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Abstract. A method of weighted bootstrapping in the presence of auxiliary information
has been studied and named as saddlestrapping because thereexists a saddlepoint.
Comparisons of saddlestrapping with the bootstrapping under different situations are
performed and discussed. FORTRAN code for doing bootstrapping and saddlestrapping
are provided. A huge scope of further studies has been suggested.

Keywords: bootstrapping, saddlestrapping.

1 Introduction

Bradley Efron is a statistician best known for proposing thebootstrap re-sampling tech-
nique, which has had a major impact in the field of statistics and virtually every area of
statistical application. The bootstrap was one of the first computer-intensive statistical
techniques, replacing traditional algebraic derivationswith data-based computer sim-
ulation. He received numerous awards on this and related contributions in the field
of statistics as cited in the free online encyclopedia entitled Wikipedia. It was named
bootstrapping because it involves resampling from the original data set. The bootstrap is
a form of a larger class of methods that resample from the original data set and thus
also called resampling procedure. For details, one could also refer to the books on
bootstrapping by Efron and Tibshirani [1] and Chernick [2].

Casella [3] provides an introduction to the Silver Anniversary of the Bootstrap.
Efron [4] discusses a second thought on bootstrapping. Davison et al. [5] have a critical
review on recent developments in bootstrap methodology during the year 2003. Beran [6],
Lele [7], Shao [8], Lahiri [9], and Politis [10] explain the impact of bootstrap on statistical
algorithms and theory, estimating functions, sample surveys, small area estimation and
time series, respectively. Ernst and Hutson [11] and Rueda et al. [12, 13] discuss appli-
cation of bootstrapping for quantile estimation. Holmes [14] and Soltis and Soltis [15]
discuss applications of bootstrapping in phylogenetic trees and phylogeny reconstruction
respectively. Holmes et al. [16] provide an overview of a conversation on bootstrap
between Bradley Efron and other good friends.
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The use of auxiliary information in survey sampling has an eminent role to improve
methods of sample selection and use them to estimate variousparameters of interest. In
this paper, we are introducing a new method called saddlestrapping which makes the use
of auxiliary information correlated with the study variable to select different bootstrapping
samples from the first given original sample selected by any sampling scheme. It is also
shown that the bootstrapping method due to Efron [17] is a special case of the proposed
saddlestrapping method. Barbe and Bertail [18] have published a monograph on weighted
bootstrapping which presents an account of the asymptotic behavior of the weighted
bootstrap – a new and powerful statistical technique. Researchers and advanced graduate
students studying bootstrap method will find this a valuabletechnical survey which is
thorough and rigorous. The main aim of their monograph is to answer two questions:
how well does the generalized bootstrap work? What are the differences between all
the different weighted schemes? Lee and Young [19] have discussed pre-pivoting by
weighted bootstrap iteration. Johnson [20] has given a niceintroduction to bootstrapping.
The proposed saddlestrapping is a kind of weighted bootstrapping. The purpose of this
paper aims to see the effect of correlation between the studyand auxiliary variable on the
distributions of sample mean and sample variances; this kind of study has recently been
performed by Johnson [20]. Likewise, Hesterberg [21] taught a very valuable course
entitled, “Bootstrap methods and permutation tests” during the conference of Statisticians
at San Antonio, TX.

In the next section, we develop a theory that will be used in the subsequent sections to
show comparisons of the proposed saddlestrapping method with the bootstrapping method
due to Efron [17].

2 Proposed methods

Let Y andX be the study and auxiliary variables in a finite populationΩ of N units
having positive linear correlation with each other. Consider the problem of estimation of
population meanY = 1

N

∑
i∈Ω

yi of the study variabley while using information on the
auxiliary variablex. Note that the distribution of the study variableY will depend on the
value of its correlation with the auxiliary variableX .

Let soriginal = {(yi, xi) : i = 1, 2, . . . , n} be a random sample taken from the
populationΩ by using any sampling scheme among the list of 50 sampling schemes
available in Brewer and Hanif [22]. Let us define

pi =
xi

x
(1)

wherex =
∑

i∈soriginal
xi is the total of the auxiliary variable in the original sample

soriginal, as the probability of selecting theith unit from the original sample. We call
such a method saddlestrapping. Obviously, the maximum number of saddlestrapping
samples will beΘ = nn if each saddlestrap sample is of the size of original sample size
of n units. Note that forpi = 1/n the proposed saddlestrapping method leads back to the
original bootstrapping method. We suggest the use of Cumulative Total Method to select
saddlestrapping samples. However, in case of large sample size, the use of Lahiri [23]
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method could be beneficial. To learn more about the probability proportional to size and
with replacement (PPSWR) sampling one can refer to Hansen and Hurvitz [24].

Now we have the following theorems:

Theorem 1. An unbiased saddlestrapping (ss) estimator of the population mean of the
study variable Y is given by:

yss =
1

n2

∑

i∈ssaddle

yi

pi

. (2)

Proof. Let E1 andE2 be the expected values over all possible original sampless that
could be taken with any Inclusion Probability Proportionalto Size (IPPS) design
p(soriginal), original = 1, 2, . . . , s from the given populationΩ, and over all pos-
sible saddlestrapping samplesssaddle that could be taken from the given original sample
soriginal, respectively. Note that total number of original sampless could be either
Nn or

(
N
n

)
depending upon whether the original samplesoriginal is selected using with

replacement or without replacement sampling from the givenpopulationΩ of N units.
Then taking expected value on the both sides of (2), we have

E(yss) = E1E2(yss|soriginal) = E1E2

(
1

n2

∑

i∈ssaddle

yi

pi

|soriginal

)

= E1

(
1

n

∑

i∈soriginal

yi

)
= E1(yoriginal|soriginal)

=

s∑

original=1

p(soriginal)(yoriginal) = Y

which proves the theorem.

