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Abstract. In this paper, we study the existence of solutions for two nonlocal problems of
integro-differential equation with nonlocal infinite-point and Riemann—Stieltjes integral boundary
conditions. The continuous dependence of the solution will be studied.
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1 Introduction

In the last few years, some investigators have established a lot of useful and interesting
functional differential equation with the nonlocal condition in order to achieve various
goals; see [1-9,11,12,14-21] and the references cited therein.
In this paper, we are concerned with the nonlocal problem for the integro-differential
equation
t

dx

T =7 t,x(t),/g(s,w(s)) ds |, ae.te(0,1), (1)
0

with the nonlocal condition
m
Zakx(m) =z, ar =0, 7€ (0,1). )
k=1

The existence of solution, under certain conditions, will be proved. The continuous depen-
dence of the solution on the nonlocal parameter a; and on the function g will be studied.
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As applications, the nonlocal problem of equation (1) with the Riemann—Stieltjes integral
condition

/m(s) dg(s) = zo 3)
0

will be studied. Also, the nonlocal problem of equation (1) with infinite-point boundary
condition

Zakx(m) =29 (4)
k=1

will be studied.

2 Main results

2.1 Integral representation

Lemma 1. Let B = ;c":l ar # 0, the solution of the nonlocal problem (1)-(2), if it

exist, then it can be represented by the integral equation

Zo —;akb/f(s,l'(s),/g(97$(9)) d9> ds]

0

+/tf<s7x(s)7/sg(9,x(9)) d9> ds. )

0 0

x(t)= B!

Proof. Let x be a solution of the nonlocal problem (1)—(2). Integrating both sides of (1),
we get

z(t) = z(0) +/f<5,$(5),/g(9,$(9)) d9> ds. (6)

0 0

Using the nonlocal condition (2), we get

Zakx(m) = z(0) Zak + Z ag / f(s, z(s), /g(ﬂ,x(@)) d9> ds,
k=1

k=1 k=1

(=)

then
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Using (6) and (7), we obtain

z(t)=B ' |zg — Zak f <s,x(s),/g(9,x(0)) d9> ds]
k=19 0
+ [ f (S, z(s), [ g(0,2(0)) d0> ds. O
[

2.2 Ecxistence of solution
2.2.1 Functional equation approach

Consider the nonlocal problem (1)—(2) with the assumptions:

(G) f:[0,7] x R? — R satisfies Caratheodory condition, i.e., f is measurable in ¢
for any x,y € R and continuous in x,y for almost all ¢ € [0, 1]. There exist
a function ¢; € L'[0,1] and a positive constant b; > 0 such that

|f(t,2,y)| < ca(t) + bilx| + brlyl.

(i) g:[0,1] x R — R satisfies Caratheodory condition, i.e., g is measurable in ¢ for
any x € R and continuous in x for almost all ¢ € [0, 1]. There exist a function
c2 € L'[0,1] and a positive constant by > 0 such that

|g(t,2)| < ca(t) + balzl.

t t s
(iii) sup /01 (s)ds < My, sup //02(0) dfds < M.
te[0,1] te[0,1]
0 0 0
@iv) 2b1 + b1by < 1.

Definition 1. By a solution of the nonlocal problem (1)-(2) we mean a function z €
C'[0, 1] that satisfies (1)—(2).

Theorem 1. Let assumptions (1)—(iv) be satisfied, then the nonlocal problem (1)—(2) has
at least one solution.

Proof. Define the operator A associated with the integral equation (5) by

Az(t) = B~ |20 — g:lak Zf(s,w(s),jg(@,x(@)) d6> ds]
+/tf<s,ac(s),/sg(9,x(9)) d0> ds.
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Let Q, = {z € R: ||z|| < r}, where r = B~1(|xo| +2M7 +2b1 M) /(1 — (2b1 +b1b2)).

