which proves the theorem. O

Note that while taking expected valii®, the original sampl@,,4ina; IS treated as a
population of sizex and then all possible probability proportional to size wéplacement
(PPSWR) samples of the same sizare drawn from the population,igina. It works
because in the usual PPSWR sampling, the sample size coelglia¢to the population
size.

Theorem 2. The variance of the unbiased saddlestrapping (ss) estimator y,, of the
population mean of the study variable Y is given by:

® 2
_ 1 Yi
V(yss) = E Z p(soriginal) Z y23 <_1 - nyo’riginal)
original=1 1€Soriginal pi
® 5\ 2
+ Z p(soriginal) (yoriginal - Y) : (3)

original=1
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Proof. LetV; andV; be the variances over all possible original sam@dsom the given
populationQ and over the all possible “saddlestrapping” samplgsq. from the given
original samples,,iginal, respectively.

Then the variance of the proposed saddlestrapping estisajven by:

V(yss) = El‘é(yss|soriginal> + ‘/IEQ (yss|soriginal)

1 yz 1 yz
= El‘/Q (ﬁ Z Di |Sor1gznal> + ‘/IE2 (ﬁ Z i |Sor2gznal>

1E€Ssaddle 1E€Ssaddle

> (-

3

= B =

1E€Soriginal

® 1 " 2
= § p(soriginal) lﬁ E Di ( . — NYor ngnal) ‘|
ginal=1

origina pi

+ Vi (yoriginal |50Ti9i"0«l )

2
nyomgznal) | Soriginal

1€Soriginal
_ >\ 2
+ Z p(Somgmal) (yso'riginal - Y)
original=1
which proves the theorem. O
Note that the second component of the variance, given by

®
Z p(So'r'iginal) (yo'riginal - ?) ’ (4)

original=1

disappears if we replace the population m&awith Yoriginal -
Now we have the following corollary:

Corollary 1. An estimator of variance of saddlestrapping estimator based on each sad-
dlestrapping sampleis given by

6(?55) = % [ TL* 1 { Z y_Z _n3y§s}‘| : (5)

1€8saddle P

Proof. Note that the estimator (5) can be written as

0 (7s) = n_ll > y_ <5 > %H (6)

Zessaddls- 1E€Ssaddle

By following Theorem 4.2.3 from Singh [25, p. 309], takingethxpected valué’s on
both sides of (6), we get

2
S 1 Yi
E; [U(yss)] = ﬁ Z b (p_ - nyoriginal) : (7)

1€Soriginal
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Now taking expected valug; on both sides of (7) we get the first term on the right hand
side of equation (3), and it proves the corollary.

Thus, itis possible to look at the distributions of saddbgsping estimator of sample
meany,, and that of the estimator of varianc€y,, ) obtained from each saddlestrapping
sample for various situations such as: different sampkssidifferent values of positive
correlation between the study variablend the auxiliary variable and outliers in the
original sampl&,;ginai. Letr,, be the estimator of the population correlation coefficient
between the study variablgand the auxiliary variable in the given original sample
Soriginal Of m UNItS selected with any sampling desig¥or;ginai)-

Thus an empiricall — «))100 % confidence interval estimate of the population mean
Y based or® each saddlestrapping sample is given by:

yestimate + t% (df =n- 1) O(yestimate> (8)

where

i 1 g = 1 2 Yi
Yestimate = 6 Z Yss = W Z Z (E) (9)

ss=1 saddle=11E€Ssqddie
and
1 < R~
%\(gesti'rnate) = 6 Z ﬁ(?ss) = 6 Z {6(§(ss)}saddle' (10)
ss=1 saddle=1

In the Appendix we shall provide the FORTRAN code which wedugedraw his-
tograms by exporting their outputs in MINITAB for differesituations which could occur
between a study variablgand an auxiliary variable. Also, the output of the program
gives us(1 — a))100 % confidence interval estimates for both techniques saddlgsing
and bootstrapping and also prints sample correlation ltywandz in the first original
sample.

