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Abstract. This paper focuses on the problem of time-delayed impulsive control with actuator
saturation for discrete-time dynamical systems. By establishing a delayed impulsive difference
inequality, combining with convex analysis and inequality techniques, some sufficient conditions
are obtained to ensure exponential stability for discrete-time dynamical systems via time-delayed
impulsive controller with actuator saturation. The designed controller admits the existence of some
transmission delays in impulsive feedback law, and the control input variables are required to
stay within an availability zone. Several numerical simulations are also given to demonstrate the
effectiveness of the proposed results.
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actuator saturation.

1 Introduction

For the engineering applications, it is essential to formulate discrete-time system that are
an analogue of continuous ones, while the discretization may not preserve the dynamics
of the continuous-time counter part even for a small sampling period [10, 28, 30], which
promotes the investigation direct for the discrete-time dynamic system. Further, in many
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evolutionary processes, the state of the dynamical systems may abruptly change at some
point. Consequently, it is natural to assume that these perturbations act instantaneously
[17,18,20–22,33,39,40], that is, those processes can be modelled by impulsive dynamical
systems. However, the theory of impulsive difference equations have developed a little
slowly [24,32,38], and not better than the theory of impulsive differential equation. Gen-
erally speaking, the stability analysis of impulsive differential equation is not applicable
to the impulsive difference equations. Therefore, further study for impulsive discrete-time
equations is necessary.

Recently, increasing attention has been paid to the study of dynamics and control of
impulsive systems in which the impulses involve time delays [3,4,11,20,21]. Such kind of
impulses that are sometimes called delayed impulses is regarded as a better way to model
many practical problems. For example, in communication security systems based on
impulsive synchronization [11], due to the limit speed of signal sampling, a type of delays
called sampling delays, which depend on the historical states at the sampling points, will
occur in impulsive transients. Another example is found in population dynamics such as
fishing industry, where effective impulsive control such as harvesting and releasing can
keep the balance of fishing, and the quantities of every impulsive harvesting or releasing
are not only measured by the current numbers of fish but also depend on the numbers in
recent history due to the fact that the immature fish need some time to grow. While in some
other models arising from digital communication, neural networks and ecological models,
delayed impulses also have potential applications [4]. There are some important results
on analysis of delayed impulsive systems in the existing literatures [11,20,21,30,37,39].

Moreover, in practice, the system frequency is required to stay within an ideal region
close to its nominal value [2, 5, 7–9, 12, 26, 29, 31]. Otherwise, the system needs to take
relevant control actions immediately to keep the frequency in an acceptable region, and
then to restore the frequency back to its nominal value [5, 9, 26, 31]. In [27], Michel et al.
presented a qualitative analysis for a class of synchronous discrete-time neural networks
defined on hypercubes in the state space. A complete stability analysis of discrete-time
linear systems under saturation was considered by Hu et al. [6]. The impulsive controller
with partial input saturation is proposed to synchronize the discrete delayed coupled sys-
tems by Razumikhin-type technique [23]. Also, recently, we consider the state constraint
impulsive control for continuous nonlinear dynamic systems combining with convex anal-
ysis technique [14, 15]. Based on actual demand and theoretical challenges, the rigorous
handling of constraints in a control design has become an important research topic. In
recent years, there are various techniques to solve the constraint control problem based on
set invariance [7, 8], model predictive control, adaptive variable structure control [26, 31]
and so on. This key point motivates us to solve the problems of the state constraints and
delayed impulsive control of nonlinear systems.