Then we have, for z € Q,.,
(s x / (6,2(0)) d0> ds]

f<s 2(s), / (6, x(f)))d@)

0

< B! |x0|+zak/< +b1|x(s)|+b1/}g(9,x(e))|d9> ds]
0

+/ <c1(s) + by |z(s)] —|—b1/g(9,x(0)) d0> ds
0

0

|$0|+Zak<M1+b1T+b1//Cz ) + bo|a(6 |d9ds>]

k=1

|Az(t)| < B*1

ak

ds

+
o\“

t s
+M1+b1r+b1// 0) + b2|x(6)]) do ds
0
1
B_1|$0| + My + byr + b1 Mo + §b1b27" + My + byr + b1 Mo + §b1b2’r
= Bil|l’0| + 2M1 + 2[)17" + 2b1M2 + blbg’f‘ =T.
This prove that A : @, — @, and the class of functions { Az} is uniformly bounded
in Q.

Now, let t1,t2 € (0,1) such that |ty — ¢1] < J, then

’A.’E(tg) — A.’E(tl)’

ta

/f(s,x(s),jg(@,xw)) d9> ds — /t1f<s x(s), /Sg(é z(0)) d9> ds
0 0 0 0
f(s,x(s),o/g(ﬂ,x(ﬂ)) d0>

g/<01(5)+b1|x(5)’+b10/|g(¢9,m(0))|d9> ds

http://www.journals.vu.lt/nonlinear-analysis
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ta

to s
< /01(8) ds + (tg — tl)bl’/‘ + by //02(9) dfds
t1 O

t1
1 2 42
+ 2b1b27‘(t2 tl)'
This mean that the class of functions { Az} is equicontinuous in Q..

Let z,, € Q,, ©, = x (n — 00), then from continuity of the functions f and g
we obtain f(t, 2 (£), yu(8)) — F(t,(8), y(t)) and g(t, 2 (8)) — g(t,2(t)) as n — .

Also
- gk/f(w() / g<s,xn<e>)d9> ds]

lim Az, (t) = lim

n—oo n—oo )
t 5
+0/f<s,xn(s),o/g(9,xn(9)) d9> ds]. (8

Using assumptions (i)—(ii) and Lebesgue dominated convergence theorem [13], from (8)
we obtain

nlLIIgOAmn(t) = |B7 | —Za / lim f(s Zn(8), /g(ﬂ,xn(e)) d9> ds]
k=1 o
+ 7L1l_>II(>lof<8,.’13n(S), g(0,2,(0)) d9> ds| = Ax(t).
/ /

Then Ax,, — Ax as n — oo. This mean that the operator A is continuous.

lim z(t) = {Bl T — 3 a f(s z(s), 0,x(6) d9> ]

t—1 0 ; ko/ / ( )
1

+ f(&x(s), g(0,z( d9> ds} € C10,1],

[l

and

}i_I)I(lJI(t) xonak/ < /g )ds € C[0,1].
0

Then by Schauder fixed point theorem [10] there exist at least one solution 2 € C[0, 1] of
the integral equation (5).

Nonlinear Anal. Model. Control, 24(5):733-754
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To complete the proof, differentiating (5) we obtain

T
+/f<s,x<)/(9x ) }

t
=0+ % f <s,x(s), d9> ds
0

0
s

= f(&ﬂc(s),/g(O,x(G)) d9>.

0
Also, from the integral equation (5), we obtain

xO—Zak/ (s:r 0/g€x d9> ]
+7f<s,x(s) 0 d9>

0

z(1),) =

and

Then

Then there exist at least one solution 2 € C[0, 1] of the nonlocal problem of functional
differential equation (1)—(2). O]

2.2.2 Coupled system approach

Let the function f and g satisfies the conditions:

(i*) f:[0,T] x R? — R satisfies Caratheodory condition, i.e., f is measurable in
t for any =,y € R and continuous in x,y for almost all ¢ € [0, 1]. There exist
a function my € L1[0, 1] such that

|f(t,:c,y)| < ml(t)

http://www.journals.vu.lt/nonlinear-analysis
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(ii*) ¢g:[0,1] x R — R satisfies Caratheodory condition, i.e., g is measurable in ¢ for
any z € R and continuous in z for almost all ¢ € [0, 1]. There exist a function
mg € L[0,1] such that

|9(t, )| < ma(t).