3 Graphical and numerical comparisons

In this section, first we show graphical comparisons betwsasistrapping and sad-
dlestrapping sample means and sample variances by cangidiee possibility of dif-
ferent magnitudes of correlation between the study vagiglzind the auxiliary variable
x in the given original sample. Following Singh et al. [26], generated: independent
pairs of random numberg’ andz}, (say),i¢ = 1,2,...,nfrom the standard normal
distribution by using the IMSL subroutine RNNOR. For fixedues of o, = 140,
o, = 125, py, = 415, andpu, = 335, we generated transformed variablgsand z;

as.
Yi = by + /05 (1= p2,)Y; + payoy; (11)
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and
Ti = Uy + OzX; (12)

for different values of the population correlation coe#itip,, between the study vari-
ableY and the auxiliary variablél. We consider three different cases: (i) reasonable
amount of population correlation coefficignt, between: andy such a$.95, 0.90, 0.80,
0.70, 0.60, and0.50; (ii) extreme cases of correlation such1a80 and0.00, and (iii) a
situation with unknown distribution of” and X but with large outliers and reasonable
amount of correlation such as85. In each case we decided to dr&v = 50,000
random samples, because we can not handle more than 50,60@alats with the
software packages available at present. Later on, we absid@95 % confidence interval
estimates of the population mean using both the bootsingpgid the saddlestrapping
methods for various values of correlation between the studiyauxiliary variable along
with situations of outliers. Here in the entire simulatidndy we have kept = 10, and
100, because the results are not much sensitive to the sameldather these results are
sensitive towards the value of correlation between theystund auxiliary variables. We
tried these simulations for = 10, 20, 30, 50 and1000, and similar results were observed,
and one can also verify by running the FORTRAN code givenéAppendix.

3.1 Graphical comparisons

Case 1. Population correlation coefficient betweemy and x is 0.95. We generated
n = 10 data points, the values of the study variaplend the auxiliary variable, from
(11) and (12) by setting the value pf, = 0.95, as shown in Table 1. The value of
sample correlation coefficient,, between the sampleg and x values in the original
samples,yigina: 1S 0.95886, which is quite high.

Table 1.

y 172.99 487.79 523.55 662.27 213.75 316.53 318.53 400.94.050%31.27
x 186.16 355.15 416.86 575.85 212.24 201.96 261.53 297.62.49444122.42

The histograms for sample means shows that spread of sadglgiag means is
much less than that due to bootstrapping sample means. én witrds, the presence
of correlation between the study variable and auxiliaryialde shows impact on the
distribution of the bootstrapping sample means which wktlealsaddlestrapping means.
See the histograms in Fig. 1(a) for means and Fig. 1(b) foamees based on both
bootstrapping and saddlestrapping methods with small kasigen = 10.

Now we generated = 100 data points from (11) and (12) by keepipg, = 0.95.
The value of sample correlation coefficient, between the samplegandx values in the
original samples,;;ginq: Of 100 units has been observed(a86185, and the results are
shown in Fig. 1(c) and Fig. 1(d).
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As the sample size increases frafhto 100, the distributions of bootstrapping mean
and saddlestrapping means in Fig. 1(a) and Fig. 1(c) shovlasitsehavior. Although
the peak point of saddlestrapping means reduces &0t to 2800 and the peak point
of bootstraping means reduces fr@m00 to 1200. The distribution of bootstrapping
variance fom = 10 andn = 100 remains the same as shown in Fig. 1(b) and Fig. 1(d),
but the distribution of saddlestrapping variance showeisd\peaks as the sample size
increases. Interestingly, the distribution of bootstiagpariance is almost symmetric,
but the distribution of saddlestraping variance remaiesvad to the right distributed. As
expected the variance of sample variance should be appatedyrchi-square distribution.
Thus, in case of higher correlation between the study andiayxvariables the distri-
bution of saddlestrapping variance remains close to chasgdistribution as expected.
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Fig. 1(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.95886, sample siz&0.
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Fig. 1(b). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.95886, sample siz&0.

363



Sarjinder Singh

= NINRE]
o
2500 A I
b
.. 2000 ‘ \
g |
£
£ 1500 \
= \
£ I b
1000 AN
i
=00 4 AR
o et M T T
[Ny 482 614 T = S,
268 324 400 416 43 445 464 420
Sample Means
Varidhle Mew StDev N
B Eootstrap Mears 4161 14,83 SO000
B saddlestrap Mzans 4147 7217 S0000

Fig. 1(c). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.96185, sample siz&00.
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Fig. 1(d). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.96185, sample sizd00.

