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Abstract. We consider the Brownian motion proceBS"(s) in the m-space and the
distribution

F™(t,xz,a) = P{ sup |B™(s)+z|<a}, wherea>0, z€R", |z|<a.
0<s<t

There is a probability that a particle starting from the pairon the sphere;”* with the
radiusr = |z| < a will not be absorbed by the sphef&™ with a radiusa before the
epocht.
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1 Introduction

The most important stochastic process is a Brownian or Wipracess. It was first dis-
cussed by Louis Bachelier (1900), who was interested in tfinddluctuations of prices
in financial markets, and by Albert Einstein (1905), who gawvaathematical model for
the irregular motion of colloidal particles, first obserdsdthe Scottish botanist, Robert
Brown, in 1827.

Let there be amn-dimensional Euclidean space andes, .. ., e, be a fixed basis
in R™, wherexy, zo, . .., ., are coordinates of the vector froRY* in the basis. A scalar

product of the elementsandy € R™ is the numbefz - y) = > «; - y;, and the norm
=1

of the elementz € R™ is a (hon-negative) numbeét| = +/(x-x). Let S be an
m-dimensional sphere with the center at the beginning ofdioates and the radius
Distribution of the random variablB™ (s) is defined by density of the distribution

p(s,x) = (27s)% exp (— %)
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so for every Borel sefl € R™ we get
m( |z
P{B )€ A} 27rs exp |~ 5~ dz. D
S
A

We have examined the distribution
Fm(t,x,a):P{ sup |Bm(s)+:c| <a}, (2)
0<s<t
wherea > 0,z € R™ and|z| < a.
There is a probability that a particle starting from the paion the spher&;™ with
the radius = |z| < a will not be absorbed by the sphes&* with a radiusa before the

epocht.
In a one-dimensional case, the probability distributiondlion

F(t,0,a) = P{ sup |B(s)| < a}
0<s<t
has a complicated expression and different authors oltaieeral forms of this function
in [1-10]. The author [11] has proved that all the expresseme equivalent.
P. Levy [7] examined one-dimensional Brownian motion stgrtat the pointz

(—a1 < x < az), impeded by two absorbing barriers-at; < 0 < a3, and obtained the
general formula

P{—a1 < B(s)+x <ag, 0<s<t}

Z / { (a— q w? (ww;;w)z] d 3)
—e 2t ,
\/27r Y

wherez), = 2dk, )l = 2as — 2dk, d=a1 +az andk =...,-1,0,1,....
If a;y = as = a, d = 2a, then it follows that

Fl(t,z,a) = P{ sup |B(s) + x| < a}

T ay2 T ca—2a+y)?
27r Z/( (=dk )—e_(+4k2t2+))dy. @)

W. Feller [4] considered one-dimensional Brownian motitarting at the point
0 < z < a, impeded by two absorbing barriersteanda > 0 and has obtained two very
different representations for the same distribution fiamc,, (¢, ) (see [4, Chapter X]):

Aa(t,2) = P{O< B(s) +z <a, 0<s<t}

S fo(B) o)

k=—oc
2ka+a+x 2ka + x
o(Fr) e (M) ) ®
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and

4 1 2k +1)27%t\ | 2k + 1)z
Aa(t,x) = - Z 5 7 exp <%> sin <%) , (6)
where®(x) is standard normal distribution function.
Fortunately, the series in (5) converges reasonably ongnwis small, whereas (6)
is applicable to large.
In [11], the author derived an other different represeatator the same distribution
function (4)F(t,z, a)

Fl(tz,a) = 4 i (—1)k1 exp (_ (2k + 1)27727:) o ((Qk; + 1)77:5) 7 @
m +

2k 8a? 2a
k=0

where—a < z < a. This formula gives a probability that the Brownian motieaving
the pointz, will not be absorbed till the moment

