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Abstract. In this paper, we establish the existence of decay mild solutions on an unbounded
interval of nonlocal fractional semilinear differential inclusions with noninstantaneous impulses
and involving the Hilfer derivative. Our argument uses fixed point theorems, semigroup theory,
multi-functions and a measure of noncompactness on the space of piecewise weighted continuous
functions defined on an unbounded interval. An example is provided to illustrate our results.
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1 Introduction

Fractional differential equations and inclusions arise in various fields of physics, mechan-
ics and engineering [3,12,17], and there are many papers on the existence of solutions and
controls for fractional differential equations and inclusions; see [16,19-21,23,25,29-31]
and the references therein. The action of instantaneous impulsive effect does not describe
certain dynamics of evolution processes in therapy using pharmaceutical drugs. Take into
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consideration the hemodynamic equilibrium of a person: in the case of a decompensation
(for example, high or low levels of glucose), one can prescribe some intravenous drugs
(insulin), and the introduction of drugs in the bloodstream and the consequent absorption
for the body are gradual and continuous process. This situation falls into a new case of
impulsive action, which starts at any arbitrary fixed point and stays active on a finite time
interval (noninstantaneous impulsive differential equation was introduced by Hernan-
dez and O’Regan [11]). A strong motivation for investigating nonlocal Cauchy problems
(which is a generalization of classical Cauchy problems with an initial condition) comes
from physical problems; for example, it is used to determine the unknown physical param-
eters in some inverse heat condition problems. Abstract nonlocal semilinear initial-value
problems was initiated by Byszewski [6], where the existence and uniqueness of mild
solutions for nonlocal differential equations without impulsive was considered.

Hilfer [12] introduced the Hilfer fractional derivative, which have two fractional pa-
rameters « and 3, and this fractional derivative is used to extend Riemann-Liouville or
Caputo-type Nutting’s law to Hilfer-type Nutting’s law, which can be used in the stress—
strain relationship for more complex elastic solids. For other contributions on Hilfer-type
equations, we refer the reader to [8, 10, 14,27,28].

The study of Sobolev-type equations can be traced back to the work of Barenblat et al.
[4], in which the author initiated a model of flow liquid in fissured rocks, i.e., O; (u(t, ) —
O2u(t,xz)) — 02u(t,z) = 0. This model was developed and studied in [5,22] when the
authors considered the abstract nonlinear evolution equation (d/dt)B(u(t)) — Au(t) =
f(t,u(t)) in Banach spaces, where A and B are unbounded operators. Feckan et al. [7]
used two new characteristic solution operators and studied the controllability of fractional
functional evolution equations of Sobolev type in Banach spaces.

In this paper, we study the global attracting of mild solutions to the following Hilfer
fractional noninstantaneous impulsive differential inclusions of Sobolev type with nonlo-
cal conditions on the unbounded interval [0, 00):

D Ba(t) € Az(t)+ F(t,z(t), ae.te (siti], i€ {0}UN,
x(tj):gl(thx(tz_))a I(t):gl(tax(tz_))7 te (tiaSiL iEN, (1)
Ié:wac(O) = g(z), Iigvx(s+) =gi(si,z(t])), i€N;

we find a mild solution z : [0,00) — E for (1) satisfying lim; o, 2(¢) = 0, where
0<a<l,0g<pB<<lL,y=a+p—ap, D?‘qfx(t) is the left-sided Hilfer derivative
with lower limit at s; of order o and type  (for definitions concerning the left-sided
Hilfer fractional integral and derivative, see [12]), F is a real Banach space, A, B are
linear closed operators on E such that D(B) C D(A) C Fand 0 = sp < t; < 81 <
ty < ooo <ty < Sm < tmy1 < . The symbol x(t), z(t;) are the right and left
limits of  at the point ¢;, respectively, I;j"’ is the left-sided Riemann—Liouville integral
of order 1 — ~ with lower limit at s; and Islj Yx(sf) = lim, Lo I qu 7(t). Moreover,
F :[0,00) x E — 2F — {} is a multifunction, g : PC{__([0,00), E) — D(B), the
domain of B, and g; : [t;,s;] x E — D(B),i = 1,2,...,m, are functions. The space
PCY__([0,00), E) will be specified in Section 4.
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Associated with (1), we address the large time behavior of its solution. Anh et al. [1]
found decay integral solutions for a class of neutral fractional differential equations with
infinite delay, and in [9, 15], the authors studied some models of semilinear fractional
differential equations in Banach spaces involving nonlocal conditions and impulsive ef-
fects, in which the existence of attracting solutions was established by employing the
contraction mapping principle. Wang et al. [24] studied the controllability of Sobolev-
type fractional evolution systems, and Le et al. [18] established the global attracting
solutions to impulsive fractional differential inclusions of Sobolev-type involving the
Caputo derivative. Associated with (1), we recall that in [26], the authors study nonlocal
problems for impulsive fractional differential inclusions of Caputo-type, and existence
and compactness results of PC-mild solutions are established.

To the best of our knowledge, no work has reported on attracting solutions to the Hilfer
fractional noninstantaneous impulsive differential inclusion with nonlocal conditions and
on an unbounded interval. We now consider the results in [18,26] and the differences with
this paper: (i) The impulse effect in our paper is noninstantaneous (while in [18,26] it is
instantaneous). (ii) In [18, 26], the authors considered the Caputo fractional derivative,
while in our paper we consider the Hilfer fractional derivative, which includes the Caputo
and Riemann-Liouville fractional derivative. Note if we put 5 = 0 in the formula of
the Hilfer fractional derivative, we obtain the Caputo fractional derivative, and if we put
3 =1 in the formula of the Hilfer fractional derivative, we obtain the Riemann—Liouville
fractional. (iii) The problem considered in [26] is not of Sobolev type. Moreover, the fixed
point theory for multifunctions is different from the theory we use (and so the arguments
are different). Note for Hilfer fractional evolution equations, the initial value includes
singular kernels (so more complex than the Riemann—Liouville case since the initial
condition does not include singular kernels), and we introduce new weighted piecewise
continuous functions space to deal with such problems. In [18,26], the lower limit of the
Caputo-type fractional derivative is fixed and keeps it at the initial value. However, in our
paper, the lower limit of the Hilfer-type fractional derivative is varying and changes at
impulsive points. In fact, (1) can be used to characterize some possible control problems,
where the impulsive equations can be considered as impulsive control conditions.

The paper is organized as follows. In Section 2, we collect some background material
about multifunctions and fractional calculus to be used later. We introduce a measure of
noncompactness on the space of piecewise weighted continuous functions. In Section 3,
we establish an existence result for (1) on a compact interval. In Section 4, we introduce
a regular measure of noncompactness on the space of piecewise weighted continuous
functions defined on [0, 00), and then we prove the existence of solutions for (1). At the
end of Section 4, an example is provided to illustrate our results.

2 Preliminaries and notation
Let P,(FE) = {Z C E: Z is nonempty and bounded}, P, (F) = {Z C E: Z is non-

empty, convex and closed}, P (F) = {Z C E: is nonempty, convex and compact},
co(Z) (respectively, ¢o(Z)) be the convex hull (respectively, convex closed hull in E)
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of a subset B, and C({2, E) be the Banach space of all F valued continuous functions
from §2 to E' with the norm ||z, z) = supseq, [|2(t)]|. Fora € [0,b) and 0 < v < 1,
consider the weighted space of continuous functions C.,([a,b], E) = {z € C((a,b], E):
(t —a)'z(t) € C([a,b], E)}. Obviously C,([a,b], E) is a Banach spaces with the norm
[2llc, (a.01.2) = SUPsefa,p (t — @) [l2(2)]].

Definition 1. Let F be a Banach space and (A, >) a partially ordered set. A function

XE : Po(E) — Ais called a measure of noncompactness (MNC) in E if xg(¢of2) =
xE(£2) for every (2 € Py(E), where Py, (E) is the family of bounded subsets of X.

The well-known Hausdorff measure of noncompactness defined by xg(2) =
inf{e > 0: {2 has a finite e-net} is monotone, semiadditive, subadditive, nonsingular
and regular.

Definition 2. Let F and Y be two Banach spaces. A multifunction G : E — 2Y — {¢}
is said to be y-condensing, where Y is a measure of noncompactness defined on bounded
subset of E if for every bounded subset D of E that is not relatively compact, x g (F'(D)) <

xe(D).
We need the following lemmas:

Lemma 1. (See [22].) Let C C L*([a,b], E) be a countable set such that there is h €
LY([0,0], E) with f(t) < h(t) for a.e. t € [a,b] and every f € C. Then the function
t — x{f(t): f € C} belongs to L'([a,b], E) and satisfies XE{f: f(s)ds: f € C} <
b

2 [ xe{f(s): feC}ds.