t t
(iii*) sup /ml(s) ds < My, sup /mg(s) ds < M.
te[0,1] 0 te[0,1] 5
Now, let
t
) = [ 9(6.2(0)) a0, ©)
0
then
m Tk t
x(t) =B $O_Zak/f(5>$(8)ay(3))d3 +/f(8,96(8),y(8))d3~ (10)
k=170 0

Let X be the Banach space of all order pairs (z, y) with the norm
(@ 9)]|x = lzlle +lyllc = sup [z(®)] + sup |y(t)]-
te(0,1] te(0,1]
Definition 2. By a solution of the nonlocal problem (1)-(2) we mean a function = €
C'[0, 1] that satisfies (1)—(2).

Theorem 2. Let assumptions (i*)—(iii*) be satisfied, then the nonlocal problem (1)-(2)
has at least one solution.

Proof. Define the operator A associated with the integral equation (9)—(10) by

Tk

xTo — a f 8737(3)? (S)
LY RCECRTE)

0

/tg(e, z(6)) d¢9> .

Let @y = {(z,9) € R% [z < o, llyll < vz, (@, 9)ll < 1+ 72 = 1}, where
r= My + Ms.
Then we have, for (z,y) € Q.

A(z(t),yt)) = (B_l

—I—/f(s,x(s),y(s)) ds,

Nonlinear Anal. Model. Control, 24(5):733-754
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but
m Tk t
B oo = S [ £(sate)(e) ds| + [ £s.a(s)0(s) ds
k=110 0
m Tk t
< B | +Zak/m1(s)ds +/m1(s)ds
k=1 "% 0
< Bil‘fﬂ0| + 2M1 (11)
and
t t
/g(a,x(e))da < /mg(a) df < Ms. (12)

From (11) and (12) we get
|A(z, )|y < B~ ao| +2M; + Ms.

This prove that A : @, — @, and the class of functions {A(z,y)} is uniformly bounded

in Q.
Now, let 1,2 € (0,1) such that |t3 — 1] < J, then

|A((t2), y(t2)) — A(x(t1), y(t1))|

=Bz — Y ar | f(s,x2(s),y(s))ds| + [ f(s,2(s),y(s))ds,
‘( ; O/ ( y(s)) O/ ( y(s))
/g(a’x(ﬂ))d(’)
— | B7 |z — Y ar | f(s,2(s),y(s))ds| + | f(s,z(s),y(s)) ds,
(57 [ra S [ totstop ] sttt

ta

g/mg(s)ds. (13)

ty

/9(9@(9)) do

t1

http://www.journals.vu.lt/nonlinear-analysis
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From (13) we get

ta

[Afe(t2).(t2) = Afa(t).p(t))] < [ (ma(s) + mas)) s,
ty
This mean that the class of functions { A(x, y)} is equicontinuous in Q.
Let z, € Q,, ©, = x (n — o0), then from continuity of the functions f and g
we obtain f(t, 2, (1), ya (1)) — f(t,2(t),y(t)) and g(t,2, (1)) — g(t, (1)) as n — .
Also

lim A (SUn (t)a Yn (t))

= nlggo <B1 ZTo — Zak/f(S,l’n(S),yn(S)) ds| + /f(s,xn(s),yn(s)) ds,
k=1 % 0
/g(s,zn(ﬂ)) d9>
0
= (nlggo B! To — Zak/f(saxn(s)ayn(s)) ds| + /f(573771(5)ayn(5)) ds,
k=1 "% 0
nh%n;O g(s,xn(e)) d0>. (14)
/

Using assumptions (i)—(ii) and Lebesgue dominated convergence theorem [13], from (14)
we obtain

+/f(s,x(s)7y(s)) ds,

Then Ax,, — Ax as n — oo. This mean that the operator A is continuous.