The authors in [12, 13] examined the distributibfi* (¢, 0, a). They considered the
Brownian motionB™ (t) starting from the origin. Definition of such probabilities i
one of the most important problems in the theory of randontgsees. Following the
results of A.V. Skorokhod [9], the probabiliy™ (¢, z, a), we are interested in, satisfies a
differential equation of diffusion. In the case of anndimensional Brownian motion, we
impose a condition of a circular symmetry which leads to tipgation

OF™(t,xz,a OPF™(t,z,a O’F™(t,x,a
2 ( ) = (2 ) ot 7(2 ) (8)
ot oxs 0x2,
under the boundary conditiont™(¢,,a)l|;=, = 0 and the initial condition

F(t,z,a)|i=0 = 1.
Passing to spherical coordinates, we shall transform aquég) into the following
shape:

28vm(t,r, a)  0*™(t,r,a)  m—10v™(t,r,a)

ot or? r or ©)
under the boundary condition
™ (t,r,a)|r=a =0 (10)
and the initial condition
™ (t,r,a)|i=0 = 1. (11)

This paper is meant for studying the properties of distidnfunctionsf" (¢, z, a) =
v™(t,r,a), wherea > r = |z| > 0.
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2 Statement of the basic results

We consider the Brownian motion proce3%'(¢) in anm-space starting from the point
x on the spher&™ with the radius: = |x| < a. We shall prove the following theorem.

Theorem 1. Let B™(s), 0 < s < t, be anm-dimensional Brownian motion, starting
from the pointz on the sphere&S’™ with the radius- = |z| < a. Then

, > 2a” J, (s 2¢
™ (t,r,a) = Z 24 Jv\HnT/4) (pnr/a) exp < M—”Q), (12)
n—1 TU/'[/TLJV-‘rl(/j/TL) 2a
wherepu,,n = 1,2,..., are the positive roots of the Bessel functig(z) with v =

m/2— 1.

Proof. We find the solution to this differential diffusion equati¢®) by the standard
Fourier method. We try to find a solution of the form

o™ (t, 7 a) = T(t)R(r), (13)

whereT (t) is a function only of the variableand R(r) is a function only of the variable
Substituting the proposed form of solution (13) into equaii9) and dividing both sides
of the equality byI’(¢) R(r), we obtain

T'(t)  R'(r)+™=LR'(r)

2 0 = R0 = -\ (14)
Then, from equality (14) we obtain two ordinary equations

27" (t) + N2T'(t) = 0, (15)
R"(r) + mT_lR'(r) + MR(r) = 0. (16)

Boundary condition (10) yield€(a) = 0. Thus, in view of the found function
R(r), we derive the simplest problem on eigenvalues: find theesgbf the parameter
A at which there exist nontrivial solutions of equation (16pahe boundary condition

R(a) =0.
Set
R(r) = “ﬁf) (17)

in equation (16). Then(r) satisfies the Bessel equation
r*u” (r) +ru’ (r) + (Ar® —v*)u(r) =0, wherev = % - 1. (18)
The general solution of equation (18) is of the shape:

u(r) = e1Jy (Ar) + Yy (Ar), (19)
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whereJ, (Ar) is the Bessel function of the first kind of ordeiandY, (Ar) is the Bessel
function of the second kind. It follows from (17) and (19)tha
174 Yl/
R(r) = cady(Ar) + ¢ ()\7“). (20)

rl/

SinceY, (Ar) — oo asr — 0, most probably; = 0. Under the boundary condition
(8) we get the following equation

Ju(Aa) =0, (21)

that has infinitely many positive zerps, us, us, - . . (see [14]).
Hence we derive thaY;, is defined by the formulas

A = BB
a

?

and

HET 2
Ri(r) = 2 ,Tn(t)cnexp<%”t>, k=1,2,3,...,00. (22)

Now, in view of equations (13), (15) and (22), we find that thiedtions

2 HnT
v (t, r, a) = Cp €XP < ﬁ) T (23)
satisfy equation (9) and the boundary condition (10) for any
Let us compose a series
oo JV(Hn"') ‘LLQt
(t = . a e 24
V) =D e = exp( 2(12) (24)