Lemma 2. (See [9].) Let Xc((a,p),E) De the Hausdorff measure of noncompactness on
C(la,b], E). If W C C([a,b], E) is bounded, then, for every t € [a,b], xg(W(t)) <
Xc([ap],E) (W), where W (t) = {x(t): © € W}. Furthermore, if W is equicontinuous on
[a, b], then the map t — xp{x(t): x € W} is continuous on [a,b] and X ¢([a.5),5)(W) =
Sbepuy XAo(t): @ € W),

Lemma 3. (See [13, Cor. 3.3.1].) If W is a convex closed subset of a Banach space X
and R: W — Py (X) is a closed ~y-condensing multifunction, where ~y is a monotone

nonsingular measure of noncompactness defined on bounded subsets of X. Then the set
of fixed points for R is nonempty.

3 Existence of solutions for (1) on compact intervals

[Existence of solutions for (1) on compact intervals] In this section, we consider (1) on
a compact interval J = [0,¢,,4+1] and set b = t,,+1. That is, we are interested in the
problem

D Ba(t) € Az(t)+ F(t,z(t), ae.te (sitip], i=0,1,...,m,
I "w(0) = g(2), I7a(sh) =gi(siva(ty)), i=1...,m,

7
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where 0 = sp < t1 < 51 <t2 < -+ <y < Sy < b1 = b, Jp = (Skatk+1]
T =[si,thr1) k=0,1,....m, T, = (t;,s;] and T; = [t;, 8:],5 = 1,2,.

Consider PC1_(J, E) = {x: (t — sx)' 77z € C(Jx, E), lim, -+ (t — sk)l Ta(t),
k=0,1,...,m, € C(T;, E), lim,_,,+ x(t) exist, i=1,...,m} with ||x\|pcl_7(.],E) =
max{maxg—o,1,....m SUP;c s, (t — sk)1i7||x(t)\|E, max;—12, . z(t)|| e}

Remark 1. Similar to [27, Remark 1], if z € PC_,(J, E), then, forany k = 0,1,...,m,

) )

(i) @ is not necessarily defined at s, but lim; 4, 4 (t — sz)2(t) and x(s; ;) exist.

(i) 2(tkt1) = 2(ty,,) and z(t k+1) exists. Moreover, (tg41 — sx)' 7z (t, )] <
||xHP01_7(J,E)

(iii) If z, — z in PC1_(J, E), then x,,(t) — z(t), t € (t;,s;],i = 1,...,m, and
(t — si) 7w (t) — (t — sp) 7 Va(t), t € (sk,tri1]. Consequently, z,(t) —
l‘(t),t S (Si)ti+1]’ and hence xn(ti+1) = xn(t;rl) — x(ti-i-l) = ‘r(thLl)
i=0,1,...,m. It follows that ,,(¢) — x(t) a.e. fort € J.

Next, xpc,_. (,E) * Pb(PCl ,Y(J E)) [0, oo) deﬁned by XPC, - W(JE)(Z) =

singular, semiadditive and regular measure of noncompactness on PCl +(J,E), where
Xc(7,.p)(4,7,) s the Hausdorff measure of noncompactness on C(Jk, E), Z7, =
{y" € C(Jr, E): y* () = (t = s1)' Ty(t), t € Ji, y* (sp) = lim,_, o+ (t— se)' T y(b),
yeZhand Z 7 = {y" € C(Ti, E): y(t) = y(t), t € Ty, (1) = y(t]), y € Z}.

In the proof of the results in this paper, we do not need xpc,_ . (s,r) to be semi-
additive. In fact, we need only monotone and nonsingular to apply Lemma 2, and regular
to conclude that R(x) is relatively compact in our results (see the third last line in the
proof of Theorem 1).

Lemma 4. The measure of noncompactness X pc,_. (J,g) is monotone, nonsingular, and
regular.

Proof. (i) Let Z and W be two bounded subsets in PC7_.(J, E) such that Z C W
and k € {0,1,...,m} be fixed. From the definition of the Hausdorff measure of non-
compactness on C(J, E) (see [13]) and Z‘J C le s We get X7, E)(Z|Jk) <
Xc (T W 7,)- Similacly, x o7, ) (Z 7,) < Xo, m (W z,), forany i = 1,....m,
and hence xpc, . (1,£)(Z) < xpc,_, (5,2)(W). Thus xpc, (k) is monotone.
(ii) Let Z be a bounded subset in PC_(J, E) and w € PC_,(J, E). Notice that
Z 7, W{w 7} = (ZU{w}) 7. Since x¢ (7, p) is the Hausdorff measure of noncom-
pactness on C'(Jy, E), we have that chlfw(J,E)(Z‘ 7. U {w|7k }) = xpc,_, e (ZU
{w})‘Jk chlﬂ(JyE)(Z)‘jk forany k = 0,1, ..., m. Similarly, chlﬂ(J)E)(Z‘Tf,c U
Jk = Xpc,_ w(]E)(Z)|T7’ for any i = 1,...,m, and hence xpc,__ (7,5 (Z U
i < XPCy_ (7, g)(Z). Thus XPC;_ ., (J,E) is nonsingular.
(111) In order to show that xpc, _ (s,E) is regular, let xpc, . (s,5)(Z) = 0. Then
xc(Jk = Oforany k = 0,1,...,m, and xo 7, p)(Z7,) = 0 for any i =
From the fact that XC(Th.E) and Xc(T,,E) are the i—Iausdorff measure of
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noncompactness on C(Jy, E) and C(T;, E), respectively, we conclude that Z 7, and
Zli are relatively compact for any k¥ = 0,1,...,m and any ¢ = 1,...,m. Now let
(2n) be a sequence in Z, k € {0,1,...,m} and i € {1,...,m}. We define 2}, , (t) =
(t = s1)' " Vzn(t), t € Ji, 25 (s8) = lim,_, + (t — si)t™ 'Vzn( ) and z7; ;(t) = 2 (1),
t € Ty, 25, ,(ti) = zn(t;). It follows from the relative compactness of Z 7. and Z T, that
there are two subsequences of (2}, ;) and (z, ;), denoted again by (2}, ; and (2,.;) such
that z;, ,, — zj, in C(Jk, E) and z}; ; — z; in C(T, E). Next, we define z* : .J S Eas
follows: z ) =2{t),t € Jp, k=0,1,...,mand 2*(t) = zf(t), t € J;,i=1,...,m
From the definition of the norm in PC;_.(J, E) we have that (z,) has a subsequence
that converging to z* in PC1_~(J, E).

Now assume that Z is relatively compact. If we show that Z 7 and Z 7 are relatively
compact forany £ = 0,1,...,mand any i = 1,...,m, then from the fact that XC(Tv . E)
and X o7, ) are the Hausdorff measure of noncompactness on C(Jy, E) and C(T}, E)
it follows that XPCy_ 7(]E)(Z) = 0. Now, let z; € Z‘J for some k = 0,1,...,m. Then
zi(t) = (t — sp)  V2n(t), t € Ji, 25 (sk) = lim, _, + (t — sk) ™72, (t), 2, € Z. From
the relative compactness of Z, without loss generahty, we can assume that z,, — z in Z.
From the definition of the norm in PC'_(J, E) we get lim,, o sup;c s, (t — sz)' ™7 X
lzn(t) — ()] = 0.