In conclusion, some researchers have attempted to solve the control problem of con-
straint systems because the actuator saturation appear in most physical systems. However,
the control problem for difference dynamic system via delayed impulsive control with
actuator saturation has not been fully investigated yet, and many challenging questions
remain. So far, there have been many studies on impulsive control, but the impulses
are basically unconstrained [1, 13, 16, 32, 35, 36, 38]. Based on this, this paper proposes
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a special type of delayed-impulse controller with actuator saturation, the controller of
which engages the feedback control laws and analyzes the exponentially stability of the
closed loop. And the designed controller admits the existence of some transmission delays
in impulsive feedback law. More specifically, the main contributions of the present paper
are as follows. Firstly, by the schematic of delayed impulsive control system, it gives
a brief introduction to the system about its working principle and structure. Secondly,
a delayed impulsive difference inequality is established, and some global exponential sta-
bility criteria are provided. Finally, two instances with numerical simulations are offered
to demonstrate the availability of our results.

This paper is organized as follows. In the following section, some preliminaries are
described. The exponential stabilization criteria for discrete-time dynamical systems via
delayed-impulsive controller with actuator saturation are established in Section 3. The ex-
amples are carried out to demonstrate the effectiveness of the obtained results in Section 4,
and the conclusion is drawn in Section 5.

Notations. Throughout this paper, Z be the integers, Z+ be the nonnegative integers,
R+ = [0,+∞), Rm and Rm×m denote the m-dimensional Euclidean space and the set
of m × m matrices, respectively. N = {1, 2, . . .}. The notations BT and B−1 mean
the transpose of B and the inverse of a square matrix B, respectively. Y > 0 (Y > 0)
means that Y is a real symmetric and positive definite (positive semi-definite) matrix.
I is the n × n identity matrix. Denote ‖c‖ as a vector norm of the vector c ∈ Rm.
Matrix set Π = {H: ‖Hx‖∞ 6 1, H ∈ Rm×m, x ∈ Rm}. ‖B‖ is the matrix norm
of ‖B‖ =

√
λmax(BTB), where λmax(B) denotes the maximum eigenvalue of the

symmetric matrix B. sign s is sign function. co{·} denotes the convex hull of group
of vectors. Let G be the set of m × m diagonal matrices whose diagonal elements are
either 1 or 0. The each elements of G is labeled as Σi, i ∈Mm , {1, 2, 3, . . . , 2m}.

2 Preliminaries

We consider a class of discrete-time nonlinear systems described by

x(n+ 1) = Bx(n) +Af
(
n, x(n)

)
, Φ

(
n, x̄(n)

)
,

y(n) = ϕ
(
x(n)

)
,

x(0) = x0.

(1)

Here x(n) ∈ Rm is the discrete-time state vector, f(n, x(n)) : Z+ × Rm → Rm is
a continuous function in their respective domains of definition, and f(n, 0) = 0. A,B ∈
Rm×m are feedback matrices. y(n) ∈ Rl is the measured output vector, where ϕ(x(n)) :
Rm → Rl. x(0) = x0 ∈ Rm denote the initial condition.

A delayed impulsive control law of system (1) is given by a sequence {nk, Uk(y(·))},
where 0 = n0 < n1 < · · · < nk < · · · , limk→∞ nk = ∞. Uk(·) denotes the control
input at each impulsive instant nk, k ∈ N. It works as in Fig. 1. Module “Delayed” can
be transmission delays or other perturbed delays. Here x̄(n) denotes the state x at time n.
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Figure 1. Schematic of delayed impulsive control systems.

According to the schematic of delayed impulsive control system, the state of the impulsive
control system satisfies the following equations:

x(n+ 1) = Φ
(
n, x̄(n)

)
,

x̄(n) =

{
x(n), n 6= nk,

y(·) + Uk(y(·)), n = nk,

y(n) = ϕ
(
x(n)

)
,

x(0) = x0.

(2)

In this paper, letϕ(x(n)) = x(n), and the controller is designed asUk(·) = Uk(x(nk−
τ(k))), where Uk(·) : Rm → Rm is impulsive disturbed function with Uk(0) = 0.
τ(k) ∈ Z+ is the impulsive delay with infk∈N{τ(k)} = τ and τ(k) < nk − nk−1. Then
systems (2) can be rewritten as the following impulsive system:

x(n+ 1) = Bx(n) +Af
(
n, x(n)

)
, n 6= nk − 1,

x(nk) = x
(
nk − τ(k)

)
+ Uk

(
x
(
nk − τ(k)

))
, n = nk,

y(n) = x(n),

x(0) = x0.