Tk

To — Zak/f(sax(s)ay(s)) ds

k=1

lim z(t) = {B1

t—1

+ f(s,z(s),y(s)) ds}
/

€ Clo,1],
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1
}Ey /g )) dé € C[o,1],
0
tlgr(l)x(t Z / s,z(s),y(s)) ds| € C[0,1],
k=110

lim y(#) = 0 € C[0, 1],

Then by Schauder fixed point theorem [10] there exist at least one solution
x € C|0, 1] of the integral equation (9)—(10).

To complete the proof, differentiating (10), we obtain

b= af o Jrecorms

_0+—/f s, x( )ds—f(s7x(s)7y(s))7

+/f(s,x(s),y(s)) ds}
0

y(t) = /g(s,x(@)) dé.

0

Also, from the integral equation (9)—(10) we obtain

Tk Tk

f) / .0(s)) ds| + [ £(s.0(9.5(5) s,

- 0 0

z(1)) =

and

0
Zakx(m) = Zakal Zo — Zak/f(s,x(s),y(s)) ds}
k=1 k=1 k=1

+ Zak/f(s,a:(s),y(s)) ds
k=1

http://www.journals.vu.lt/nonlinear-analysis
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Then m
Z arx (1) = x0.
k=1
Hence, the nonlocal problem (1)—(2) is equivalent to integral equation (9)—(10). L]

2.3 Uniqueness of the solution
Let f and g satisfy the following assumptions:

(v) f:[0,T]xR? — Ris measurable in ¢ for any =,y € R and satisfies the Lipschitz
condition
|f(t7x,y) — f(t,u,v)| < bz —ul + b1y — v|.

(vi) g :[0,7T] x R — R is measurable in ¢ for any = € R and satisfies the Lipschitz

condition
|g<t,1') - g(tvu)| < b2|l‘ - U|
t t s
(vii) sup /‘f(s,0,0)‘dsSLl, sup //’g(@,O)’d@dsng.
te[0,1] 5 te[0,1] J

Theorem 3. Let assumptions (v)—(vii) be satisfied, then the solution of the nonlocal
problem (1)—(2) is unique.

Proof. From assumption (v) we have that f is measurable in ¢ for any x,y € R and
satisfies the Lipschitz condition, then it is continuous in x, y € R for all ¢ € [0, 1], and

|f(t, 2, y)| < bilx| + bily| + | f(2,0,0)].

Condition (i) is satisfied. Also by the same way we can show that assumption (ii) satisfied
by assumption (vi). Now, from Theorem 1 the solution of the nonlocal problem (1)—(2)
exists.

Let x, y be two the solution of (1)-(2), then

T

lz(t) —y(t)| = |B~! _Zak/f<s,x(s),/g(0,x(9))d9> ds]
k=1 0 0
+ f(s,x(s), 9(0,2(0)) d9> ds
[0

Tk

S

_ B!

f <87 y(s),

o,

g(0,y(0)) d0> ds]

=1

—/tf(s,y(s),/g(e,y(ﬂ)) d9> ds

Nonlinear Anal. Model. Control, 24(5):733-754
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f (s,x(s), g(@,x(@)) d9> ds
/

ds,

f(s,;v(s), /g(@,x(@)) d@) ds — f(s,y(s),/g(@,y(ﬁ)) d9>
0 0

Tk

§Blzm:ak/

k=1
t

+ / <b1||$y|| by / 19(0,2(60)) g<e,y<9>>\da> ds

<b1|x =yl + b / l9(0,2(0)) — g(a,y(a))|d9> ds
0

1 1
Sbillz =yl + Sbiballz = yll + bulle — yll + Sbibellz —yll
= (2by + bibs) |z — y].-

Hence,
(1= 2b1 + bybs)]lz — yl| < 0.