To satisfy the initial condition (11), we need to fulfil theusjty

iany<%nr) =Y. (25)

n=1

The written series represents an expansion of the funetian Bessel functions in
the interval(0, a). The coefficients of expansions are defined by the formula

2 / o <unr)
en = = [ty (B2 ) dr (26)
a2Ju2+1(Mn) 0 a

Lety = £2=, then

) 4\ fin

— v+1

Cn = <5795 7 | Yy Ju(y) dy. (27)
Sl o) f
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Making use of the recurrence relation

d

d_yy
it is easy to find that

v (y) =y (),

Hn Hn

/ YL (y) dy = / Ay M L1 (v) = it o () (28)

0 0

It follows from (27) and (28) that
2a”

fin Sy 1 (tin)

Formulae (24) and (29) complete the proof of Theorem 1. O

(29)

Cp =

Let us mention some corollaries.

Corollary 1. Let B™(s) be anm-dimensional Brownian motion, starting from the origin.
Then, passing to the limit from Theordnasr — 0, we obtain

, > 1 ur—t ( /ﬂt)
P! sup |B™(s)| <al = n exp |- =% |, 30
{ogsztl (¥ <aj ; 2w+ 1) dy () T\ 242 (30)

wherea > 0.
Proof. We obtain the limit from formula (4.14.4) in [15]

lim Ju(tnr/a) _ 1

r—=0 (upr/a)? 2T(v+1)
and

2a" J, (pnr/a) 1 pr=t

r=0 1Y i Jy1 (pn) 2700 4+ 1) Jyga (pn)

Hence we derive the result [12]. The proofis complete. O

We can easily find positive roots of the Bessel functioh$z) in formula (12)
only for one-dimensional and three-dimensional cases.refbee, only for that cases
we present the following corollaries:

Corollary 2. Let B(s) be a one-dimensional Brownian motion, starting from thenpoi
x € [—a,al. Then

F'(t,z,a) = P{ sup |B(s)+z| <a}
0<s<t

D Sy (— (2k + 1)2”%) cos (@’“ - ””), (31)

8a? 2a

where—a < z < a.
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Proof. Itis easy to see, that i, = 1, thenv = —3, J,(z) = J_1(z) = /2 cos(x),

Ji(z) = \/ = sin(z). The positive roots of the Bessel functioh , (z) are ., =
F(1+2n), n=0,1,2,....
Thus, we have

2a" J, (pnr/a) 2 cos(f2=) 4 o ((2k+1)77m)(_1)n
ruﬂnJl/Jrl(,un) fen, SIN(flr,) B m(2n +1) 2a .

Applying this formula and (12), we get the proof of Corolla&2y The proof is
complete. O

This formula gives a probability that the one-dimensionavnian motion leaving
the pointz, will not be absorbed till the momentHence we derive the result [11].

Corollary 3. Let B3(s), 0 < s < t, be a three-dimensional Brownian motion, starting
from the pointz on the spheres? with the radius” = |z| < a. Then

rn n’n?t
ﬁ r, a —22 % sin (T) exp (— W) (32)

Proof. If m = 3, thenv = Z — 1 = 1 andJ,(z) = Ji(z) = \/ = sin(z), Ja(x) =
\/%(Si“—(‘”) — cos(x)). The positive roots of the Bessel functidn () areu, = mn,

x

n=12,...

Consequently
2 v v n .
a’Jy(pnrfa) _ 20 . (7R (—1)m.
Y tnJy41 (pn) Tn a
The proof is complete. O

Corollary 4. Let B3(s) be a three-dimensional Brownian movement, starting froen th
beginning of coordinates, then passing to the limit-as 0, we obtain.

2.2
3(t,0,a) = —2 Z " exp (— n2§2t). (33)

Proof. It is obvious, that the limit:

. a . [(7rn
lim —sin| — ) =1
r—0 Trn a

It proves (33). The proof is complete. O
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