(3)

Design the controller with actuator saturation as follows:

Uk(·) = Sat
(
uk(·)

)
. (4)

In this paper, assume feedback control law uk(·) = Fx(nk − τ(k)) at impulsive time
n = nk, where F = diag(F1, F2, . . . , Fm), and Sat(q) = sign(q) min{1, |q|} for q ∈ R.

Remark 1. With respect to traditional impulsive control, which suggest that the impulsive
control input is unconstrained. That is, the control input variables can also be arranged
arbitrarily, or it is just satisfied the linear conditions. In fact, there are artificial constraints
or physical constraints inherent in the actual engineering system. Until now, the research
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in discrete-time impulsive difference equations with constraints is poor. So, in the follow-
ing, we shall consider the exponential stability for discrete-time dynamical networks via
time-delayed impulsive controller with actuator saturation.

In this paper, we consider a class of activation function of Lipschitz type, which may
be unbounded and defined by

L =
{
f(·)

∣∣ fi ∈ C(R,R): ∃Li > 0,
∣∣fi(xi)− fi(yi)∣∣ 6 Li|xi − yi|

∀xi, yi ∈ R, i = 1, 2, . . . , n
}
.

Remark 2. Based on the above, obviously, x(n) = 0 is a unique solution of (3), which
we call the zero solution. And one can easily confirm that |fi(xi)| 6 Li|xi|. We denote
L = max{L1, L2, . . . , Lm} in the sequel.

In this paper, we also need the following definition and some lemmas.

Definition 1. (See [39].) The zero solution of (3) is said to be globally exponentially
stable if there exist scalars λ > 0, M(x0) > 0 such that∥∥x(n, x0)

∥∥ 6Me−λn, n > 0.

Lemma 1. (See [15].) For any ε > 0, r, s ∈ Rn, the inequality 2rTs 6 ε−1rTr + εsTs
holds.

Lemma 2. (See [7].) Let a, b ∈ Rm, a = (a1, a2, . . . , am)T, b = (b1, b2, . . . , bm)T.
Suppose that |bi| 6 1, then Sat(a) ∈ co{Σia+ Σ−i b: i ∈ {1, . . . , 2m}}.

Remark 3. Denote Σ−i = I −Σi. Given two vectors a, b ∈ Rm, {Σia+ Σ−i b: i ∈Mm}
is the set of vectors formed by choosing some elements from a and the rest from b.
Given two matrices E,F ∈ Rm×n, {ΣiE + Σ−i F : i ∈ Mm} is the set of matrices
formed by choosing some rows from E and the rest from F . Suppose ‖Fx‖∞ 6 1, we
have Sat(Ex) ∈ co{ΣiEx + Σ−i Fx: i ∈ Mm}, i.e. there exist ϑi ∈ [0, 1] satisfying∑2m

i=1 ϑi = 1 such that Sat(Ex) =
∑2m

i=1 ϑi(ΣiE + Σ−i F )x.

Lemma 3. Assume that there exist a function V (n, x(n)) : Z× Rm → R+ and positive
constants p, c1, c2, dk and µ > 1 such that for any k ∈ N, the following conditions hold:

(i) c1‖x(n)‖p 6 V (n, x(n)) 6 c2‖x(n)‖p;
(ii) When n 6= nk − 1, V (n+ 1, x(n+ 1))− µV (n, x(n)) < 0;

(iii) V (nk, x(nk)) 6 dkV (nk − τ(k), x(nk − τ(k))), where supk∈N{dk} = d < 1;
(iv) max{nk − nk−1} 6 ξ < (τ lnµ− ln d)/ lnµ.