Let2* : J — Ebesuchthat 2* () = (t—s) 7 72(t), t € Ji, 2*(s1) = lim, , o+ (t—
k)77 2(t). Then limy, o supyc s, |25 (t) — 2*(8)|| = limy, o0 sUpyer, (£ — sk)l 7 X
lzn(t) — z(t)|| = 0. Next, lim,, 00 2 (s5) = llmn_)oohmtﬁsk +(t = sp) T 20(t) =
2*(s). Thus there is a subsequence in (2%) that converges to z* in C(J}, E). This show
that Z T is relatively compact. Similarly, we can show that Z T and Z T, are relatively
compact, fork =0,1,...,mandi=1,...,m. O

Definition 3. (See [10, Def. 2.13].) Let f: [0,b] x E — FE be a function, A, B be
linear operators on a Banach space E such that D(B) C D(A) = E, B is bijective,
has a bounded inverse B~! and AB~ 1s the infinitesimal generator of a Cy-semigroup
{T( ): t > 0}. By a mild solution of Dy Pr(t) = AB~Ya(t)+ f(t,2(t)). t € (0,b], with
I "z(0T) = xy. We mean a function : x € C((0,b], E) satisfying z(t) = Sa,5(t)zo +
fo alt = 8)f(s,2(s))ds,t € (0,b], where Ko(t) = t*71Pu(t), Pa(t) = [;° af x
PTG Mu(8) = S5, (—0)1/((n = VT(1 — m)), '€ (0,1),

6 € C,and S, g(t) = I(?J(rl*a)Ka(t). Note that the weight function M, () satisfies the
equality [~ 67 M, () d6 =T'(1+7)/T(1 4 7p) for 6 > 0.

Remark 2. (See [10, Remark 2.14].) Dﬁ (179G, 5(t) = Ka(t), t € (0,b]. When
B = 0, the fractional equation (2) reduces to the classical Riemann-Liouville frac-
tional equation, which was studied by Zhou and Jiao [30]. Note S, o(t) = K,(t) =
te-1p, (t). When 8 = 1, the fractional equation (2) reduces to the classical Caputo

fractional equation which was studied by Zhou et al. [31]. Note S, 1 = S,(t), where
= [, Mo (0)T(t*0) d6.

In the followmg, we present some properties for the operators S, 5(-) and K, (-) [10,
Props. 2.15, 2.16].
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Lemma 5. Suppose {T'(t),t > 0} is continuous for the uniform operator topology for
t > 0, and there is a M > 1 such that sup,; ||T(t)|| < M. Then we have the following
results:

(i) P,(t) is continuous for the uniform operator topology for t > 0.
(i) For any fixedt > 0, S, p(t) and K,(t) are linear bounded operators, and for
any fixed x € E,

-1
|S05(0)2]) < S llall. v =a+8-as, ®
and
M
1220 < 55y ©)

(iii) {Ka(t): t > 0} and {Sq.p(t): t > 0} are strongly continuous, which means that
forany x € Eand 0 < t; < ta < b, we have | K, (t1)x — Ko (t2)z| — 0 and
||Sa”3(t1)l‘ — Sa”@(tg)l‘H — 0asty — to.

To prove the existence of mild solutions, we need to the following conditions:
(F) F:J x E — Py(F) is a multifunction satisfying:

1. Forevery « € F, the multifunction ¢ — F'(¢, ) has a strong measurable selection,
and for almost every t € J, z — F(t, z) is upper semicontinuous.

2. There exist a function p € LP(.J, R+), p > 1/a, and a continuous nondecreasing
function £2 : [0,00) — (0,00) such that for any x € PCy_(J,E) and any i =
0,1,....m, [ F(t,a(®)l] < o(t) 2((t — )1 lx(D)]]) for t € (sistia].

3. There exists a function ¢ € LP(J,R™") such that for any bounded subset D C F
andany k = 0,1,...,m, xg(F(t,D)) < (t — sx)' c(t)xr(D) for ae. t € Ji, where
X is the Hausdorff measure of noncompactness on F.

(H1) The operator B is bijective, has a bounded inverse B~1, and AB~! is the
infinitesimal generator of a Cy-semigroup {7'(¢): ¢ > 0}, which is continuous
for the uniform operator topology for ¢ > 0, and there is a M > 1 such that
sup,o [|T(1)]] < M.

(Hy) The function g : PC1_~(J, E) — D(B) obeys to the following conditions:

1. Bg : PCi_(J,E) — E is continuous, and there is a nondecreasing function
¥ :[0,00) — [0, 00) such that | Bg(z)|| < ¥(||z||pc,_. (s,5)) and

lim inf ()
n— 00 n

=w < o0. o)
2. There is £1 > 0 such that for any bounded subset D of PC_,(J, E),

xe(Bg(D)) < kixpe, . (1,)(D). ©)

Nonlinear Anal. Model. Control, 24(5):775-803
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(H) The function g; : [t;,s;] x E — D(B),i=1,2,...,m,is uniformly continuous
on bounded sets and satisfies:

1. There exists a positive constant h; such that for any z € E ||Bg;(t,z))| <
hi(ti — 81_1)177“58”, t e [ti,si], xr € F.
2. There is a ko > 0 such that for any bounded subset D of PCy_,(J, E)

x5 (Bgi(t, {h(t:): h € D})) < woxpe, (5 (D), t€ [ti,si]. )
Let h € L*(J, X). Consider the impulsive problem
D Ba(t) = Ax(t) + h(t), ae.t€ (si, tiga], i =0,1,...,m,
(t*) =gi(ti,z(t])), x(t) =gi(t,x(t;)), te(tis],i=1...,m, (8
Ié; z(0) = g(z), ijvx(sj) = gi(si,x(t;)), i=1,...,m.

In order to formulate the solution function of (8), let v(-) = Bux(-), i.e., z(-) =
B~v(-). Then (8) can be rewritten as

Djfv(t) = AB o(t) + h(t), ae.te (si,tis1], i=0,1,...,m,
v(t]) = Bgi(t: B~ 0(t;)), w(t) = Bgi(t, B "u(t;)),
te (ti,Si], 1=1,...,m,
Ié;vv(O) = Bg(B~'v(0)), IlJr Yu(sf) = Bgi(si, B~ (t;)), i=1,...,m.

7

€))

From Definition 3, the mild solution of (9) is a function v € PC,_([0, b], X) such that

Sa,6(t)(Bg(B~'0)) + riay [ K. Yh(s)ds, te€[0,t],
Bgi(t,B~'v(t])), te tl,sl] 1=1,...,m,
Se.5(t — s:)Bgi(si, B~ (t])) +f Ko (t —s)h(s),

t e (siytiv1),i=1,...,m.

o(t) = (10)

By substituting in (10) v = Bz, we get

Sa.5(t)(Bg(x (1 5 fo s)h(s)ds, € (0,ty],
Ba(t) = Bgi(t x(t; ))7 € (ti, 84, z—l,...,m,
Sa,p(t — Sz)Bgz(t o(t;) + [ Kalt = s)h(s),
te (si7ti+l]; = 1,...,m
Then

“USas(t)(Bg(2) + 155 Jo Kalt — s)h(s)ds], t€[0,t1],

o(t) = (t,x(t;)), t e (t,s], 1 €N,

| BV Sas(t — si)Bgi(si, a(t7)) + [1 Ka(t — s)h(s) ds],

te€ (sitiy1],i=1,...,m

http://www.journals.vu.lt/nonlinear-analysis
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Based on the above discussion, we give the concept of mild solutions of (2).

Definition 4. A function x € PC;_.(J, E) is called a mild solution of problem (2) if
thereis f € LP(J, E) such that f(t) € F(t,z(t)) forae.t € J and

B! [Sas(t)(Bg(@)) + w5 Jy Kalt —)f(s)ds], te[0,t],
gi(t,x(t)), t € (tiysi], i=1,...,m,
B[S p(t — 5i)Bgi(si,x(t7) + [ Kalt — 5)f(s) ds],

te (Si,ti+1], 1=1,....m

(t) =

Now we prove the following lemma.

Lemma 6. Let F' : J x E — Py (F) be a multifunction satisfying conditions (F),
and (F)a. Then, for every x € PCy_~(J, E), there is a f € LP(J, E) such that f(t) €
F(t,x(t)) fora.e t € J.