Since (2b1 +b1b2) < 1, then z(t) = y(t), and the solution of the nonlocal problem (1)—(2)
is unique. O

2.4 Continuous dependence
2.4.1 Continuous dependence on x

Definition 3. The solution 2z € C[0, 1] of the nonlocal problem (1)—(2) depends continu-
ously on xg if

Ve >0, 36(e): |zo—ajl <d = |z —a"|| <e

where z* is the solution of the nonlocal problem

¢
d(i = f(t,x*(t),/g(s,:c*(s)) ds), ae.te(0,1), (15)
0

with the nonlocal condition

> apzt () =a5, ar >0, 7 € (0,1). (16)
k=1

http://www.journals.vu.lt/nonlinear-analysis
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Theorem 4. Let the assumptions of Theorem 3 be satisfied, then the solution of the
nonlocal problem (1)—(2) depends continuously on x.

Proof. Let x, x* be two solutions of the nonlocal problems (1)—(2) and (15)-(16), respec-
tively. Then

|2 (t) — 2" (t)|

xo— Y ai | f|s,xz(s), 0,2(0))do | ds
e il [ o

=1 0

B71

t

+f f(s,z(s), 0/ g(G,x(G))dG) as

=S ot foesya)l

0 0

+/tf<s,x*(s),/sg(9,m*(9)) d6‘> ds

< B g —

m Tk
FEY |
k=1
S

+/t f(s,x(s%/g(é’,m(e))de) _f<57x*(5)7/sg(9)$*(9)) d9>

< Bfl\xo —z)

+B7! Zak/ <61||:17 -z + b / lg(6,2*(0)) — g(ﬂ,m(ﬂ)ﬂd@) ds
0 0

k=1

B!

ds

f(s, x*(s), /g(G, a:*(Q)) d@) —f (s,x(s), /g(@,x(@)) d9>
0

0

ds,

t

+/ (bllx—x*|+b1/\g(0,x(9)) —g(@,x*(@))|d0> ds
0

0

1
< B wo—ag) + bullz—yll + Fhibzllz =2 + byflz 27|

1
+ §b1b2|\m—x*\|

g B*15 + (2b1 + blbg)”I — l’*”
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Hence,
o= < D
r— 2% < —e.
[1— (2b1 + b1b2)]
This mean that the solution of the nonlocal problem (1)—(2) depends continuously on x.
The proof is completed. O

2.4.2 Continuous dependence on ay

Definition 4. The solution z € C|0, 1] of the nonlocal problem (1)—(2) depends continu-
ously on ay, if

Ve >0, 3d(e): |ar —ar| <d = |z —z"|| <e,

where z* is the solution of the nonlocal problem

t
d *
dmt = (t,x*(t),/g(s,x*(s)) ds), ae.t € (0,1), (17)
0
with the nonlocal condition
> apat(m) =z, ar >0, € (0,1). (18)
k=1

Theorem 5. Let the assumptions of Theorem 3 be satisfied, then the solution of the
nonlocal problem (1)—(2) depends continuously on ay.

Proof. Let B* = ZZ:1 aj # 0, and let =, z* be two solutions of the nonlocal prob-
lems (1)—(2) and (17)—(18), respectively. Then

|z(t) — 2*(t)]

http://www.journals.vu.lt/nonlinear-analysis
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< B_lB*flméaco

m Tk
+B Y0 f
k=1

S

f(s,x*(S), /9(9,33*(0)) d9> —f(& (s), /9(9’33(9)) df’)
f(&a?(S)’/g(@aw(@)) de)

0

f(s,x(S)v/g(‘)»ff(@)) d‘))

0

ds

ds

m Tk
+ B! Z lay, — a| /
k=1 A

3

ds

m Tk
FEB TS ol Y [
k=1 k=1

0

f(s,x(s),/g(é),x(@)) d9> — f(s,m*(s),/g(s,x*(ﬁ)) d9>
0

0

t

of

0

< B_lB*_lm(Smo + (2b1 + b1b2)||3? - .%‘*H

ds

+ B* 7 md (2by ||| + bibal|2|| + 2Ly + 2b1 Lo).
Hence,

e — z*|| < moxo + mdB((2b1 + biba)||x|| + 2Ly + 2b1 L2) _.
h [ — (201 + b1by)| BB~ :