Then the discrete-time dynamical system (3) with delayed impulses is globally exponen-
tially stable, and the convergence rate is (− lnµ+ (τ lnµ− ln d)/ξ)/p.

Proof. Since µ > 1, 0 < d < 1, then ln d − τ lnµ < 0. For n ∈ [nk−1, nk), from
condition (iv) we have n < nk = (nk−nk−1) + (nk−1−nk−2) + · · ·+ (n1−n0) 6 kξ
and n/ξ < k. For convenience sake, let V (n) = V (n, x(n)).
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For n ∈ [n0 + 1, n1), from (ii) we have

V (n) < µV (n− 1) < µ2V (n− 2) < · · · < µn−n0V (n0) = µnV (0).

When n = n1, from condition (iii) and the above inequality we have

V (n1) 6 d1V (n1 − τ(1)) 6 · · · 6 d1µ
n1−τ(1)V (0).

For n ∈ [n1 + 1, n2), from (ii) we have

V (n) < µV (n− 1) < · · · < µn−n1V (n1) = µn−n1d1µ
n1−τ(1)V (0)

= d1µ
n−τ(1)V (0).

From above we have

V (n) 6 d1µ
n−τ(1)V (0), n ∈ [n1, n2).

When n = n2, from condition (iii) and the above inequality we have

V (n2) 6 d1V (n2 − τ(2)) 6 · · · 6 d1d2µ
n2−τ(1)−τ(2)V (0).

For n ∈ [n2 + 1, n3), from (ii) we have

V (n) < µn−n2V (n2) = µn−n2d1d2µ
n2−τ(1)−τ(2)V (0)

= d1d2µ
n−τ(1)−τ(2)V (0).

From above we have

V (n) 6 d1d2µ
n−τ(1)−τ(2)V (0), n ∈ [n2, n3).

By the mathematical induction procedures, we can prove that for n ∈ [nk−1, nk), k ∈ N,
we have

V (n) 6 d1d2 · · · dk−1µn−τ(1)−τ(2)−···−τ(k−1)V (0).

Combining with (iv) and τ = infk∈N{τ(k)}, d = supk∈N{dk}, note that ln d−τ lnµ < 0.
Then for n ∈ [nk−1, nk), we have

V (n) 6 dk−1µ{n−(k−1)τ}V (0)

= exp
{

lnµn−(k−1)τ + ln dk−1
}
V (0)

= exp
{
n lnµ+ (k − 1)[ln d− τ lnµ]

}
V (0)

= exp
{
n lnµ+ k(ln d− τ lnµ)− ln d+ τ lnµ

}
V (0)

6 exp

{
n lnµ+

n

ξ
(ln d− τ lnµ)

}
µτ

d
V (0)

6
µτ

d
V (0) exp

{
−n
[
− lnµ+

τ lnµ− ln d

ξ

]}
. (5)
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This, together with condition (i), gives

‖x(n)‖ 6
(
c2µ

τ

c1d

)1/p

‖x0‖ exp

{
−n
− lnµ+ τ lnµ−ln d

ξ

p

}
. (6)

Combining with Definition 1, this implies that the zero solution of system is globally
exponentially stable. The proof is completed.

Remark 4. The continuous nonlinear differential systems with delayed impulses or delay-
dependent impulsive control method has been studied in great detail [20, 21]. However,
those method cannot be used directly for discrete-time dynamical systems. In [39], Zhang
investigated the exponential stability of delayed impulses in difference equations by Lya-
punov functions together with Razumikhin technique. And the conditions related to the
state were not easy to verify in computation. Based on this, in our model, we simplifies
the system model, assume that there is no impulses in the section of continuous system.
In addition, for the delayed problem in impulsive systems, although the exponential sta-
bility of delay-impulsive difference equations can be investigated by Lyapunov functions
together with Razumikhin technique, the condition was not easy to verify if the method
used in concrete model. The easier rule of verification method is one of the key research
directions in our future work.