Proof. Let x € PCyi_(J,E). Then one can find a sequence of step functions (v,,)
that converges uniformly to z. Hence, see (F); for any n > 1, there a strongly measurable
function h,, satisfying h,(t) € F(t,v,(t)) fora.e. t € J. Moreover, since (v,,) converges
uniformly to x, the set {v,(t): n > 1}, t € J, is compact. It follows from the upper
semicontinuity of F'(t, -) that the set C'(¢t) = U{F (¢, v,(t)): n > 1} is relatively compact
for a.e. t € J. Note that h,(t) € C(t) for a.e. t € J. Furthermore, from (F)y the
sequence (h,) is integrably bounded by an LP(J, R*)-integrable function. Therefore,
(hyp) is weakly compact in LP(J, E). Let h,, — f. From Mazur’s lemma, for every
natural number j, there is a natural number ko( j) > j and a sequence of nonnegative real
numbers \; i, k = ko( i), ..., such that Zk ;& = 1 and the sequence of convex
combinations z; = Zk_J j.khe, j = 1, converges strongly to fin LP(J, E) as j — oo,
and then z;(t) — f(t) for a.e. t € J up to a subsequence. Since F' has compact values,
the upper semicontinuity of F'(¢, ) for a.e. ¢ € J implies F'(t,v,(t)) C F(t,z(t)) + B.
for a.e. t € J and for large n, here € > 0 is given, and B, = {y € E: |ly|| < €}. Thus,
hn(t) € F(t,z(t)) + B for a.e. t € J and for large n. From the convexity of the values
of F, z,(t) € F(t,xz(t)) + B, for a.e. t € J and for large n. Then f(t) € F(¢,x(t)) for
ae. teJ. O

Theorem 1. Let F : J x E — Py (FE) be a multifunction, A, B : E — E the linear
closed operators, g; : [t;,s;] x E — E, i =1,2,...,m, and p be a real number such
that p > 1/o. If conditions (F), (Hy), (Hy) and (H) are satisfied, then problem (2) admits
a solution on J, provided that

19
lim ing 12000

= v < 00, (11)
n—00 n
Mw Mnuob'—7 hM
B! » h+—1] <1 12
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and
(sa + m2)[B] B a5
L'(v) [(a)

where h = ¥'= U hiandn =b*"YP((p —1)/(pa — 1))P=D/P,
]

lsllersy + 62| BT <1, (13)

Proof. From Lemma 6 we can define a multifunction R : PCy_,(J, E) — 2PC1-2(J.E)
as follows: let z € PC1_.(J, E) and a function y € R(x) if and only if

B~[Sa,5(t)(Byg a7 Jo K )f(s)ds], t € (0,t],
y(t) = gi(t,z(t;)), te(tz,sz] 2—1,..., m,
B7V[Sa5(t = 8:)Bgi(si, x(t;) + [1 Ka(t — 5)f(s)ds],
te (sitip1],i=1,...,m,
wherefESF( () = ={f e LP(J,E): f(t) € F(t,x(t)), ae. t € J}.

We prove, using Lemma 3, that R has a fixed point. The proof will be given in several
steps. First, note that the values of R are convex.

Step 1. In this step, we claim that there is a natural number n such that R(B,,) C
By, where B,, = {v € PCy_(J,E): ||z|lpc,_ (s,5) < n}. Suppose the contrary.
Then, for any natural number n, there are z,,y, € PCi_(J,E) with y,, € R(zy),
lznllpo,_ 1,y < nand ||[ynllpc,_, 7,y > n. Then, for any n € N, there is a f,, €

P
SF(,@”(.)) such that

_ t
BV [Sa,5(t)(By(wn)) + miay Jo Kalt —s)fals)ds], te€ (0,41],
gl(t {En(ti)), t e (ti,Si] 1= 1 m,

Yn(t) = _ (14)
B [Saﬁ(t_sz)BgZ(shxn +f Kot — ) fn(s) ds],
te (sitiy1],i=1,...,m
It follows from (3), (4), (14), (Hg)1, (F)2 and Holder’s inequality that
sup 177y (1)]]
te[0,t1]
<|[B7H| sup #177[|Sa,5(t) (Bg(za)) |
t€[0,t1]
EROa
_ -
+osup IZ T [ )7 o025 (s
e P (+eato)) s
MIB| |B-apt
STy (n) TQ(”"TH”PCH_W(J,E))||‘P||LP(J,R+)77
M|B 1B Mbi
{———V — . 15
() (n) + T(a) (Mlellzrrr+yn (15)
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Leti € {1,2,...,m}. From (14), (H); and Remark 1(ii) (buvo (19)) we have

sup[yn (t)]]
te(ts,sq)
= sup |lgi(t,2n(t))[| <[[B7Y| sup |[B7Bgi(t,za(ty))|
te[tisi] te[ti75i]
< A|[BTH|(t = si0)" 7 |Jen ()]
< B lalcr o < -1 in a6

Also, from (14), (H)1, (Hg)1, (F)2 and Holder inequality, for t € (s;,t;41], we get

sup (t— Si)l_’YHyn(t)H

t€[si,tit1]
| B=YM | Bgi(s;, 2, (t7))|| | ||B~|Mb1
g Sup - + “Q n)ie P +\yN
t€[si,tit1] L'(v) I'(a) (n)[lellz (JR+)
B~ Y \Mhn ||B~Y||Mbl—Y
< 15 2l (14 yn- (17)

L'(y) I'(a)
From (15), (16) and (17) it follows that

n < |lynlpc,_, (1.6

MIB B M
< 7? 7\(2 P
_ |B~Y||Mhn
+||B7 | hn + V——
571+ LE12

By dividing both sides by n, taking into account (11) and passing to the limit as n — oo,
we obtain
Mw  Mnub'~? hM

1< ||Bil|| F(’y) + F(a) HSOHLP(J)R+) +h+ W y

which contradicts (12).

Thus we deduce that there is a natural number ng such that R(B,,,) C B,,-

Step 2. Let K = {z € PCi_(J,E): z € R(By,)}. We claim that the subsets
Kljkjk =0,1,...,m) and K7, (¢ = 1,2,...,m) are equicontinuous, where K|jk =
{z: T = E,z(t) = (t —sp)' 7 y(t), t € J, 2(sx) = limyq, (t — 52)' 772(0), y €
R(x), © € By}, and K 7 = {y* € C(T, E): y*(t) = y(t), t € (i, 5], y* (i) =
y(t]), y € R(x), © € By, }.

Case I. Let z € K 7. Thenthereisax € By, anda f € Sfﬂ(.’x(‘)) such that
for t € (0,t1], 2(t) = t'7[B~'Sa5(t)(By(x)) + B~ [} Kot — 5)f(s)ds] and
2(0) = limy_oyq t*7y(t). It follows for t = 0, & € (0,¢;] that lims_q+ 2(5) =
limgs_, 04 0177y () = limy_,o4 t1 7 Vy(t) = 2(0).
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Let t, t + ¢ be two points in (0,¢;]. Then
|2(t +6) — 2(¢)||

< ||B*1 || || (t+ 6)1*750(,5@ +0) (Bg(:v)) - tI*VSaﬁ(t) (Bg(:v)) H
t+68

¢
+|1B7H (t—l—&)l_“’/Ka(t—i—é—s)f(s)ds—tl_W/Ka(t—s)f(s)ds
s 0 0
< an
i=1
where

I = HB_lH(t + 5)1_7HSQ73(t + 6)(Bg(x)) — Sa,g(t)(Bg(J;)H

Iy = ({64 8)' 7 — £ [Su s (6] o),
t+06
I = ||B| (t+51‘7/K (t+6 — 5)f(s)ds

)

)

I :=||B7Y| [(t4+6)" VKo (t+6—5)f(s) —t' 77 (t—s)* ' Pa(t+5—5)f(s)] ds

)

0
t
L= ||| /tl Ut — ) Pat +6— 5) — VKt — )] £(5) ds|.
0

In view of Lemma 5, it follows that

lim Iy = lim (£ + 0)"7|[Sa 5(t + 0) (Bg(w)) = Sa,5(t) (Bg(2)) | =0,
and
lim I = lim (¢ +0)' ™7 — ¢'77[[| Sa. (1) [ # (n0)
M1
I'(7)
For I3, from (4), Lemma 5 and (F), we get

¥ (no) limy [(t+8)'7 =t =0.

t+6

lim I3 = ||B7"|| lim [|(¢ + 6)' 7 / Ko(t+6—35)f(s)ds
5—0 5—0
t

t+6
B~Y|M 2
w (%I_I%(t —+ 5)17’7 /(t 46— 8)(171()0(3) ds = 0.

t

X
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Similarly,

t

/ [(t+6)" T Ka(t+6—s)f(s)
0
— 't = 8)* ' Pa(t+ 6 — 5)f(s)] ds

lim I, < [|B~1]| limy

S EEY / [t 4+ 8)' 1 (t 46 — 8)° Pt + 6 — ) (s)
0

— !t = 8)* ' Pa(t+ 6 — s)f(s)] ds

_ 1B M 2(n0)

= T(a) }ii%/|(t+5)1ﬂ(t+5_3)a_l—tl_'y(t—S)a_llgo(s) ds.