Note that while taking expected valueE2, the original samplesoriginal is treated as a
population of sizen and then all possible probability proportional to size withreplacement
(PPSWR) samples of the same sizen are drawn from the populationsoriginal. It works
because in the usual PPSWR sampling, the sample size could beequal to the population
size.

Theorem 2. The variance of the unbiased saddlestrapping (ss) estimator yss of the
population mean of the study variable Y is given by:

V (yss) =
1

n3

s∑

original=1

p(soriginal)
∑

i∈soriginal

pi

(
yi

pi

− nyoriginal

)2

+

s∑

original=1

p(soriginal)
(
yoriginal − Y

)2
. (3)
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Proof. Let V1 andV2 be the variances over all possible original sampless from the given
populationΩ and over the all possible “saddlestrapping” samplesssaddle from the given
original samplesoriginal, respectively.

Then the variance of the proposed saddlestrapping estimator is given by:

V (yss) = E1V2(yss|soriginal) + V1E2(yss|soriginal)

= E1V2

(
1

n2

∑

i∈ssaddle

yi

pi

|soriginal

)
+ V1E2

(
1

n2

∑

i∈ssaddle

yi

pi

|soriginal

)

= E1

[
1

n3

∑

i∈soriginal

pi

(
yi

pi

−nyoriginal

)2

|soriginal

]
+V1(yoriginal|soriginal)

=

s∑

original=1

p(soriginal)

[
1

n3

∑

i∈soriginal

pi

(
yi

pi

− nyoriginal

)2
]

+

s∑

original=1

p(soriginal)
(
ysoriginal

− Y
)2

which proves the theorem.

Note that the second component of the variance, given by

s∑

original=1

p(soriginal)
(
yoriginal − Y

)2
(4)

disappears if we replace the population meanY with yoriginal.
Now we have the following corollary:

Corollary 1. An estimator of variance of saddlestrapping estimator based on each sad-
dlestrapping sample is given by

v̂ (yss) =
1

n2

[
1

n (n − 1)

{
∑

i∈ssaddle

y2
i

p2
i

− n3y2

ss

}]
. (5)

Proof. Note that the estimator (5) can be written as

v̂ (yss) =
1

n3 (n − 1)

[
∑

i∈ssaddle

y2
i

p2
i

− n

(
1

n

∑

i∈ssaddle

yi

pi

)2]
(6)

By following Theorem 4.2.3 from Singh [25, p. 309], taking the expected valueE2 on
both sides of (6), we get

E2[v̂(yss)] =
1

n3

∑

i∈soriginal

pi

(
yi

pi

− nyoriginal

)2

. (7)
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Now taking expected valueE1 on both sides of (7) we get the first term on the right hand
side of equation (3), and it proves the corollary.

Thus, it is possible to look at the distributions of saddlestrapping estimator of sample
meanyss and that of the estimator of variancev̂ (yss) obtained from each saddlestrapping
sample for various situations such as: different sample sizes, different values of positive
correlation between the study variabley and the auxiliary variablex and outliers in the
original samplesoriginal. Letrxy be the estimator of the population correlation coefficient
between the study variabley and the auxiliary variablex in the given original sample
soriginal of n units selected with any sampling designp(soriginal).

Thus an empirical(1−α)100 % confidence interval estimate of the population mean
Y based onΘ each saddlestrapping sample is given by:

yestimate ∓ tα
2
(df = n − 1)

√
v̂(yestimate) (8)

where

yestimate =
1

Θ

Θ∑

ss=1

yss =
1

Θn2

Θ∑

saddle=1

∑

i∈ssaddle

(
yi

pi

)
(9)

and

v̂(yestimate) =
1

Θ

Θ∑

ss=1

v̂(yss) =
1

Θ

Θ∑

saddle=1

{v̂(yss)}saddle. (10)

In the Appendix we shall provide the FORTRAN code which we used to draw his-
tograms by exporting their outputs in MINITAB for differentsituations which could occur
between a study variabley and an auxiliary variablex. Also, the output of the program
gives us(1 − α)100 % confidence interval estimates for both techniques saddlestrapping
and bootstrapping and also prints sample correlation betweeny andx in the first original
sample.

3 Graphical and numerical comparisons

In this section, first we show graphical comparisons betweenbootstrapping and sad-
dlestrapping sample means and sample variances by considering the possibility of dif-
ferent magnitudes of correlation between the study variable y and the auxiliary variable
x in the given original sample. Following Singh et al. [26], wegeneratedn independent
pairs of random numbersy∗

i and x∗

i , (say), i = 1, 2, . . . , nfrom the standard normal
distribution by using the IMSL subroutine RNNOR. For fixed values of σy = 140,
σx = 125, µy = 415, andµx = 335, we generated transformed variablesyi andxi

as:

yi = µy +
√

σ2
y(1 − ρ2

xy)y
∗

i + ρxyσyx∗

i (11)
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and

xi = µx + σxx∗

i (12)

for different values of the population correlation coefficientρxy between the study vari-
ableY and the auxiliary variableX . We consider three different cases: (i) reasonable
amount of population correlation coefficientρxy betweenx andy such as0.95, 0.90, 0.80,
0.70, 0.60, and0.50; (ii) extreme cases of correlation such as1.00 and0.00, and (iii) a
situation with unknown distribution ofY andX but with large outliers and reasonable
amount of correlation such as0.85. In each case we decided to drawΘ = 50, 000
random samples, because we can not handle more than 50,000 data points with the
software packages available at present. Later on, we also provide95 % confidence interval
estimates of the population mean using both the bootstrapping and the saddlestrapping
methods for various values of correlation between the studyand auxiliary variable along
with situations of outliers. Here in the entire simulation study we have keptn = 10, and
100, because the results are not much sensitive to the sample size. Rather these results are
sensitive towards the value of correlation between the study and auxiliary variables. We
tried these simulations forn = 10, 20, 30, 50 and1000, and similar results were observed,
and one can also verify by running the FORTRAN code given in the Appendix.