Case 2. Population correlation coefficient betweey and x is 0.90. We generated
n = 10 data points, the values of the study variaplend the auxiliary variable, from
(11) and (12) by setting the value pf, = 0.90, as shown in Table 2. The value of
sample correlation coefficient,, between the sampled and x values in the original
samples,rigina: 1S 0.89488, which is again quite high.

Table 2.

y 236.22 339.54 567.80 267.99 542.23 364.62 458.49 335.03.3B2566.64
x 155.99 280.23 470.08 203.25 426.80 373.85 299.63 197.03.530@190.98
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Again the histogram for sample means shows that the spreaddufiestrapping

means is mu

ch less than that due to bootstrapping samplesmianremains wider

than the case when correlation wa85886. Such situations are shown in Fig. 2(a) and
Fig. 2(b), respectively.
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Fig. 2(a).
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Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.95886, sample sizd 0.
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re now we generated = 100 data points from (11) and (12) by keeping

pzy = 0.90. The value of sample correlation coefficienf, between the samplegandz
values in the original sample,,;4ina has been observed 891340, and the results are
shown in Fig. 2(c) and Fig. 2(d).

As before as the sample size increases ft0rto 100, the distributions of bootstrap-
ping means and saddlestrapping means and sample varidwoeesimilar behavior. The
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behavior of saddlestrapping variance in Fig. 2(d) is moreatmthan in case of Fig. 1(d).
The reason becomes clear from Case 7 where an extremeitoét perfect correlation
between the study and auxiliary variable has been consldefi®@o high correlation
between the study and the auxiliary variable may lead tdeipgint distribution in case
of saddlestrapping.
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Fig. 2(c). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.91340, sample siz&00.
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Fig. 2(d). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.91340, sample sizd00.

Case 3. Population correlation betweery and « is 0.80. We generated = 10 data
points, the values of the study variall@nd the auxiliary variable,from (11) and (12)

by setting the value of,, = 0.80, as shown in Table 3. The value of sample correlation
coefficientr,, between the sampleglandx values in the original sample,,;gina; iS
0.8011, which is still quite high, but seems practical.
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Table 3.

y 23541 631.68 450.77 344.45 396.21 331.83 459.71 368.44.5613%87.28
x 73.77 460.22 402.09 347.30 199.07 290.93 494.72 190.33 7@33142.08

Now the histograms for sample means shows that spread ofestidgping means
is now comparable to that of bootstrapping sample means;elouidins wider than the
case when correlation wass9488. Such situations are shown in Fig. 3(a) and Fig. 3(b),
respectively. The distribution of sample variances in edsaddlestrapping shows higher
peak close to zero, which shows that saddlestrapping w@@isg@mains smaller than boot-
straping variance in most of the cases as shown in Fig. 3(b).
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Fig. 3(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.89488, sample siz&0.
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Fig. 3(b). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.89488, sample siz&0.
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Now we generated = 100 data points from (11) and (12) by keepipg, = 0.80.
The value of sample correlation coefficient, between the sampledandx values in the
original samples,rigina: Nas been observed @80121; the results are shown in Fig. 3(c)
and Fig. 3(d).
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Eoatstrapping M 4097 13.65 50000
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Fig. 3(c). Histogram of bootstrapping and saddlestrappiegins; sample correlation
coefficient0.80121, sample siz&00.
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Fig. 3(d). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficien.80121, sample siz&00.

For large samplex = 100, the distribution of saddlestrapping means remains nar-
rower than that of bootstrapping means as shown in Fig. 3{@ .values of saddlestraping
variances remains smaller than those obtained from bapfsitrg variances as shown
in Fig. 3(d). Clearly, forn = 100, a better inference about the population mean is
expected in case of sadlestrapping than in case of bogtstigaprith a practicable value
of correlation coefficient between the study and the auyiNariable.
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Case 4. Population correlation coefficient betweey and x is 0.70. We generated

n = 10 data

points, the values of the study variapland the auxiliary variable, from

(11) and (12) by setting the value pf, = 0.70, as shown in Table 4. The value of
sample correlation coefficient,, between the sampled and x values in the original
samples,riginas 1S 0.72432, which looks very much practical.