3 Main results

In the following, we will discuss the exponential stability of delayed-impulsive discrete-
time dynamical networks (3) with actuator saturation.

Theorem 1. Assume that functions fi(·) ∈ L, and there exist two matrixes H ∈ Π ,
0 < P ∈ Rm×m and some constants µ > 0, d < 1, ξ ∈ Z+ such that the following
conditions hold:

BTPB + ε−1BTPAATPB + εL2 + L2ATPA− P < µP,

(I + ΣiF + Σ−i H)TP (I + ΣjF + Σ−j H) 6 dP, i, j ∈Mm,

max{nk − nk−1} 6 ξ <
τ ln(µ+ 1)− ln d

ln(µ+ 1)
.

(7)

Then the discrete-time dynamical system (3) with delayed impulses and actuator sat-
uration is globally exponentially stable, and the convergence rate is (− ln(µ + 1) +
(τ ln(µ+ 1)− ln d)/ξ)/2.

Proof. Choose a Lyapunov functional candidate for system (3) as

V (n) = xT(n)Px(n).
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When n 6= nk − 1, combining with Lemma 1, we calculate the difference ∆V (n) =
V (n+ 1)− V (n):

∆V (n) = xT(n+ 1)Px(n+ 1)− xT(n)Px(n)

= xT(n)BTPBx(n) + 2xT(n)BTPAf
(
x(n)

)
+ fT

(
x(n)

)
ATPAf

(
x(n)

)
− xT(n)Px(n)

6 xT(n)BTPBx(n) + ε−1xT(n)BTPAATPBx(n)

+ εfT
(
x(n)

)
f
(
x(n)

)
+ fT(x(n))ATPAf

(
x(n)

)
− xT(n)Px(n)

6 xT(n)
(
BTPB + ε−1BTPAATPB + εL2

+ L2ATPA− P
)
x(n)

< µV (n), (8)

that is,
V (n+ 1) 6 (1 + µ)V (n).

When n = nk, combining (7) and Lemma 2, we have

V (nk) = xT(nk)Px(nk)

=
(
x
(
nk − τ(k)

)
+ Sat

(
Fx
(
nk − τ(k)

)))T
P
(
x
(
nk − τ(k)

)
+ Sat

(
Fx(nk − τ(k))

))
6

[(
I +

2m∑
i=1

ϑi
(
ΣiF + Σ−i H

))
x
(
nk − τ(k)

)]T

× P

[(
I +

2m∑
i=1

ϑi
(
ΣiF + Σ−i H

))
x
(
nk − τ(k)

)]
6 dV

(
nk − τ(k)

)
. (9)

From (8), (9) we have

V (k + 1) < (1 + µ)V (k), n 6= nk − 1,

V (nk) 6 dV (nk − τ(k)), n = nk.
(10)

Note that λmin(P )‖x(n)‖2 6 V (n) 6 λmax(P )‖x(n)‖2, let M1 = ((µ + 1)τ ×
λmax(P )/(dλmin(P )))1/2. Combining with (10), Lemma 3 and Definition 1, we have
that the conclusion holds, that is,

∥∥x(n)
∥∥ 6M1‖x0‖ exp

{
−n
− ln(µ+ 1) + τ ln(µ+1)−ln d

ξ

2

}
.

The proof is completed.
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Theorem 2. Assume that functions fi(·) ∈ L, and there exist matrix H ∈ Π and some
constants µ > 1, d < 1, ξ ∈ Z+ such that the following conditions hold:

‖B‖+ L‖A‖ < µ,∥∥∥∥∥I +

2m∑
i=1

ϑi
(
ΣiF + Σ−i H

)∥∥∥∥∥ 6 d,

max{nk − nk−1} 6 ξ <
τ lnµ− ln d

lnµ
.