3.1 Graphical comparisons

Case 1. Population correlation coefficient betweeny and x is 0.95. We generated
n = 10 data points, the values of the study variabley and the auxiliary variablex, from
(11) and (12) by setting the value ofρxy = 0.95, as shown in Table 1. The value of
sample correlation coefficientrxy between the sampledy andx values in the original
samplesoriginal is 0.95886, which is quite high.

Table 1.

y 172.99 487.79 523.55 662.27 213.75 316.53 318.53 400.94 503.01 531.27
x 186.16 355.15 416.86 575.85 212.24 201.96 261.53 297.62 444.49 422.42

The histograms for sample means shows that spread of saddlestrapping means is
much less than that due to bootstrapping sample means. In other words, the presence
of correlation between the study variable and auxiliary variable shows impact on the
distribution of the bootstrapping sample means which we call the saddlestrapping means.
See the histograms in Fig. 1(a) for means and Fig. 1(b) for variances based on both
bootstrapping and saddlestrapping methods with small sample sizen = 10.

Now we generatedn = 100 data points from (11) and (12) by keepingρxy = 0.95.
The value of sample correlation coefficientrxy between the sampledy andx values in the
original samplesoriginal of 100 units has been observed as0.96185, and the results are
shown in Fig. 1(c) and Fig. 1(d).
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As the sample size increases from10 to 100, the distributions of bootstrapping mean
and saddlestrapping means in Fig. 1(a) and Fig. 1(c) show similar behavior. Although
the peak point of saddlestrapping means reduces from6500 to 2800 and the peak point
of bootstraping means reduces from2000 to 1200. The distribution of bootstrapping
variance forn = 10 andn = 100 remains the same as shown in Fig. 1(b) and Fig. 1(d),
but the distribution of saddlestrapping variance shows several peaks as the sample size
increases. Interestingly, the distribution of bootstrapping variance is almost symmetric,
but the distribution of saddlestraping variance remains skewed to the right distributed. As
expected the variance of sample variance should be approximately chi-square distribution.
Thus, in case of higher correlation between the study and auxiliary variables the distri-
bution of saddlestrapping variance remains close to chi-square distribution as expected.

Fig. 1(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.95886, sample size10.

Fig. 1(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.95886, sample size10.
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Fig. 1(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.96185, sample size100.

Fig. 1(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.96185, sample size100.

Case 2. Population correlation coefficient betweeny and x is 0.90. We generated
n = 10 data points, the values of the study variabley and the auxiliary variablex, from
(11) and (12) by setting the value ofρxy = 0.90, as shown in Table 2. The value of
sample correlation coefficientrxy between the sampledy andx values in the original
samplesoriginal is 0.89488, which is again quite high.

Table 2.

y 236.22 339.54 567.80 267.99 542.23 364.62 458.49 335.03 322.31 566.64
x 155.99 280.23 470.08 203.25 426.80 373.85 299.63 197.03 300.53 490.98
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Again the histogram for sample means shows that the spread ofsaddlestrapping
means is much less than that due to bootstrapping sample means, but remains wider
than the case when correlation was0.95886. Such situations are shown in Fig. 2(a) and
Fig. 2(b), respectively.

Fig. 2(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.95886, sample size10.

Fig. 2(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.95886, sample size10.

As before now we generatedn = 100 data points from (11) and (12) by keeping
ρxy = 0.90. The value of sample correlation coefficientrxy between the sampledy andx
values in the original samplesoriginal has been observed as0.91340, and the results are
shown in Fig. 2(c) and Fig. 2(d).

As before as the sample size increases from10 to 100, the distributions of bootstrap-
ping means and saddlestrapping means and sample variances show similar behavior. The
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behavior of saddlestrapping variance in Fig. 2(d) is more smooth than in case of Fig. 1(d).
The reason becomes clear from Case 7 where an extreme situation of a perfect correlation
between the study and auxiliary variable has been considered. Too high correlation
between the study and the auxiliary variable may lead to single point distribution in case
of saddlestrapping.

Fig. 2(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.91340, sample size100.

Fig. 2(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.91340, sample size100.

Case 3. Population correlation betweeny and x is 0.80. We generatedn = 10 data
points, the values of the study variabley and the auxiliary variablex,from (11) and (12)
by setting the value ofρxy = 0.80, as shown in Table 3. The value of sample correlation
coefficientrxy between the sampledy andx values in the original samplesoriginal is
0.8011, which is still quite high, but seems practical.
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Table 3.

y 235.41 631.68 450.77 344.45 396.21 331.83 459.71 368.44 613.56 587.28
x 73.77 460.22 402.09 347.30 199.07 290.93 494.72 190.33 433.76 442.08

Now the histograms for sample means shows that spread of saddlestrapping means
is now comparable to that of bootstrapping sample means, butremains wider than the
case when correlation was0.89488. Such situations are shown in Fig. 3(a) and Fig. 3(b),
respectively. The distribution of sample variances in caseof saddlestrapping shows higher
peak close to zero, which shows that saddlestrapping variance remains smaller than boot-
straping variance in most of the cases as shown in Fig. 3(b).