Table 4.
y 466.82 198.10 355.36 393.54 252.01 265.36 431.28 470.56.3511194.36
x 273.34 267.16 414.20 513.99 244.08 305.24 516.59 376.34.757386.51
1300 )
1600 il
i 1t
1400 4
5. 1200 ]ﬂm{ -r\.
g 1o i I
§ s Il [111k,
AN s
400 A i
AT [T
200 | AT 11
AT (LTI b,
[ IS 1 £ ¥ - TR A NTHT TRt .
253.0 2975 340.0 3825 423.0 467,35 510.0
Sample Means
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BE== Bootstrapping Means 3EEF 3545 SO0O0
B saddlestrapping Mears 3539 2950 SO000
Fig. 4(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.8011, sample siz&0.
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Fig. 4(b). Histogram of bootstrapping and saddlestrappiagiances; sample

correlation coefficiend.8011, sample sizd0.
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Again for small sample of size =10, the histograms for sample means in Fig. 4(a)
shows that spread of saddlestrapping means is comparedhé bf bootstrapping means,
but remains wider than the case when correlation w&811. In Fig. 4(b), the sad-
dlestraping variances shows four different peaks with alvelistribution skewed to the
right. The first two peaks show that the saddlestrappingamags remain smaller than
bootstrapping variances in several cases.

Now again we generated= 100 data points from (11) and (12) by keepipg, =
0.70. The value of sample correlation coefficien}, between the samplegandx values
in the original sampl8,;4in. has been observed@§2313. For a large sample case, the
saddlestraping means show less variation than bootstrgppeans as shown in Fig. 4(c).
In Fig. 4(d) the distribution of saddlestraping variancesains slightly skewed to the
right, but most of the values remain smaller than the bamgting variances.
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Fig. 4(c). Histogram of bootstrapping and saddlestrappiegins; sample correlation
coefficient0.72313, sample siz&00.
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Fig. 4(d). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.72313, sample siz&00.
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Case 5. Population correlation coefficient betweewy and x is 0.60. We generated
n = 10 data points, the values of the study variaplend the auxiliary variable, from
(11) and (12) by setting the value pf, = 0.60, as shown in Table 5. The value of
sample correlation coefficient,, between the sampled and x values in the original
samples,rigina: 1S 0.58821, which is neither very low nor very high value.

Table 5.

409.38 589.87 487.06 493.45 424.96 411.08 241.64 453.19.9%0%10.46
250.95 441.37 334.63 392.15 405.83 503.04 193.95 396.62.192(81.53

Frecuency

Sample Means

il Bizan Sile
BE== Eoctitrapping Means 4728 3398 SO000
B saddlestrapping Means 4727 2940 50000

Fig. 5(a). Histogram of bootstrapping and saddlestrappieg@ns; sample correlation
coefficient0.6, sample siz€ 0.
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We consider a value of correlation between the sampladdx values a$.60. The
histograms in Fig. 5(a) show that spread of “saddlestragdpimeans has almost spread
as that of bootstrapping means, and remains wider than gewhen correlation was
0.70. Fig.'5(b) shows that the saddlestrapping variance ressimaller than bootstraping
variance in majority of the cases. Thus in case of small sampt 10 with a value of
correlation around.6, some gain is expected due to the use of saddlestrapping.

Again we generated = 100 data points from (11) and (12) by keepipg, = 0.60.
The value of sample correlation coefficient, between the sampleglandz values in
the original sample,,i4ine: has been observed 83065, and the results are shown in
Fig. 5(c) and Fig 5. 5(d).
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Fig. 5(c). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.63065, sample siz& 00.
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Fig. 5(d). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.63065, sample sizd 00.
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Fig. 5(c) shows saddlestrapping means have almost completi&ap with the boot-
straping means; thus, not much gain is expected over thestbapping means. Obvi-
ously, as we are decreasing the value of correlation cosffidietween the study and
the auxiliary variables, we are converging to a “saddlegipand beyond that point the
saddlestrapping will not be useful.

Case 6. Population correlation coefficient betweeg and x is 0.50. Now we generated

n = 10 data points, the values of the study variaplend the auxiliary variable, from
(11) and (12) by setting a low value pf,, = 0.50, as shown in Table 6. The value
of sample correlation coefficient,, between the samplegandx values in the original
samples,riginat is 0.48345, which we consider a low correlation. Note that for the ratio
estimator (see Cochran [27]) to perform better than the gampan estimator, the value
of correlation should be more th&n5 by assuming both study and auxiliary variables
have equal values of the coefficient of variations.