This mean that the solution of the nonlocal problem (1)—(2) depends continuously on ay.
The proof is completed. O

2.4.3 Continuous dependence on the function g

Definition 5. The solution z € C|0, 1] of the nonlocal problem (1)—(2) depends continu-
ously on the function g if

Ve >0, 36(e): |lg—g"|<d = |lz—2"| <e,

where z* is the solution of the nonlocal problem

o f<t7x*(t)7 [ (s,x*<s>>ds<s,m*<s>>), ac.te (0.1, (19

with the nonlocal condition
> agat () =m0, ar >0, 7 € (0,1). (20)
k=1

Theorem 6. Let the assumptions of Theorem 3 be satisfied, then the solution of the
nonlocal problem (1)—(2) depends continuously on the function g.
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Proof. Let x, x* be two solutions of the nonlocal problem (1)—(2) and (19)—(20), respec-
tively. Then

ds,

<8, 9(0,2(0)) )—f(sacv*(S), 9" (0,27(0)) )
0

m Tk
—1
<B E ay
k=1
t

+/ <blxx* +bl/|g(9,x(9)) g*(@,z*(@))|d9> ds
0 0

8
—~
»
:—/
Q.
>
o
>
&
Q.
>

<b1||:17 — 2%+t / lg(6,2%(0)) — g(8,2(0))] d@) ds
0

1 1 1
<byllz —z*|| + 51)15 + §b1b2||x — x| + 5()15 + by||z — ¥
1
+ §b1b2||x — |
<010+ (2b1 + bibo) ||z — 2|
Hence,

bi6

z—z*]| < -
b= S T o s, m

= €.

This mean that the solution of the nonlocal problem (1)—(2) depends continuously on the
function g. The proof is completed. O

http://www.journals.vu.lt/nonlinear-analysis
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2.5 Nonlocal Riemann-Stieltjes integral condition

Let xz € C[0, 1] be the solution of the nonlocal problem (1)—(2). Let ar, = g(tx)—g(tx—1),
g is increasing function, 7, € (tg—1,tk), 0 = tg < t1 < to--- < t,, = 1, then, as
m — oo, the nonlocal condition (2) will be

Zg 9(tk—1)x(Th) = zo
k=1
and

i3 glte) - g(t)a(n) = [ a(s)dg(s) = o
0

Theorem 7. Let assumptions (1)—(iv) be satisfied, then the nonlocal problem of (1)-(3)
has at least one solution.

Proof. As m — oo, the solution of the nonlocal problem (1)—(2) will be

x(t) = mlgn00 Zk T [mo - Zak/ <s x / (6,2(0)) d9> ds}

+jf<s z(s )/S (6, x(@))d@) ds

0

X [xgn}iinOOZak/f(s,x(s),/g(é),x(t‘)))d9> ds (g(tx) g(tk_l))]
0

k=1 %
Jr/f(sx()

0

o\m

g(0,2(0)) d&) ds

t

_ M[xo—b/l/f<s,x / (6, 2(0)) d9> dsdg(t)]
+/tf<s,x(s),/sg(9,x(9)) d9> ds. O
0

0

2.6 Infinite-point boundary condition

Theorem 8. Let assumptions (1)—(iv) be satisfied, then the nonlocal problem of (1)—(4)
has at least one solution.
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Proof. Let the assumptions of Theorem 1 be satisfied, and let >_;"; ax be convergent,

then
Tm(t) = Zk ar [xo - Zak/ (s x / (6,z(0)) d0> ds}

+/f<s,xm(s),/g(0,xm(0)) d9> ds. (21)