Since ¢ € LP(J,RT), fot[(t + OVt + 5 —s) =t (t — 5)* () ds exists,
and from the Lebesgue dominated convergence theorem we see that lims_,g 4 = 0.
For I5, note

lim I5 = HB 1H lim

6—0 §—0 tl—’Y[(t_ s)a_lpa(t_|_5_ 8) _Ka(t_ S)]f(s) ds ‘

6—0

= ||B7!{| lim /tl_W(t—s)a_l[Pa(t+5—s) — Po(t —s)| f(s)ds||.
0

To find this limit, let € > 0 be enough small. We have

lim I5 < [| B[ 2(no)t'

t—e
x lim [ (t—s)*"o(s) sup ||Pa(t+6—s) — Pa(t—s)| ds
60 s€(0, t—]
0
¢
|B~H[2M 2(no) . /177 a-1
+ o) %l—% (= 8) T p(s)ds
0

(t—e)'(t —e—5)*"Lo(s) ds]

O\T
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t—e

—1 n
wjf)mo)?i% [/(te)”(tesflso(s)ds
0

t—e
(= 5)*Lp(s) ds] .

0

From Lemma 5, lims—o Sup,ejg—e [|[Pa(t + 6 — 8) — Pa(t — s)|| = 0, and since ¢ €

LP(J,R"), then from the Lebesgue dominated convergence theorem we see that I5 — 0
asd — Oande — 0.

Case 2. lety € K, i € {1,2,...,m} be fixed. Then y(t) = g:(t,z(t;)),
r € By,. Since |z|pc,_. (J, E) < no, it follows from the uniform continuity of g;
on bounded sets that for ¢, ¢ + § € (t;, s;], lims—o ||y(t + 6) — y(¥)|| = lims—o || g: (¢t +
8, z(t;)) — gi(t,z(t; )|l = O, independent of z.

When t = t;, let5 > 0and A\ > 0 be such that t; < A < t; + § < s;, and we have
ly™(t: +0) =y ()l = limy .+ ly(t: + ) —y(N)| = 0.

Case 3. Letz € K j,, k € {1,2,...,m} be fixed. Then there is a x € By, and
afe Sf,(, 2()) Such that for t € (Sky tht1)s

2(t) = (t —s)* "B~} Sag(t—sk)ng Sk, T /K t—s)fn(s)d ]

If ¢t = s, and 6 > 0, then

lim z(sx +6) = hm (sp 4+ 6 — sp) Yy(sk + )
50+ —0+

= tll£1,3+(t — )y (t) = 2(sp)-
Next, lett, t + 6 € (s;,t;41],9 > 0. Then we have
|2(t + 8) — z()||
= ||B7H|||(t+ 6 — s&)' "B Sa 5(t + 6 — sk)Bgk (sk, x(ty,)

— (t— 1) "7 Sa,5(t — k) Bgr (sk, 2(ty)) ||

(t+0— Sk)l_"’/Ka(t +d—5)fn(s)ds

Sk

+[1B7]

t+5

_(t_sk)l_’y/Ka(t_s)fn(s)ds

By arguing as in Case 1, we conclude that lims_,q ||2(t + ¢) — z(¢)|| = 0.
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Step 3. The graph of the multivalued function R g, :Bn, — 2Bn0 is closed. Con-
sider a sequence {x,},>1 in By, with z,, — =z in B,, and let y, € R(x,) with
Yn — y in PCi_(J, E). We need to show that y € R(z). Recalling the definition
of R, for any n > 1, there is a f,, € SF( 2n()) such that (14) holds. In view of (F)s,
£ (D)) < @(t)92(ng) for every n > 1 and for a.e. t € J. Then {f,: n > 1} is bounded
in LP(J, E). Because p > 1, LP(J, E) is reflexive, without loss of generality, we can
assume that (f,,) converges weakly to a function f € LP(J, E). From Mazur’s lemma,
for every natural number j, there are a natural number ko(j) > J and a sequence of
nonnegative real numbers \;x, k = ko(J ) ...,], such that Zk Ajr = 1 and the
sequence of convex combinations z; = Z kej Nikfw. 7 21, converges strongly to f in
LY (J,E)asj — oo.

Take 7, (t) = Yk A ki (t). Then

B[S p(t)(Bg(zn)) + [ K. zn(s)ds],  te(0,t],
gi(t Tn(t;))s t € (tz,sl] i= 1 m,
B™1Sa 5(t — 5i) Bgi(si, xa(t;)) +B lf Ko(t — s)zn(s)ds,
te€ (siytiv1], i=1,...,m

U,(t) =

From the continuity of Bg and the uniform continuity of g; on bounded sets it follows
from the Lebesgue dominated convergence theorem that 7,,(¢) — v(t), where

B~ [Sa5(t)(Bg(2)) + [, K. )f(s)ds], € (0,t],
ot) = gi(t x(t; )), t € (ti,sz] 1= 1 m,
B™1Sa,5(t — 5i) Bgi(si, x(t; ))+B L Ka(t—s)f(s)ds,
te (Si,ti+1], 1=1,....m
Since y,, — y, then y = v. Almost everywhere F'(t,-) is upper semicontinuous

with closed convex values, so from [2, Chap. 1, Sect. 4, Thm. 1] it follows that f(¢) €
F(t,x(t)) fora.e. t € J, and hence R is closed.

Step 4. R is xpc,_ . (s,p)-condensing. Suppose that D is a bounded subset of
PCy_(J,E)and Z = R(D).Let k = 0. Since Z 7, is equicontinuous, then by Lemma 2

we get X o7, (2, 7,) = max, g, xe{y*(t): y € Z}.
Lett € (0,¢1]. Then, from Lemma 1 we get

xel{y* (t): ye Z}
- XE{tlfvy(t): Y€ Z}
< xe{t'""B7'S,5(t)(By(x)): x € D}

¢
—I—XE{tl’yBl/Ka(t—s)f( )ds: f € SF( (- )),J;ED}
0
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Hf 1HXE{( o) 2 D)

t

/t—s "xe{f(s)ds: f €Sy .z €Dyds.  (18)
0

IIB 1|

From (F)3, for a.e. s € Jj, we have
XE{f( fESF( m()),l‘ED}
gx{F(s T )) xED} slfVXE{zs ): xED}
= g XE{S 73;‘( )Z S D} chl w(JE)( ) (19)
It follows from (6), (18) and (19) that

xe{y (t): ye Z}

t
k1| B! B! Mbl—7
< xvoram(D) | FIBL o] || / ds]

()

0

k1|| Bt B~ Ml
<XPC1_7(J,E)(D)|: 11“|(7) ! +2H rl(a) "7||§||LP(J,]R+):|- (20)

If t = 0, then
Xe{y"(0): y € Z}
= XE{ lim t'y(t): y € Z} = HB_IHXE{(Bg(x)): €D}
t—0+
< w1 || B |xper, (1,5) (D).
Now, leti € {1,...,m} and ¢ € (t;, s;]. From (7) we have
xe{gi(t,z(t])): = € D}
=xp{B 'Bgi(t,x(t;)): x € D} < ||B7"||xe{Bg(t.z(t;)): v € D}
< k|| B7Y|xper_. (1.5 (D). (21
Arguing as above, if i € {1,...,m} and t € (s;,t;41], then
XE{y*(t): Yy € Z}

=xe{(t- ) T y(t): y € Z}
<xe{(t—5)"""B 'S, 5(t — si)Bgi(si,z(t;)): € D}

t
+ XE{(t — )t B1 /Ka(t —s)f(s)ds: f € S;}(.,m(.)), T € D}
0

B~ | B~ | M
T(7) KeXpc,_,(1,5)(D) + 2TUHCHLP(J,R+)~ (22)
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It follows from (18)—(21) and (22) that

XPCi_~(J,E) (R(D))

L) B-Y 20l e BY|| Mb— B
< xpoy_, (5,5) (D) = ;2()7|) ” * e (J’th)(!l) ” + o BTH||-

This inequality with (13) establishes that R is X pc, _. (7,r)-condensing. Note that since
R is xpc,_. (5,p)-condensing, then xpc,__(sp)(R(z)) < Xpe,_. (s,5){7} = 0, and
hence R(x) is relatively compact. Furthermore, by arguing as in Step 3, one can see that
the values of R is closed. Therefore, the values of R is compact. From Lemma 3 we
conclude that (2) has a mild solution. O]

Theorem 2. Assume that the hypotheses of Theorem 1 with (F)y replaced by the following
condition: (F)4 for any natural number n there is a function o, € LP(J,R") such that
SUp|g<n |1 F' (& 2)|| < @n(t) for ae. t € J and liminf, . [|@nllLe(sr+)/n = 0. Then
problem (2) has a mild solution, provided (13) and