Table 6.

y 423.17 487.15 290.60 508.19 391.42 455.96 236.20 446.81.041205.16
x 200.62 414.67 295.24 316.85 362.12 486.62 204.31 357.54.682@187.04

It is interesting to see that if the correlation betweeand xz becomes as low as
0.50, then the spread of saddlestrapping means becomes widethihizof bootstrapping
means as shown in Fig. 6(a). Fig. 6(b) demonstrates thattt&tion in saddlestrapping
variances remains wider than that of bootstrapping vaeéanthus, use of high positive
correlation between the study and auxiliary variables ggested in saddlestrapping, and
this concept of high correlation also comes from Hansen amaviiz [24].
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Fig. 6(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.50, sample siz0.
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Fig. 6(b). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficien®.50, sample sizd 0.

To see the effect of sample size, we generated 100 data points from (11) and
(12) by keeping,, = 0.50. The value of sample correlation coefficient, between the
sampledy andx values in the original sample,.;¢inq Of 100 units has been observed as
0.46443.

For large sample size = 100, and for a low value of correlation coefficient, the
saddlestrapping means in Fig. 6(c) show more spread thatstegmping means. Also
Fig. 6(d) shows the saddlestrapping variances have much wawiation than bootstrap-
ping variances. Thus, the use of saddlestrapping or weldidetstrapping in case of low
correlation between the study and auxiliary variable istyrprohibited.
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Fig. 6(c). Histogram of bootstrapping and saddlestrappiegins; sample correlation
coefficient0.46443, sample siz&00.
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Case 7. (Extreme situation) Population correlation coeffient betweeny and x is
1.00. We generatech = 10 data points, the values of the study variapleand the
auxiliary variablez, from (11) and (12) by setting the value @f, = 1.00, as shown in
Table 7. The value of sample correlation coefficiep between the samplegland x
values in the original sample,.;4ina is alsol.00, which is clearly an extreme case.

Table 7.

y 215.99 771.80 237.69 389.56 483.29 550.34 600.82 316.49.331140.37
x 157.31 653.57 176.68 312.28 395.97 455.84 500.91 247.04.733B57.65

Such situations for means and variances are shown in Figaf¢aFig. 7(b) respec-
tively.
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Fig. 7(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient1.000, sample sizd0.
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Fig. 7(a) shows that the saddlestrapping means are congdma single point dis-
tribution, but the distribution of bootstrapping means aéms as wider as before because
it is not effected by the correlation. The peak of bootstiggneans became low because
of higher or single value distribution of saddlestrappirgams. Similar behavior is shown
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by saddlestrapping variances and bootstrapping variandéeg. 7(b).

The following histogram in Fig. 7(c) gives another look at thistribution of the sad-
dlestrapping and bootstrapping means in Fig. 7(a) and sanldpping and bootstrapping

variances in
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Note that in Fig. 7(c) bootstrapping means show only onéagdtine because these
four panel graphs are drawn on the same scale; otherwiststkagaping means will show
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wider bell-shaped distributioon. Thus, do not misintetjire

Further note that as soon as the value of the sample coomrleiefficient becomes
one(ryy, = 1), the distribution of saddlestrapping mean becomes single point distribu-
tion equal tay,,.; ;... With zero variance. Also note that the distributions of Istr@tpping
means and variances remain unaffected. In other wordsgiiétis an auxiliary variable
which is positive and perfectly correlated with the studsiafale, then it is always possible
to find y if = is known; no need of saddlestrapping or any other estimati@iegy. An
analogous of Fig. 7(c) for = 100 is given in Fig. 7(d), where one can see better spread
of bootstrapping means on the same scale in a panel graph.
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Fig. 7(d). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient1.000, sample siz& 00.

Case 8. (Extreme situation) Population correlation coeffient betweeny and x is
0.00. We generatedh = 10 data points, the values of the study variapland the
auxiliary variabler, from (11) and (12) by setting the value @f, = 0.00, as shown in
Table 8. The value of sample correlation coefficiep between the samplegland x
values in the original sample,;¢inq is also0.0615, which again looks like an extreme
case. Here,, = 0.0615 does not mean thatandy are independent, but the value of the
correlation coefficient between them is close to zero.