Fig. 3(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.89488, sample size10.

Fig. 3(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.89488, sample size10.
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Now we generatedn = 100 data points from (11) and (12) by keepingρxy = 0.80.
The value of sample correlation coefficientrxy between the sampledy andx values in the
original samplesoriginal has been observed as0.80121; the results are shown in Fig. 3(c)
and Fig. 3(d).

Fig. 3(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.80121, sample size100.

Fig. 3(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.80121, sample size100.

For large samplen = 100, the distribution of saddlestrapping means remains nar-
rower than that of bootstrapping means as shown in Fig. 3(c).The values of saddlestraping
variances remains smaller than those obtained from bootstrapping variances as shown
in Fig. 3(d). Clearly, forn = 100, a better inference about the population mean is
expected in case of sadlestrapping than in case of bootstrapping with a practicable value
of correlation coefficient between the study and the auxiliary variable.
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Case 4. Population correlation coefficient betweeny and x is 0.70. We generated
n = 10 data points, the values of the study variabley and the auxiliary variablex, from
(11) and (12) by setting the value ofρxy = 0.70, as shown in Table 4. The value of
sample correlation coefficientrxy between the sampledy andx values in the original
samplesoriginal is 0.72432, which looks very much practical.

Table 4.

y 466.82 198.10 355.36 393.54 252.01 265.36 431.28 470.56 511.32 194.36
x 273.34 267.16 414.20 513.99 244.08 305.24 516.59 376.34 573.73 186.51

Fig. 4(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.8011, sample size10.

Fig. 4(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.8011, sample size10.

369



Sarjinder Singh

Again for small sample of sizen=10, the histograms for sample means in Fig. 4(a)
shows that spread of saddlestrapping means is compareable to that of bootstrapping means,
but remains wider than the case when correlation was0.8011. In Fig. 4(b), the sad-
dlestraping variances shows four different peaks with overall distribution skewed to the
right. The first two peaks show that the saddlestrapping variances remain smaller than
bootstrapping variances in several cases.

Now again we generatedn = 100 data points from (11) and (12) by keepingρxy =
0.70. The value of sample correlation coefficientrxy between the sampledy andx values
in the original samplesoriginal has been observed as0.72313. For a large sample case, the
saddlestraping means show less variation than bootstrapping means as shown in Fig. 4(c).
In Fig. 4(d) the distribution of saddlestraping variances remains slightly skewed to the
right, but most of the values remain smaller than the bootstrapping variances.

Fig. 4(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.72313, sample size100.

Fig. 4(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.72313, sample size100.

370



Horse Riding is Fun

Case 5. Population correlation coefficient betweeny and x is 0.60. We generated
n = 10 data points, the values of the study variabley and the auxiliary variablex, from
(11) and (12) by setting the value ofρxy = 0.60, as shown in Table 5. The value of
sample correlation coefficientrxy between the sampledy andx values in the original
samplesoriginal is 0.58821, which is neither very low nor very high value.

Table 5.

y 409.38 589.87 487.06 493.45 424.96 411.08 241.64 453.19 606.99 610.46
x 250.95 441.37 334.63 392.15 405.83 503.04 193.95 396.62 420.19 381.53

Fig. 5(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.6, sample size10.

Fig. 5(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.6, sample size10.
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We consider a value of correlation between the sampledy andx values as0.60. The
histograms in Fig. 5(a) show that spread of “saddlestrapping” means has almost spread
as that of bootstrapping means, and remains wider than the case when correlation was
0.70. Fig.‘5(b) shows that the saddlestrapping variance remains smaller than bootstraping
variance in majority of the cases. Thus in case of small sample n = 10 with a value of
correlation around0.6, some gain is expected due to the use of saddlestrapping.

Again we generatedn = 100 data points from (11) and (12) by keepingρxy = 0.60.
The value of sample correlation coefficientrxy between the sampledy andx values in
the original samplesoriginal has been observed as0.63065, and the results are shown in
Fig. 5(c) and Fig 5. 5(d).

Fig. 5(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.63065, sample size100.

Fig. 5(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.63065, sample size100.
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Fig. 5(c) shows saddlestrapping means have almost completeoverlap with the boot-
straping means; thus, not much gain is expected over the bootstrapping means. Obvi-
ously, as we are decreasing the value of correlation coefficient between the study and
the auxiliary variables, we are converging to a “saddlepoint”, and beyond that point the
saddlestrapping will not be useful.

Case 6. Population correlation coefficient betweeny andx is0.50. Now we generated
n = 10 data points, the values of the study variabley and the auxiliary variablex, from
(11) and (12) by setting a low value ofρxy = 0.50, as shown in Table 6. The value
of sample correlation coefficientrxy between the sampledy andx values in the original
samplesoriginal is 0.48345, which we consider a low correlation. Note that for the ratio
estimator (see Cochran [27]) to perform better than the sample mean estimator, the value
of correlation should be more than0.5 by assuming both study and auxiliary variables
have equal values of the coefficient of variations.