Muw hM
B MY |=—+h+—| <1 23
15~ NORMAIOI @9

Proof. We only have to prove that there is a natural number n such that R(B,,) C B,,
where B,, = {z € PC1_(J, E): ||z|lpc,_,(s,zy < n}. Suppose the contrary. Then,
for any natural n, there are z,, y, € PC1_+(J, E) with y,, € R(zn,), [|znllpe,_ (7,m) <1
and [|ynllpc,_. (s,z) > 1. Then there is a f,, € Sg(-,rn(-))’ n > 1, such that (14) holds.
Let t € [0,t1]. As in Step 1, it follows from (3), (4), (14), (Hy)1, (F)s and Holder’s
inequality that

sup 177 [yn ()| < [|B7H| sup 77| Sa 5(t) (By(an)) ||
te[0,tq] te[0,t1]
t
||BllMt1”/ a—1
+ _— t— n(s)d
t:[lolgl] T'(a) O( $)* pn(s)ds
M| B~ | B~ Mb
X F(’Y) (n) + F(O{) HQOTL”LT’(JJR‘*')/O'

Leti € {1,2,...,m} and, as in (16), we get sup,c(, 51 [lyn(t)[| < [[B~"[|2n.
Also, by (14), (H)l, (Hg)1, (F)2 and Holder inequality, we get for t € (s;, tiv1)

sup (t— Sz‘)l_’y"yn(t)H

t€[si,tit1]
|B~H|M||Bgi(si, zn(t; Il | [IB~HMb
< sup : + lonllLertyn
te[si,ti+1] ]‘—‘(’7) F(a) ' p( )

< 1B |[Mhn N IIB*IIJWbl*”|| ”
< () () PnllLe(JRH)T)-
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It follows that n < |[ynllpc, (sm) < (M|BH|/T(y))¥(n) + (|| B~ Mb =7/
C(a)lenllLe(sr+yn+ 1B~ |hn+ || B~1||Mhn/T(v). By dividing both sides by n and
passing to the limit as n — oo, we obtain 1 < || B~[||Mw/T'(y)+h+hM /T(v)], which
contradicts (23). Thus we deduce that there is a natural number ng such that R(B,,) C
By, O

Theorem 3. Assume the hypotheses of Theorem 2 with (Hg) replaced by the condition

(Hy) g : PC1—(J,E) — D(B) is such that Bg is Lipschitz with Lipschitz con-
stant k.

Then problem (2) has a solution, provided that

Mk Mh
1B |5 o Tt ey < b (24)

and (13) with k1 = k are satisfied.

Proof. Since Byg is Lipschitz with constant k, it follows that Bg is continuous and for
any bounded subset D of PCy_,(J, E), xe(Bg(D)) < kxpc,_,(1,£)(D). We only
have to prove that there is a natural number n such that R(B,,) C B,,, where B, =
{z € PC1_(J,E): ||zllpc,_, s,y < n}. Suppose the contrary. Then, for any natural
number n, there are ., y, € PC1_(J, E) with y, € R(2y,), |Znllpc,_ (s,z) < n and
lynllpc,_. 7,8y > n. Then thereis a f, € Sg(‘wn(.)), n > 1, such that (14) holds. We
have

sup 177 [yn (1)

t€[0,t1]

<157 sup 1S a(0)(Boten) |
te[0,t1]
L ==

teS[Lol,Izl] () (t—5)"""pn(s)ds

MIB-1 B~Y|Mb-

15 21 gte) ~ o + 180 + L2

M B—l B 1 Mbl_

< Mgyt 1B9O)) + PG EE loulunszen

Thus, n < |[ynllpc, 1.5 < IB7HIIM/T (7)) (kn + || Bg(0)]]) + (Mb'=7/T'(a)) x
lonllLr(sm+yn + hn+ Mhn/T'(v)]. By dividing both sides by n and passing to the limit
asn — oo, we get 1 < || B7Y||[Mk/T(y) + h+ Mh/T ()], which contradicts (24). [

Remark 3. According to [7, Lemma 3.2], if B —1is compact, then the operator B -1p, (1),
t > 0, is compact, and hence we do not need (F)3 in Theorems 1-3.
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4 Globally attracting solutions

In this section, we establish the existence of globally attracting solutions for (1). Consider
the Banach space PCY__ ([0,00), E) = {z € PCy_,([0,00), E): lim; o x(t) = 0}
with [[2]]oc = max{maxy_oyun supc 5, (t=5k)" |2 (t) || 5. maxien sup, 1, |2(t) £}

Moreover, we define a measure of noncompactness on PCY__([0,00), E) as x*:
Pb(PC?fv([O,oo),E)) = [0,00), X*(Z) = Xoo(Z) + deo(Z), where xoo(Z) =
SUP;en XPCy_ ((0.:],E) 12 (0,40 T € Z} and deo(Z) = limypy .00 SUP ¢ 7 din (),

dpm () = maX{g;agtsellﬁ(t = s1)' 7 [2(®)] 5, max sup ||J?(t)||E}~

We show, in the following proposition, that x* is regular.
Proposition 1. x* is regular on PCY__ ([0, 00), E).

Proof. Let Z be abounded subset of PCY__ ([0, 00), E) satisfying x*(Z) = 0 and € > 0.
Because do.(Z) = 0, there is a natural number m such that

o (z) < Vo € Z. (25)

DO ™

Since X oo (Z) = 0, XPO((0,tymy . BT 0,8, T € Z} = 0.
It follows that {x 1, : ® € Z} is relatively compact, and hence there are u, €
PC([0,tm,], E),r =1,2,..., N, such that

r=N
€
{x‘[07tm0]: x€eZ}C U B<ur, 2>, (26)

r=1

where B(u,,€/2) denotes a ball in PCy_([0,t,,,], E) centered at u, with radius €/2.
Foranyr =1,2,..., N, define

We now show that Z C U=V B (,,¢€), where B, (i,,¢) denotes a ball in
PCY__([0,00), E) centered at @, with radius €/2. Let 2 € Z. From (26) there is a 1o €
{1,2,..., N} such that

™

12,10,tmmg] = Uro lPCy_ ([0, ], B) < 3 (27)
From (25) and (27) we have

||J) - aTo||OO < ||m|[0,tm0] - uTDHPle.\,([O,tmo],E) + dmo (J?) < €,

which completes the proof. O
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Definition 5. A function © € PC}__([0,00), E) is called a globally attracting mild
solution of problem (1) if there is a f € L, ([0, 00), E) such that f(t) € F(t,z(t)) for
a.e. t € [0,00) and

“U[Sa,8(8)(Bg()) + w5y Jo Kalt —5)f(s)ds], t€[0,41]
gz(tmc(t;))7 t € (ti,si], 1 €N,
BV [Sas(t — 5:)Bai(si, (7)) + 1, Ka(t — 5)f(s) ds],
te (sitip1],i €N,

x(t) =

and lim;_, - x(t) = 0.
Consider the following assumptions:

(F*) F:[0,00) x E — Py (F) is a multifunction satisfying:
1. For every z € PC?([0,00), E), there is a f € L} ([0,00), E) such that
f(t) € F(t,x(t)) forae. t € [0,00), and for a.e. t € [0,00), z — F(¢, 2) is
upper semicontinuous.
2. There exist ¢ € L{ ([0, 00), RT) satisfying supleN(ft ()P ds)V/P =
0 < oo, and for any i = {0} UNand any = € PC}__ ([0, 00), E),

|F(tz@®)]] <o)t —s)" 7 x@)]| fort€ (sitiva]. (28)

3. Thereexists¢ € Li, ([0, 00), RT) satisfying supzeN(ft i+ ()P ds)1/P .=
¢ < oo and such that for any bounded subset D C E and any k € {0} UN,
xe(F(t, D)) < (t — sp)™c(t)xe(D) for ae. t € Ji, where x is the
Hausdorff measure of noncompactness on F.

(H;*) The function g : PCY__ ([0, 00), E) — D(B) satisfies the following conditions:

1. Bg : PCY([0,00), E) — E is continuous, and there is a continuous non-
decreasing function ¥ : [0,00) — [0, 00) such that || Bg(z)|| < ¥(||z])
and (5) is satisfied.