Table 8.

y 306.41 330.72 170.14 478.66 437.12 353.87 338.78 428.14.26:2(336.68
x 236.60 199.27 339.57 391.84 421.92 472.60 469.41 33.31 042445.74

We observed that if the correlation betwegandx is 0.0615, then bootstrapping
works better than saddlestrapping.
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To have another look at Fig. 8(a) and Fig. 8(b), we have Fig). &td Fig. 8(d).

We generatech = 100 data points, the values of the study variableand the
auxiliary variabler, from (11) and (12) by setting the valuemf, = 0.018. An analogous
of Fig. 8(c) and Fig. 8(d) forn, = 100 are shown in Fig 8(e) and Fig. 8(f).
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Fig. 8(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
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Fig. 8(b). Histogram of bootstrapping and saddlestrappiagiances; sample
correlation coefficiend.0615, sample sizd0.

Caution! If bootstrapping weights chosen with the methods of Lee amahy [19]
have low correlation with the study variable, then their moels fails at a saddlepoint
and lead to the name saddlestrapping instead of weightetstbapping. Thus, it is most
important to check if the choice of weights by following LesdaYoung [19] have high
positive correlation with study variable or not, and, du¢hte Hansen and Hurwitz [24]
contribution, it is a most important factor.
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Case 9. (Large outliers) Population correlation coefficiehbetweeny and x is 0.85.
We generatedh = 10 data points, the values of the study variapland the auxiliary
variablez, from (11) and (12) by setting the value pf, = 0.85, and later replaced the
last two values with two large outliers as shown in Table 9.wNee do not know the
distributions ofy andz due to these outliers.

To see the effect of large outliers on the bootstrapping badaddlestrapping me-
thods, we have the outputs as shown in Fig. 9(a) and Fig. 8fbhéans and variances,
respectively. Itis true that large outliers have large deaof selection in saddlestrapping
and spread in the distributions of mean and variance are gt#ible, and do not fluctuate
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like in the case of the bootstrapping method.

Table 9.

y 235.41 631.68 450.77 344.45 396.21 331.83 459.71 368643.56 3587.28
x 73.77 460.22 402.09 347.30 199.07 290.93 494.72 1907333.76 8442.08

We generatech = 100 data points, the values of the study variableand the
auxiliary variablez, from (11) and (12) by setting the value pf, = 0.85, and later
replaced the last two values with the same outliers as shoWalile 9. To see the effect of
large outliers on the bootstrapping and the saddlestrgppathods, we have the outputs

as shown in Fig. 9(c) and Fig. 9(d).
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Fig. 9(a). Histogram of bootstrapping and saddlestrappiegns; sample correlation
coefficient0.82916, sample siz&0.
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From Fig. 9(c) and Fig. 9(d), we can see that even in casesgd Eample sizes like
n = 100, only two outlies are enough to bring the distribution ofdladtrapping means
close to single point distribution. It happens becauseytvee those outliers have very
high chance of selection in the saddlestrapping samples,Tha use of saddlestrapping
or weighted bootstrapping in case of outliers may spoil tiierence bout the parameters.

3.2 Numerical comparisons

Table 10 gives the 95 % confidence interval estimates of tipeilpon mean obtained
by using the method of “bootstrapping” and “saddlestragpimder different situations
discussed before f@ = 50, 000 saddlestraps.

382



Horse Riding is Fun

Table 10. A comparison of bootstrap and saddlestrap Cl astisn

95 % CI estimates of the Mean

Tay n Bootstrapping Saddlestrapping
Reasonable Cases
0.95886 10  (301.36, 523.74) (378.20, 447.95)
0.96185 100  (386.72,445.49) (398.92, 430.47)
0.89488 10  (312.52,492.94) (355.59, 450.76)
0.91340 100  (397.84,453.27) (409.93, 439.89)
0.80110 10  (347.08,536.91) (344.07, 539.00)
0.80121 100  (382.35,437.03) (390.35, 429.06)
0.72432 10  (268.86, 438.58) (287.26, 420.53)
0.72313 100  (402.97,460.78) (408.55, 455.21)
0.58821 10  (391.73,553.80) (406.58, 538.90)
0.63065 100  (370.96, 427.56) (369.50, 425.41)
0.48345 10  (345.57,465.96) (325.94, 484.96)
0.46443 100  (386.53,442.57) (376.94, 452.20)
Extreme Cases
1.0000 10  (320.75,563.75) (429.05, 454.23)
1.0000 100  (408.48,465.14) (432.07, 441.39)
0.0615 10  (298.52,441.66) (75.30, 663.75)
0.0180 100  (383.73,445.32) (358.81, 470.40)
Large Outliers
0.82916 10 (—451.45,4496.92) (1221.23,2830.14)
0.85693 100  (335.86,798.21) (519.28, 606.31)