Table 6.

y 423.17 487.15 290.60 508.19 391.42 455.96 236.20 446.81 412.09 405.16
x 200.62 414.67 295.24 316.85 362.12 486.62 204.31 357.54 426.68 487.04

It is interesting to see that if the correlation betweeny andx becomes as low as
0.50, then the spread of saddlestrapping means becomes wider than that of bootstrapping
means as shown in Fig. 6(a). Fig. 6(b) demonstrates that the variation in saddlestrapping
variances remains wider than that of bootstrapping variances. Thus, use of high positive
correlation between the study and auxiliary variables is suggested in saddlestrapping, and
this concept of high correlation also comes from Hansen and Hurwitz [24].

Fig. 6(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.50, sample size10.
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Fig. 6(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.50, sample size10.

To see the effect of sample size, we generatedn = 100 data points from (11) and
(12) by keepingρxy = 0.50. The value of sample correlation coefficientrxy between the
sampledy andx values in the original samplesoriginal of 100 units has been observed as
0.46443.

For large sample sizen = 100, and for a low value of correlation coefficient, the
saddlestrapping means in Fig. 6(c) show more spread than bootstrapping means. Also
Fig. 6(d) shows the saddlestrapping variances have much more variation than bootstrap-
ping variances. Thus, the use of saddlestrapping or weighted bootstrapping in case of low
correlation between the study and auxiliary variable is strictly prohibited.

Fig. 6(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.46443, sample size100.
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Fig. 6(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.46443, sample size100.

Case 7. (Extreme situation) Population correlation coefficient betweeny and x is
1.00. We generatedn = 10 data points, the values of the study variabley and the
auxiliary variablex, from (11) and (12) by setting the value ofρxy = 1.00, as shown in
Table 7. The value of sample correlation coefficientrxy between the sampledy andx
values in the original samplesoriginal is also1.00, which is clearly an extreme case.

Table 7.

y 215.99 771.80 237.69 389.56 483.29 550.34 600.82 316.49 411.33 440.37
x 157.31 653.57 176.68 312.28 395.97 455.84 500.91 247.04 331.72 357.65

Such situations for means and variances are shown in Fig. 7(a) and Fig. 7(b) respec-
tively.

Fig. 7(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient1.000, sample size10.
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Fig. 7(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient1.000, sample size10.

Fig. 7(a) shows that the saddlestrapping means are converging to a single point dis-
tribution, but the distribution of bootstrapping means remains as wider as before because
it is not effected by the correlation. The peak of bootstraping means became low because
of higher or single value distribution of saddlestrapping means. Similar behavior is shown
by saddlestrapping variances and bootstrapping variancesin Fig. 7(b).

The following histogram in Fig. 7(c) gives another look at the distribution of the sad-
dlestrapping and bootstrapping means in Fig. 7(a) and saddlestrapping and bootstrapping
variances in Fig. 7(b) as:

Fig. 7(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient1.000, sample size10.

Note that in Fig. 7(c) bootstrapping means show only one vertical line because these
four panel graphs are drawn on the same scale; otherwise, bootstrapping means will show
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wider bell-shaped distributioon. Thus, do not misinterpret it.
Further note that as soon as the value of the sample correlation coefficient becomes

one(rxy = 1), the distribution of saddlestrapping meanyss becomes single point distribu-
tion equal toyoriginal with zero variance. Also note that the distributions of bootstrapping
means and variances remain unaffected. In other words, if there is an auxiliary variable
which is positive and perfectly correlated with the study variable, then it is always possible
to find y if x is known; no need of saddlestrapping or any other estimationstrategy. An
analogous of Fig. 7(c) forn = 100 is given in Fig. 7(d), where one can see better spread
of bootstrapping means on the same scale in a panel graph.

Fig. 7(d). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient1.000, sample size100.

Case 8. (Extreme situation) Population correlation coefficient betweeny and x is
0.00. We generatedn = 10 data points, the values of the study variabley and the
auxiliary variablex, from (11) and (12) by setting the value ofρxy = 0.00, as shown in
Table 8. The value of sample correlation coefficientrxy between the sampledy andx
values in the original samplesoriginal is also0.0615, which again looks like an extreme
case. Hererxy = 0.0615 does not mean thatx andy are independent, but the value of the
correlation coefficient between them is close to zero.

Table 8.

y 306.41 330.72 170.14 478.66 437.12 353.87 338.78 428.14 520.20 336.68
x 236.60 199.27 339.57 391.84 421.92 472.60 469.41 33.31 421.06 445.74

We observed that if the correlation betweeny andx is 0.0615, then bootstrapping
works better than saddlestrapping.
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To have another look at Fig. 8(a) and Fig. 8(b), we have Fig. 8(c) and Fig. 8(d).
We generatedn = 100 data points, the values of the study variabley and the

auxiliary variablex, from (11) and (12) by setting the value ofρxy = 0.018. An analogous
of Fig. 8(c) and Fig. 8(d) forn = 100 are shown in Fig 8(e) and Fig. 8(f).

Fig. 8(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.0615, sample size10.

Fig. 8(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.0615, sample size10.

Caution! If bootstrapping weights chosen with the methods of Lee and Young [19]
have low correlation with the study variable, then their methods fails at a saddlepoint
and lead to the name saddlestrapping instead of weighted-bootstrapping. Thus, it is most
important to check if the choice of weights by following Lee and Young [19] have high
positive correlation with study variable or not, and, due tothe Hansen and Hurwitz [24]
contribution, it is a most important factor.
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Fig. 8(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.0615, sample size10.

Fig. 8(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.0615, sample size10.