2. There is a 51 > 0 such that for any bounded subset D of PCY__ ([0, c0), E),
xe(Bg(D)) < rax* (D).

(H*) The function g; : [t;,s;] X E — D(B), @ € N, is uniformly continuous on
bounded sets and satisfies:

1. For any i € N, there exists a positive constant /; such that > °°, h; =
h < oo, and forany = € E, ||Bg;(t,z))| < hi(ti—si—1) 77|z, t € [ti, 5],
z e E.

2. There is a k2 > 0 such that for any bounded subset D of PC;_.([0,00), E),
XE(Bgi(t,{z(t;): z € D})) < kax™(D), t € [t;, 8], 1 € N.

Theorem 4. Let A: D(A) C E — E,B: D(B) C E — FE be closed linear operators
such that D(B) C D(A), 0 = 50 < t1 < 81 < tg <+ + <ty < S < bypa1 < -+,
gi ¢ [tiysi)) x E — E(i = 1,2,...,m), and p be a real number such that p > 1/a.
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Suppose (F*), (Hy), (H;*) and (H*) are satisfied. Then problem (1) admits a solution
x: [0,00) — E satisfying lim;_,oc x(t) = 0, provided that

sup |tiy1 — si| =1 < o0, (29)
1€{0}UN
(h+w) ||B*1||Mllf’y+a71/P p—1 (p—1)/p
v hl <1 (30
| | { L'(v) * ') 7 pa— 1 +h| < (30)

and

-1
HBle [L-vte=1/p M p—1 v )/ngr K1+ Ko
I'(a) \pa — 1 I'(7)
2la—1/p( P*_

11 )(p—l)/p§
. i ; @} <1 31)

Proof. Let x € PC°([0,00), E). From (F*)y, there is a f € LY ([0,00), E) such that
f(t) € F(t,z(t)) for a.e. t € [0,00). Then we can define a multifunction R* on
PC?([0,00), E) as follows: a function y € R*(x) if and only if

B! [Sa,5(1)(Bg()) + iy Jo Kalt —s)f(s)ds], t€[0,t]
gi(t,z(t7)), te€ (ti,si], i €N,
B [Sa(t — 5:)Bgi(si, 2(t7)) + [1 Kot — ) f(s) ds],

t € (si,tir1], i € N

y(t) =

Step 1. We show that R*(PC°(]0,00), E)) C PC°([0,00), E). Lety € R*(z),x €
PCY([0,00), E). We prove that lim;_,, y(t) = 0. Let e > 0. Since Y po | hi < 00,
there is a natural number N; > 1 such that

= €
hi, < : (32)
2 < S
Now z € PC?([0,), E) implies that lim; .. ||z(¢)|] = 0, and so there is a natural
number N5 such that
€
z@)|| < ST Vt > Ns. (33)
_ —2y+a—+ M 1
2| B-HIETT T ey (B L) =D/rg

Now let 7 be such that ¢ and ¢; are greater than max{Ny, No}. If ¢ € (¢;, s;], then
from (H*); and (32) we have

ly®I < llgs (& 2@ NI < [B7HI Boa (. 2(E) |

<|[B7HI(t = sim0) () 1hs < || BT 1H||:c|\oozhk< T

Nonlinear Anal. Model. Control, 24(5):775-803


https://doi.org/10.15388/NA.2019.5.6

796 J. Wang et al.

If t € (s4,t;+1], then from (3), (4), (F*)a2, (28), (32), (33) and Holder’s inequality we
get

(t—s) 7 y@)

< (0= 5B S ¢ = )] B (s, )
+B - 50 / (= 511 Pult = ) )5 = 51 7o) s

Si

< (t— sy S ||x||oo2hk

T !|Bl||1f2i)<m1 s s a(s)] [0 9% el ds

SE[si,tit1]

M o0
< ||Bil||m”x||oo Z hy,
=i

M RN
-1 20-n 22 ya-1/p[ P
+ (1B D gyt = 50° ”(pal) gse[iggﬂ]”m)u

(p=1)/p

+ || B[22+ 1/p M (p—l)
1B~ o) \pa1 Use[ggg+l]!!w<s>\\

<o+

€
S3
€ —
<3 =e

From this inequality and (34) we conclude that y € PCY_ ,([0,00), E), and hence
R*(PCY_([0,00), E)) € PCY__([0,00), E).

Step 2. In this step, we claim that there is a natural number n such that R*(B,,) C
By, where B, = {z € PCY__([0,00),E): ||z[|oc < n}. Suppose the contrary. Then,
for any natural number n, there are z,,,y, € PC} 7([0 o), E) with y,, € R*(zy),
lZnllc < nand ||yn|lcc > n. Then thereisa f, € L} ([0,00), E) such that f,(t) €
F(t,x,(t)) forae. t € [0,00) and

Bil[sa,ﬂ(t)(Bg(xn)) + ﬁ fot Ko(t —s)fu(s)ds], te(0,t],
gi(t,zn(t7)), te (ti,sl], i €N,
Bil[Sa B( 54)Bgi(t, zn(t +f Ko(t —s)fn(s)ds],

t € (si,ti11], i € N.

Yn(t) =

Then we get from (3), (4), (Hp)1, (F*)2, (29) and Holder’s inequality that

swp 117y (8)] < B sup #1770 0(0) (Botn)|
te[0,t1] te[0,t4]
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t
B Mt ||z | oo
+ sup ” ” ”Qj H /(t— S)Q_ltp(s) ds

t€[0,t1] I'(a) )
MIB= ) gov IBHM Yy (=N
Also, from (H*); it follows for ¢ € N that
sup |lyn(t)|| = sup ||gi(t, za(t;)) ||
t€[ti,si] te ti78i]
<[B7H sup ||B7Bgi(si, wn(ty))]|
tE[t;,sq)

< hHB_lH(ti — Sifl)l_fnyn(t;)H
<||B7Y|Bllzallo < ||B7 0. (36)

Similarly, we get for t € (s;,t;11],7 € N,

sup (t— Si)l_WHyn(t)H
te€[si,tit1]

< p 1BTUMIBos ()
tE[Si,tH,l] F(’Y)
HB—IHMZI—'Y la—l/p p— 1 (p—1)/p
I'(«) ne pa—1
_ _ - (r—1)/p
[B~H[Mhn | |B7HMETY oy, (p—1
< a=1/p :
T(7) + T'(a) nol p— (37)

From (35), (36) and (37), it follows that

n < |Ynlloo
M|B| . ngla—%(:a;jl)(p—l)/pHB—lHMll—v
S T(v) [(a)
_ |B~L||Mhn
+ | B || 4 122
57 pn-+ L2

By dividing both sides by n and passing to the limit as n — oo, we obtain

M(h + ,w) N B—1|Ml1—7+a—1/PJ( p—1 )(PU/P+ h:|
I'(v) ING)) pa—1 ’

L<||B7

which contradicts (30).
Thus we deduce that there is a natural number ng such that R(B,,,) C B,,.
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Step 3. R* is x*-condensing. Let D be a bounded subset of PCY__ ([0, 00), E) and
Z = R(D). By arguing as in Step 4 in the proof of Theorem 1, one can see that

Xoo(Z) = sup XPCy_ (0.4:],E)1% [0,6:): ¥ € Z}
1€

r B~
< ?Up XPCl_,\,([O,ti],E){x|[O,ti]: x € D} W
1B yryp( p—1 \ P07 v 1B
Q-— P ——— B~
T pa—1 & mal| B+ Ty e
(51 +w)IBY 1B Ml yayyp( 2 =1\
D 2 “ Pl —
< xeo ){ ) AT pa—1 ¢
—l—/-@gHB_lH]. (38)

It remains to estimate d,(Z), where doo (Z) = limy, 00 SUPy e 7 dm (y) and

dm(y):maX{g;agng(t—Sk)1*”||y(t)||E, mes sup ||y (1) }-

Let m € Nbe fixed and y € R*(x), z € D. We have

sup [ly@Olf < sup flgm (6 2(t)) | < sup [ B[ Bgm (1 2(50))|
< sup HB 1|| m_sm—l 1 ’YHI m)Hhm X ||B 1||H1'||oohm,
t€Tm,
which yields
macsup [[y(0)] 5 < [ B7" |zl > hi (39)

Also, we have

sup (¢ —sm) "7 [ly(@)]
te€Jm

S [“‘SM”HB1||Hsa<t—sm>>|>|Bgm<sm,x<tm>>H

teJm

B s [ Pt 9 )t - sm>1-v|\x<s>uds]