Remember that we generated all populations with true pépalanean, = 415.
Interestingly, for reasonable cases of the value of cdiogiacoefficient considered in
Table 10, the true population mear = 415 lies in both the bootstrapping confidence
interval estimates as well as in the saddlestrapping cardelenterval estimates. Note
that for a low value of correlation coefficient aroufid, the length of saddlestrapping
confidence interval becomes more than that of bootstrapgamfidence interval esti-
mates. For a reasonably high value of correlation coefficitie length of saddlestrap-
ping confidence interval estimates remains smaller tharothzootstrapping confidence
interval estimates. It is also interesting to note that far éxtreme case ¢f = 1.0, the
saddlestraping confidence interval estimates do not iedlue true population mean 415.
Thus, it seems that too much high correlation between thdystod auxiliary variable in
case of saddlestrapping may also provide too narrow cordelirerval estimate which
may not include true parameters of interest in it. Based arsiaulation, a reasonably
high value of correlation coefficient (sayg8) is recommended in case of saddlestrapping
or weighted bootstrapping. In case of zero correlation betwthe study and auxiliary
variable, the confidence interval estimates based on sstdaidping remain much wider
than in case of bootstrapping. The confience interval estisnaased on saddlestrapping
in the presence of outliers show unusally higher estimatesse these outliers have
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a very high chance of selection in saddlestrapping thanse c& bootstrapping. Thus,
outliers need to be identified before using saddlestrappingeighted bootstrapping in
real practice.

4  Further study

The idea of saddlestrapping is easily extendable in alttoas where bootstrapping has
so for been applied by ignoring the availability of auxiiarariable. Obvious examples
are: saddlestrapping the distribution of correlation fioiet, ratio estimator, regression
estimator, product estimator, median, mode, quantilepanzentiles, etc. under different
sampling schemes. It is not possible to tabulate or list afisjbilities of studies of
saddlestrapping. Researchers could explore or investiiaiproposed saddlestrapping in
all situations where it is possible. It should also to be sE@method like saddlestrapping
could be made if the correlation between the study variatdeaauxiliary variable in the
first original sample is negative.

Appendix: FORTRAN codes

| FORTRAN CODE USED FOR BOOTSTRAPPING AND SADDLESTRAPPING
USE NUMERICAL LIBRARIES
IMPLICIT NONE
INTEGER I, NS, J, IR(L), IHX(1), ICTX, 3J, II, Il 1lll, NHOFSES
REAL Y(60), BY(60), HY(60), SBY, SHY, BYM, HYM, ANS,
1 VBY, VBH, SY, YM, VY
REAL X(60), CTX(60), HX(60), P(60),VARP, VX, CXY, RXY, SX, X1
REAL DF1, T95, ALLHM, AULHM, ALLBM, AULBM
REAL SUMVBY, SUMVARP, SUMBYM, SUMHYM
DATA NS /10/
DATA Y /250, 320, 438, 521, 230, 340, 478, 350, 631, 579/
DATA X /200, 278, 367, 376, 123, 250, 420, 331, 545, 456/
CHARACTER*20 OUTFILE
WRITE(*, ’(A)") 'NAME OF THE OUTPUT FILE’
READ(*, '(A20)") OUT _FILE
OPEN(42, FILE = OUTFILE, STATUS = "UNKNOWN’)
ANS = NS
SY=0.0
SX=0.0
DO11=1,NS
SY =SY +Y(l)