379



Sarjinder Singh

Fig. 8(e). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.018, sample size100.

Fig. 8(f). Histogram of bootstrapping and saddlestrappingvariances; sample correlation
coefficient0.018, sample size100.

Case 9. (Large outliers) Population correlation coefficient betweeny and x is 0.85.
We generatedn = 10 data points, the values of the study variabley and the auxiliary
variablex, from (11) and (12) by setting the value ofρxy = 0.85, and later replaced the
last two values with two large outliers as shown in Table 9. Now we do not know the
distributions ofy andx due to these outliers.

To see the effect of large outliers on the bootstrapping and the saddlestrapping me-
thods, we have the outputs as shown in Fig. 9(a) and Fig. 9(b) for means and variances,
respectively. It is true that large outliers have large chance of selection in saddlestrapping
and spread in the distributions of mean and variance are quite stable, and do not fluctuate
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like in the case of the bootstrapping method.

Table 9.

y 235.41 631.68 450.77 344.45 396.21 331.83 459.71 368.449613.56 3587.28
x 73.77 460.22 402.09 347.30 199.07 290.93 494.72 190.337433.76 8442.08

We generatedn = 100 data points, the values of the study variabley and the
auxiliary variablex, from (11) and (12) by setting the value ofρxy = 0.85, and later
replaced the last two values with the same outliers as shown in Table 9. To see the effect of
large outliers on the bootstrapping and the saddlestrapping methods, we have the outputs
as shown in Fig. 9(c) and Fig. 9(d).

Fig. 9(a). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.82916, sample size10.

Fig. 9(b). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.82916, sample size10.
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Fig. 9(c). Histogram of bootstrapping and saddlestrappingmeans; sample correlation
coefficient0.85693, sample size100.

Fig. 9(d). Histogram of bootstrapping and saddlestrappingvariances; sample
correlation coefficient0.85693, sample size100.

From Fig. 9(c) and Fig. 9(d), we can see that even in cases of large sample sizes like
n = 100, only two outlies are enough to bring the distribution of saddlestrapping means
close to single point distribution. It happens because everytime those outliers have very
high chance of selection in the saddlestrapping sample. Thus, the use of saddlestrapping
or weighted bootstrapping in case of outliers may spoil the inference bout the parameters.

3.2 Numerical comparisons

Table 10 gives the 95 % confidence interval estimates of the population mean obtained
by using the method of “bootstrapping” and “saddlestrapping” under different situations
discussed before forΘ = 50, 000 saddlestraps.
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Table 10. A comparison of bootstrap and saddlestrap CI estimates

95 % CI estimates of the Mean
rxy n Bootstrapping Saddlestrapping

Reasonable Cases
0.95886 10 (301.36, 523.74) (378.20, 447.95)
0.96185 100 (386.72, 445.49) (398.92, 430.47)
0.89488 10 (312.52, 492.94) (355.59, 450.76)
0.91340 100 (397.84, 453.27) (409.93, 439.89)
0.80110 10 (347.08, 536.91) (344.07, 539.00)
0.80121 100 (382.35, 437.03) (390.35, 429.06)
0.72432 10 (268.86, 438.58) (287.26, 420.53)
0.72313 100 (402.97, 460.78) (408.55, 455.21)
0.58821 10 (391.73, 553.80) (406.58, 538.90)
0.63065 100 (370.96, 427.56) (369.50, 425.41)
0.48345 10 (345.57, 465.96) (325.94, 484.96)
0.46443 100 (386.53, 442.57) (376.94, 452.20)

Extreme Cases
1.0000 10 (320.75, 563.75) (429.05, 454.23)
1.0000 100 (408.48, 465.14) (432.07, 441.39)
0.0615 10 (298.52, 441.66) (75.30, 663.75)
0.0180 100 (383.73, 445.32) (358.81, 470.40)

Large Outliers
0.82916 10 (−451.45, 4496.92) (1221.23, 2830.14)
0.85693 100 (335.86, 798.21) (519.28, 606.31)

Remember that we generated all populations with true population meanµy = 415.
Interestingly, for reasonable cases of the value of correlation coefficient considered in
Table 10, the true population meanµy = 415 lies in both the bootstrapping confidence
interval estimates as well as in the saddlestrapping confidence interval estimates. Note
that for a low value of correlation coefficient around0.5, the length of saddlestrapping
confidence interval becomes more than that of bootstrappingconfidence interval esti-
mates. For a reasonably high value of correlation coefficient, the length of saddlestrap-
ping confidence interval estimates remains smaller than that of bootstrapping confidence
interval estimates. It is also interesting to note that for the extreme case ofρ = 1.0, the
saddlestraping confidence interval estimates do not include the true population mean 415.
Thus, it seems that too much high correlation between the study and auxiliary variable in
case of saddlestrapping may also provide too narrow confidence interval estimate which
may not include true parameters of interest in it. Based on our simulation, a reasonably
high value of correlation coefficient (say,0.8) is recommended in case of saddlestrapping
or weighted bootstrapping. In case of zero correlation between the study and auxiliary
variable, the confidence interval estimates based on saddlestrapping remain much wider
than in case of bootstrapping. The confience interval estimates based on saddlestrapping
in the presence of outliers show unusally higher estimates because these outliers have
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a very high chance of selection in saddlestrapping than in case of bootstrapping. Thus,
outliers need to be identified before using saddlestrappingor weighted bootstrapping in
real practice.