0 0
Taking the limit to (21) as m — oo, we have

W%i_r}nocJ T () = nh_)n;o lzk ar lxo - Zak/ < ),/g(@,x(@)) d9> ds]

+ lim (s T (8 /g 9 Tm (0 ) ds. (22)
n—oo
0

Now, (16)] < oo, axz(Tk) is convergent.
Also
/f(s x(s), / (6,2(0)) d@) ds
0 0
< c1(s) + bi|z(s)| + b1 [ g(0,2(0)) d0> ds
/| [
< c1(s) + bi|z(s)| + b1 [ (ca(s) + ba|z(s)|) d0> ds
I [
< My + b1||IH + b1 My + %b1b2\|x|| <M
then

ak/f<s,x(s),/g(0,x(0)) d0> ds| < |ag| M,

0 0

and by the comparison test Y, ; ax [,* f(s,z(s), [ g(6, z(6)) df) ds is convergent.

O —u
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Now, | f| < |e1(s)+b1||x]|+b1 Ma+Db1b2||x||, using assumptions (1)—(ii) and Lebesgue
dominated convergence theorem [13], from (22) we obtain

z(t) = Zk ™ lxo—Zak/ (s x / (0, x(a))ow) ds}

0
+ f<3 z(s), [ g(6,2(0)) d0> ds
[l
The theorem proved. O

3 Examples

In this section, we offer some examples to illustrate our results.
Example 1. Consider the following nonlinear integro-differential equation:

dx 3 In(14|z(2)])
=y it Sl o S P
@l T ahe

t
o/
0

with infinite point boundary condition

(cos(3s +3) + s° cosz(s) + e x(s))dt, ae.t€(0,1), (23)

O =

— 1 (k-1
k=1
Set
t
f(t,x(t%/g(s,x(s)) ds)
0
=t3e ™ + % + % / cos(3s + 3) + s° cosz(s) + e z(s))dt.
0
Then
¢
|f (t,x(t),/g(s,x(s)) ds> ‘
0
1 1 / 1
<tde ™ 4 3 <|z| + 3 / §|(cos(3s +3) + 5° cos (s) + esx(s))dt|>,
0
and also

1 2
|g(8,x(s))’ < glcos(?)s —|—3)| + g‘x(s)’
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It is clear that assumptions (i)—(iv) of Theorem 1 are satisfied with ¢ (t) =te =t € L1[0, 1],
c2(t) = |cos(3t + 3)|/2 € LY0,1], by = 1/3, by = 2/3,2by + b1by = 2/3 +2/9 =
8/9 < 1, and the series ) - , 1/k®, is convergent. Therefore, by applying to Theorem 1
the given nonlocal problem (23)—(24) has a continuous solution.

Example 2. Consider the following nonlinear integro-differential equation:

oy gy 20
dt Vi+3

+ / i (sin2(3s +3)+ ﬁ%)dt, ae.t € (0,1), (25)
0

with infinite point boundary condition

=1 <k2+l<;—1)
—x| ——— | = xp. (26)
;l& k2 +k
Set
t
f(tm(t),/g(s,x(s)) ds)
0
O 1] (s)
.3 x(t 1 . 9 sx(s
=t"+t+1+ 2t+4+4/(sm (3s+3)+23(1+x(8))>dt
0
Then
t
‘f (t,x(t),/g(s, x(s)) ds) ‘
0
1 1 t3 (s)
3 . 9 sx(s
0
and also

3. 9 3
lg(s,2(s))| < Zysm (354 3)| + §|x(s)’

It is clear that the assumptions (i)—(iv) of Theorem 1 are satisfied with ¢; (t) = t3+t+1 €
Ll[O, 1], CQ(t) = (3/4)|(Sin2(38 + 3)| € Ll[O, 1], by = 1/3, by = 3/8, 2b1 + biby =
2/34+1/8 = 19/24 < 1, and the series Y .-, 1/k?, is convergent. Therefore, by applying
to Theorem 1 the given nonlocal problem (25)—(26) has a continuous solution.
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