1 SX = SX + X(I)
YM = SY/ANS
XM = SX/ANS
VY =0.0
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109

11

14

VX =0.0
CXY =0.0
DO21=1,NS
VY = VY + (Y(I) = YM)**2
VX = VX + (X(1) = XM)**2
CXY = CXY + (X(I) = XM)*(Y(I) = YM)
VY = VY/(ANS - 1)
VX = VX/(ANS — 1)
CXY = CXY/(ANS — 1)
RXY = CXY/SQRT(VX*VY)
WRITE(42, 109)RXY, YM, SQRT(VY), XM, SQRT(VX)
FORMAT(2X, F9.5, 2X, F9.2, 2X, F9.2, 2X, F9.2, 2X, F9.2)
SUMVBY =0.0
SUMVARP = 0.0
NHORSES = 50000
DO 8888 Illl = 1, NHORSES
WRITE(**)III
DO111=1,NS
CALL RNUND(Z, NS, IR)
J=IR(1)
BY(I) = Y(J)
CONTINUE
CTX(0)=0
CTX(1) = X(1)
DO 141=2,NS
CTX(l) = CTX(I - 1) + X(I)
ICTX = CTX(NS)
=0
DO 2611=1,NS
CALL RNUND(L, ICTX, IHX)
JJ = IHX(1)
DO 151=1,NS
IF((3J.GE.CTX(I — 1)).AND.(JJ.LE.CTX(1))) THEN
Mm=1+1
HX(IIl) = CTX() = CTX(1 - 1)
HY(I11) = Y(I)
ELSE
CONTINUE
ENDIF

15 CONTINUE
26 CONTINUE

DO 181=1,NS

18  P(l) = HX(I)/DBLE(ICTX)

SBY =0.0
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SHY = 0.0
DO 161=1,NS
SBY = SBY + BY(l)
16 SHY = SHY + HY(I)/(ANS*P(1))
BYM = SBY/ANS
HYM = SHY/ANS
VBY =0.0
DO 171=1,NS
17 VBY = VBY + (BY(I) - YM)**2
VBY = VBY/(ANS*(ANS — 1))
VARP = 0.0
DO 19 1=1, NS
19 VARP = VARP + (HY(I)/P(I))**2
VARP = (VARP — ANS**3*HYM**2)/(ANS**3*(ANS — 1))
WRITE(42,103)NS, YM, BYM, VBY, HYM, VARP
103 FORMAT(2X, 14, 9(F14.2,2X))
SUMBYM = SUMBYM + BYM
SUMHYM = SUMHYM + HYM
SUMVBY = SUMVBY + VBY
SUMVARP = SUMVARP + VARP
8888  CONTINUE
SUMBYM = SUMBYM/DBLE(NHORSES)
SUMHYM = SUMHYM/DBLE(NHORSES)
SUMVBY = SUMVBY/DBLE(NHORSES)
SUMVARP = SUMVARP/DBLE(NHORSES)
DF1=ANS -1
T95 = TIN(0.975, DF1)
ALLHM = SUMHYM — T95 * SQRT(SUMVARP)
AULHM = SUMHYM + T95 * SQRT(SUMVARP)
ALLBM = SUMBYM — T95 * SQRT(SUMVBY)
AULBM = SUMBYM + T95 * SQRT(SUMVBY)
WRITE(42, 104)YM, ALLBM, AULBM, ALLHM, AULHM
104  FORMAT(2X,5(F14.2,2X))
STOP
END

IFORTRAN CODE FOR GENERATING DIFFERENT DATA SETS
USE NUMERICAL LIBRARIES
IMPLICIT NONE
INTEGER I,NS
REAL YS(2000),XS(2000),Y(2000),X(2000)
REAL RHO, SY, SX, YMEAN, XMEAN
CHARACTER*20 OUTFILE
WRITE(*(A)) 'NAME OF THE OUTPUT FILE’
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Horse Riding is Fun

READ(*,(A20)) OUT _FILE

OPEN(42, FILE=OUTFILE, STATUS = "'UNKNOWN?)

NS = 10

CALL RNNOR(NS, YS)

CALL RNNOR(NS, XS)

RHO =0.80

SY =140

SX =125

YMEAN = 415

XMEAN = 335

DO 101=1, NS

Y(I) = YMEAN + SY*SQRT(1 — RHO**2)*YS(I) + RHO*SY*XS(1)

10 X(I) = XMEAN + XS(1)*SX

DO111=1,NS
11 WRITE(42,107)Y(1), X(1)
107  FORMAT(2X, F9.2, 2X, F9.2)

STOP

END
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