4 Further study

The idea of saddlestrapping is easily extendable in all directions where bootstrapping has
so for been applied by ignoring the availability of auxiliary variable. Obvious examples
are: saddlestrapping the distribution of correlation coefficient, ratio estimator, regression
estimator, product estimator, median, mode, quantiles andpercentiles, etc. under different
sampling schemes. It is not possible to tabulate or list all possibilities of studies of
saddlestrapping. Researchers could explore or investigate the proposed saddlestrapping in
all situations where it is possible. It should also to be seenif a method like saddlestrapping
could be made if the correlation between the study variable and auxiliary variable in the
first original sample is negative.

Appendix: FORTRAN codes

! FORTRAN CODE USED FOR BOOTSTRAPPING AND SADDLESTRAPPING
USE NUMERICAL LIBRARIES
IMPLICIT NONE
INTEGER I, NS, J, IR(1), IHX(1), ICTX, JJ, II, III, IIII, NHORSES
REAL Y(60), BY(60), HY(60), SBY, SHY, BYM, HYM, ANS,

1 VBY, VBH, SY, YM, VY
REAL X(60), CTX(60), HX(60), P(60),VARP, VX, CXY, RXY, SX, XM
REAL DF1, T95, ALLHM, AULHM, ALLBM, AULBM
REAL SUMVBY, SUMVARP, SUMBYM, SUMHYM
DATA NS /10/
DATA Y /250, 320, 438, 521, 230, 340, 478, 350, 631, 579/
DATA X /200, 278, 367, 376, 123, 250, 420, 331, 545, 456/
CHARACTER*20 OUT FILE
WRITE(*, ’(A)’) ’NAME OF THE OUTPUT FILE’
READ(*, ’(A20)’) OUT FILE
OPEN(42, FILE = OUTFILE, STATUS = ’UNKNOWN’)
ANS = NS
SY = 0.0
SX = 0.0
DO 1 I = 1, NS

SY = SY + Y(I)
1 SX = SX + X(I)

YM = SY/ANS
XM = SX/ANS
VY = 0.0
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VX = 0.0
CXY = 0.0
DO 2 I = 1, NS

VY = VY + (Y(I) – YM)**2
VX = VX + (X(I) – XM)**2

2 CXY = CXY + (X(I) – XM)*(Y(I) – YM)
VY = VY/(ANS – 1)
VX = VX/(ANS – 1)
CXY = CXY/(ANS – 1)
RXY = CXY/SQRT(VX*VY)
WRITE(42, 109)RXY, YM, SQRT(VY), XM, SQRT(VX)

109 FORMAT(2X, F9.5, 2X, F9.2, 2X, F9.2, 2X, F9.2, 2X, F9.2)
SUMVBY = 0.0
SUMVARP = 0.0
NHORSES = 50000
DO 8888 IIII = 1, NHORSES

WRITE(*,*)IIII
DO 11 I = 1, NS

CALL RNUND(1, NS, IR)
J = IR(1)
BY(I) = Y(J)

11 CONTINUE
CTX(0) = 0
CTX(1) = X(1)
DO 14 I = 2, NS

14 CTX(I) = CTX(I – 1) + X(I)
ICTX = CTX(NS)
III = 0
DO 26 II = 1, NS

CALL RNUND(1, ICTX, IHX)
JJ = IHX(1)
DO 15 I = 1, NS

IF((JJ.GE.CTX(I – 1)).AND.(JJ.LE.CTX(I)))THEN
III = III + 1
HX(III) = CTX(I) – CTX(I – 1)
HY(III) = Y(I)

ELSE
CONTINUE

ENDIF
15 CONTINUE
26 CONTINUE

DO 18 I = 1, NS
18 P(I) = HX(I)/DBLE(ICTX)

SBY = 0.0
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SHY = 0.0
DO 16 I = 1, NS

SBY = SBY + BY(I)
16 SHY = SHY + HY(I)/(ANS*P(I))

BYM = SBY/ANS
HYM = SHY/ANS
VBY = 0.0
DO 17 I = 1, NS

17 VBY = VBY + (BY(I) – YM)**2
VBY = VBY/(ANS*(ANS – 1))
VARP = 0.0
DO 19 I=1, NS

19 VARP = VARP + (HY(I)/P(I))**2
VARP = (VARP – ANS**3*HYM**2)/(ANS**3*(ANS – 1))
WRITE(42,103)NS, YM, BYM, VBY, HYM, VARP

103 FORMAT(2X, I4, 9(F14.2,2X))
SUMBYM = SUMBYM + BYM
SUMHYM = SUMHYM + HYM
SUMVBY = SUMVBY + VBY
SUMVARP = SUMVARP + VARP

8888 CONTINUE
SUMBYM = SUMBYM/DBLE(NHORSES)
SUMHYM = SUMHYM/DBLE(NHORSES)
SUMVBY = SUMVBY/DBLE(NHORSES)
SUMVARP = SUMVARP/DBLE(NHORSES)
DF1 = ANS – 1
T95 = TIN(0.975, DF1)
ALLHM = SUMHYM – T95 * SQRT(SUMVARP)
AULHM = SUMHYM + T95 * SQRT(SUMVARP)
ALLBM = SUMBYM – T95 * SQRT(SUMVBY)
AULBM = SUMBYM + T95 * SQRT(SUMVBY)
WRITE(42, 104)YM, ALLBM, AULBM, ALLHM, AULHM