— Sm y—1 _ B
< sup [(t—smf‘”HB‘lHMhmam — sm1)' 2 (2(t) |

t

— 5m)! 7 1— a—1
+ ||BIHJ\4(tF(a))tsup ((t = sm) 7 ||2(®)|) s1;p /(t —8)* 7 p(s) ds]
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M
< 1B gy ellechn + s (¢ = om)' = ] B

M 71 p— 1 (p—=1)/p
—(ta1 — Sm)® /o[ £~
) F(a)( +1.7 m) <pa - 1) 7

<577 )”x”ooh + 8 (1= ) @] | B+
M p—1 (p—1)/p
X o
INGY) <pa - 1) :
which yields

t— st
e sup(t = o0) 7 Jult

M o0
< B gy leleo 3 b+ sup (2= sm)' 7 [2(0)])
k=m m

e

()

M 1\
<l (B 2)

It follows from the fact that chzl hy is convergent, (39) and (40) that

doo(Z) = lim supd,(y)

m— oo yEZ

= — 1—7v
%gﬂwmaX{g;agtseup(t sk) "y, g%fg?”y(

M -1 (p—1)/p
<Ie e ay) o)

which yields with (38) that

M p—1 (p—1)/p
* 1 1—v+a—1/p
casleiprergg (i)

(r—1)/p
2 -1
n K1+ Ko + lal/p( p > £H2:| X*(D)

I'(y)  T(a)

This inequality with (31) implies that R* is x*-condensing.

pa —1

D}

799

(40)

Now arguing as in Step 3 in the proof of Theorem 1, one can see that the graph of R*
is closed. Moreover from the fact that R* is x*-condensing with closed graph we have
the compactness of the values of R*. Now Lemma 3 guarantees the existence of a decay

mild solution of (1)

O

Remark 4. According to [7, Lemma 3.2], if B! is compact, then the operator B~! P, (),

t > 0, is compact, and hence we do not need (F*)3 in Theorem 4.
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To end this paper, we give an example illustrating our abstract results.

Example 1. Leta € (0,1),0 < <1,y =a+ B —af,and E = L?(T), where T
is a bounded smooth domain in R?. Clearly, E is a separable Hilbert space. Set s; = 24,
1€ {0} UN, t, =2k — 1, k € N. Define A and B by A = A, the Laplacian operator,
and B = I — A, where for each domains A and B, D(A) = D(B) = H?(Y) N H}(T),
and T is the identity operator. Let {)\,,} be the eigenvalues of —A with corresponding
eigenvector {e, }n>1. Itis known that 0 < A\ < -+ < A, < --- with A, — o0 as
n — oo (see [18]). Moreover, A can be writtenas Af = — 220:1 A (f,en)en,and Bf =
Yoo (L + X)) (S, en)en. Therefore B f =577 (f.en)en/(1+ A,) and AB™1 f =
S oner —Anlf enden/(1+ An).

This implies (see [18]) that the semigroup generated by AB~! can be expressed as in
(Hy). Moreover, for any f € L*(Y), we have T'(¢)(f) = >0, exp(=An /(1 + Ay)) X
t(f, en)en. Moreover, B~! is compact, | B~ < 1and ||T(t)| < exp(=A1/(1+A1)) x
t < 1forallt > 0 (see [7,18]). Hence we choose M = 1.

Let F : [0,00) X E — Pg(FE) be the multifunction defined by F(t,v)(s) =
co{ f1(t,v(s)), fa(t,v(s)), ..., fm(t,v(s))}, where co denotes the convex hull, and fj, :

[0,00) xR — R,k =1,2,..., are continuous bounded such that forany &k = 1,2,...,m,
any t € (Siati-i-l]? 1€ {O} UN,
|fk(t,z)| < (t— si)1*7g0(t)\z| Y(t,2) € [0,00) X R, 41

where ¢ : [0,00) — [0,00) is a continuous function, and |¢(t)] < o for all t €
[0,00). Clearly, F(t,v) is closed, bounded and contained in the finite dimensional sub-
space, which is spanned by E,, = {f1(¢,v(-)), fa(t,v(")), ..., fm(t,v(-))} and hence
it is compact. From the continuity of fx, &k = 1,2,...,m, one can see that F’ satisfies
(F*)1. Moreover, if t € (si,ti41], @ € {0} UN, 2 € PC}__([0,00),E) and y €

F(t,2(t), then (lyllz)* = [rly(s)I*ds = Jr I 0t T felt,2(6)(3))] ds. where
i > 0 and Zk e = 1. Then from (41) we have |y|lz < ([,( Z: T g)? X
(t — )27 22 (1) || (t) (s )||2 ds)'/2, and hence F satisfies (F*);. Moreover, it follows
from Remark 4 that F satisfies (F*)3 with ¢(¢) = 0 for all ¢ € [0, c0). In order to define
gi : [ti,si] X E = D(B),i € N,let K; : T xT — R be integrable functions such that K;
together with its second derivative with respect to the first argument belongs to L2(T'xT).
We define g; : [t;, si] X E — D(B) as g;(t,v)(z) = (t; —sZ DY [ K2, y)o(y) dy,
x,y € 1. Then Bg;(t,v)(x) = hi(t; — si—1)""7 [ ki(z,y)v(y) dy, Where ki(z,y) =
Ki(z,y) — AyKi(x,y), (x,y) € T x T. Then Bgi is a Hilbert-Schmidt operator,
and hence compact (see [18]), so, (H*), is satisfied. In addition, ||Bg;(¢,v)||g < h; X
(t; — si—1)" 77 ||vll&, where hy = ||k;|| L2(rxr). so (H*); is satisfied if we assume that
Yoiei kil L2 (rxr) = h < oo

In order to define the nonlocal function, let G : [0,b] x ¥ x T — R be an in-
tegrable function with G(t, - ,~) A, G( 2 € LQ(T x T)and v € H*(T). Put g :

PCY__(J,E) = E, g(w)(x) )+ fo Jy G(s,z,y)w(s,y)dyds, x € T, where
(s y) = w(s)( ), the values of wﬁs) at y. Then Bg(w)(z) = v(z) — Av(z) +
fo Jy G(s,z,y)w(s,y) dy ds, where G(s z,y) = (I — Ay)G(s,z,y). It follows that

| Bg(w )||PC§L (J,E) < HU||H2(T) + fo HG S, 7')||LZ(T><T) ds)|Jw]]co-
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Then (Hy)1 is satisfied with & (r) = ||| gr2(r) + fo G (s, ) L2(rxr) ds)r. Then

fo ||G 8,y )||L2 Txy ds. In addition, since L : L*(T) — L*(T7) defined by

= [, G(s,z,y)v(y)dy is a Hilbert-Schmidt operator for fixed s € [0,b],

We see that for any bounded set D C PCY__(J,E), L(D(s)) is relatively compact

in E. It follows from [18, p. 1316] that the set Bg(D) presented by Bg(D) = Bv +

fob L(D)(s)ds is relatively compact. Therefore, xp(Bg(D)) < 4f0b xL(D)(s)ds =0,

which implies that (H;)g is satisfied with k1 = 0.

From the above discussion and Theorem 4, the following nonlocal noninstantaneous

impulsive fractional semilinear differential inclusion

D (w(t,y) — wyy (1Y) € Tyy(t,y) + F(t2(t,y)),
ae. t€(2,2i+1],i€ {0} UN,
x(tii_ay) = g1(t1,x(t1_,y)), l‘(t,y) = gz(t,x(t:,y)),
tef2i—1,24, y € [0,00), i €N,
ol

[Ol-z’yx(()?y) = o +g(£17)y7 Isl-: 1'(51"_7y) = gl(’slax(tl_ay))v
yel, ie {0} UN.

admits a decay solution, provided that

(p=1)/p
-1 h
FEU + g (p ) +h+—= <1,

7)  T(a)\pa—1 INGYD)
1 p— 1 (p=1)/p (42)
T(a) (m = 1) o<t

Clearly, one can choose «, 3, w, o, p such that (42) is satisfied.

5 Conclusion

In this paper, we establish the existence of decay mild solution on an unbounded interval
of nonlocal fractional (involving the Hilfer derivative) semilinear differential inclusions
with noninstantaneous impulses. Note that in our paper, the lower limit in the Hilfer
derivative is varying with some previous fixed points, so our approach is different than
that in [18, 26]. We also generalize existence results [18, 26] to a more general case,
and we consider the large time behavior of solutions of fractional evolution equations
in a suitable weighted piecewise continuous functions space.
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