104 FORMAT(2X,5(F14.2,2X))
STOP
END

!FORTRAN CODE FOR GENERATING DIFFERENT DATA SETS
USE NUMERICAL LIBRARIES
IMPLICIT NONE
INTEGER I,NS
REAL YS(2000),XS(2000),Y(2000),X(2000)
REAL RHO, SY, SX, YMEAN, XMEAN
CHARACTER*20 OUT FILE
WRITE(*,’(A)’) ’NAME OF THE OUTPUT FILE’
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READ(*,’(A20)’) OUT FILE
OPEN(42, FILE=OUTFILE, STATUS = ’UNKNOWN’)
NS = 10
CALL RNNOR(NS, YS)
CALL RNNOR(NS, XS)
RHO = 0.80
SY = 140
SX = 125
YMEAN = 415
XMEAN = 335
DO 10 I =1, NS

Y(I) = YMEAN + SY*SQRT(1 – RHO**2)*YS(I) + RHO*SY*XS(I)
10 X(I) = XMEAN + XS(I)*SX

DO 11 I = 1, NS
11 WRITE(42,107)Y(I), X(I)
107 FORMAT(2X, F9.2, 2X, F9.2)

STOP
END

Acknowledgements

The author is thanful to the Journal Secretary Dr. Romas Baronas and two learned referees
to bring the original manuscript in the present form. Help from a Prof. Kalidas Jana,
University of Texas at Brownsville, in reading the paper anda very careful editing of the
revised manuscript by Mr. Raymond Garcia III, Department ofLanguage and Literature,
Texas A&M University-Kingsville, has also been duly acknowledged.

References

1. B. Efron, R. J. Tibshirani,An Introduction to the Bootstrap, Chapman & Hall, 1993.

2. M. R. Chernick,Bootstrap Methods. A Practitioner’s Guide. Wiley, NY, 1999.

3. G. Casella, Introduction to the silver anniversary of theBootstrap, Stat. Sci., 18(2),
pp. 133–134, 2003.

4. B. Efron, Second thoughts on the bootstrap.Stat. Sci., 18(2), pp. 135–140, 2003.

5. A. C. Davison, D. V. Hinkley, G. A. Young, Recent developments in bootstrap methodology,
Stat. Sci., 18(2), pp. 141–157, 2003.

6. R. Beran, The impact of the bootstrap on statistical algorithms and theory,Stat. Sci., 18(2),
pp. 175–184, 2003.

7. S. R. Lele, Impact of bootstrap on the estimating functions,Stat. Sci., 18(2), pp. 185–190, 2003.

387



Sarjinder Singh

8. J. Shao, Impact of the bootstrap on sample, surveys,Stat. Sci., 18(2), pp. 191–198, 2003.

9. P. Lahiri, On the impact of bootstrap in survey sampling and small-area estimation,Stat. Sci.,
18(2), pp. 199–210, 2003.

10. D. N. Politis, The impact of bootstrap methods on time series analysis,Stat. Sci., 18(2),
pp. 219–230, 2003.

11. M. D. Ernst, A. D. Hutson, Utilizing a quantile function approach to obtain exact bootstrap
solutions,Stat. Sci., 18(2), pp. 231–240, 2003.

12. M. Rueda, A. Arcos, E. Artes, Quantile interval estimation in a finite population using a
multivariate ratio estimator,Metrika, 47, pp. 203–213, 1998.

13. M. Rueda, Martinez-Miranda, A. Arcos, Bootstrap confidence intervals for finite population
quantiles in the presence of auxiliary information,Model Assisted Statistics and Applications,
1, pp. 279–290, 2005, 2006.

14. S. Holmes, Bootstrapping phylogenetic trees: Theory and methods, Stat. Sci., 18(2),
pp. 241–255, 2003.

15. P. S. Soltis, D. E. Soltis, Applying the bootstrap in phylogeny reconstruction,Stat. Sci., 18(2),
pp. 256–267. 2003.

16. S. Holmes, C. Morris, R. Tibshirani, Bradley Efron: A Conversation with good friends,Stat.
Sci., 18(2), pp. 268–281, 2003.

17. B. Efron, Bootstrap methods: Another look at the Jackknife, The Annals of Statistics, 7(1),
pp. 1–26, 1979.

18. P. Barbe, P. Bertail,The Weighted Bootstrap, Lecture notes in Statistics, Vol. 98, Springer-
Verlag, 1995.

19. S. M. S. Lee, G. A. Young, Prepivoting by weighted bootstrap iteration,Biometrika, 90(2),
pp. 393–410, 2003.

20. R. W. Johnson, An introduction to the bootstrap. Teaching Statistics,Journal of the Royal
Statistical Society D, 23(2), pp. 49–54, 2001.

21. T. Hesterberg,Bootstrap methods and permutation tests, A course at the conference of
Statisticians at San Antonio, Texas during March 2008, 2008.

22. K. R. W. Brewer, M. Hanif,Sampling with Unequal Probabilities, Springer, 1983.

23. D. B. Lahiri, A method for sample selection providing unbiased ratio estimates,Bull. Ins.
Statist. Inst., 33(2), pp. 133–140, 1951.

24. M. H. Hansen, V. N. Hurwitz, On the theory of sampling fromfinite populations,Ann. Math.
Stat., 14, pp. 333–362, 1943.

25. S. Singh,Advanced Sampling Theory with Applications: How Michael Selected Amy, Kluwer,
The Netherlands, 2003.

26. S. Singh, S. Horn, F. Yu, Estimation of variance of general regression estimator: Higher level
calibration approach,Survey Methodology, 24(1), pp. 41–50, 1998.

27. W. G. Cochran,SamplingTechniques, 3rd ed., Wiley, 1977.

388