(11)

Then the discrete-time dynamical system (3) with delayed impulses and actuator satura-
tion is globally exponentially stable, and the convergence rate is− lnµ+(τ lnµ−ln d)/ξ.

Proof. Choose a Lyapunov functional candidate for system (3) as

V (k) =
∥∥x(n)

∥∥ =

N∑
i=1

∣∣xi(n)
∣∣.

When n 6= nk − 1, we can get that

V (n+ 1) =
∥∥x(n+ 1)

∥∥ =
∥∥Bx(n) +Af

(
x(n)

)∥∥
6
∥∥Bx(n)

∥∥+
∥∥Af(x(n)

)∥∥
6
(
‖B‖+ L‖A‖

)∥∥x(n)
∥∥

< µV (n). (12)

When n = nk, combining with Lemma 2 yields

V (nk) =
∥∥x(nk)

∥∥ =

N∑
i=1

∣∣xi(nk)
∣∣

=
∥∥x(nk − τ(k)

)
+ Sat

(
Fx
(
nk − τ(k)

))∥∥
6

∥∥∥∥∥
[
I +

2m∑
i=1

ϑi
(
ΣiF + Σ−i H

)]
x
(
nk − τ(k)

)∥∥∥∥∥
6 dV

(
nk − τ(k)

)
. (13)

From (12), (13) we have

V (n+ 1) < µV (n), n 6= nk − 1,

V (nk) 6 dV
(
nk − τ(k)

)
, n = nk.

(14)

Combining (14), Lemma 3 and Definition 1, we have∥∥x(n)
∥∥ 6

µτ

d
‖x0‖ exp

{
−n
(
− lnµ+

τ lnµ− ln d

ξ

)}
.

The proof is completed.
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Remark 5. From Theorems 1 and 2 it can be found that the dynamical system (1) without
impulsive may be unstable, the delayed-impulses can stabilize the original system, and the
time interval between the nearest two impulses must meet certain requirements.

Remark 6. The exponential stability of nonlinear impulsive difference dynamical equa-
tions with or without delays have been studied in [19, 24, 25, 32, 34, 38, 39]. But most of
them considered the impulsive phenomenon that the impulsive transients just depend on
their current states of the system, have not depend on their historical states of the system.
And most of existing literature were carried out in the linear assumption for impulses. In
this paper, the delayed-impulsive controller with actuator saturation is given, which has
combined with the reality.

Remark 7. If there is no delays in controller, we can also get some results. And the
method in this paper can be applied in traditional model [10,24,28]. Equations (2) can be
rewritten as the following impulsive system:

x(n+ 1) = Bx(n) +Af(n, x(n)), n 6= nk − 1,

x(nk) = Sat
(
Fx(nk − 1)

)
, n = nk,

x(0) = x0.

(15)

Some useful corollary will be given in the following by the same derivation method.

Corollary 1. Assume that functions fi(·) ∈ L, and there exist two matrixes H ∈ Π ,
0 < P ∈ Rm×m and some constants µ > 0, d < 1, ξ ∈ Z+ such that the following
conditions hold:

BTPB + ε−1BTPAATPB + εL2 + L2ATPA− P < µP,

(I + ΣiF + Σ−i H)TP (I + ΣjF + Σ−j H) 6 dP, i, j ∈Mm,

max{nk − nk−1} 6 ξ <
τ ln(µ+ 1)− ln d

ln(µ+ 1)
.

(16)

Then the discrete-time dynamical system (15) with delayed impulses is globally exponen-
tially stable, and the convergence rate is (− ln(µ+ 1) + (τ ln(µ+ 1)− ln d)/ξ)/2.

Corollary 2. Assume that functions fi(·) ∈ L, and there exist matrix H ∈ Π and some
constants µ > 1, d < 1, ξ ∈ Z+ such that the following conditions hold:

‖B‖+ L‖A‖ 6 µ,∥∥∥∥∥I +

2m∑
i=1

ϑi
(
ΣiF + Σ−i H

)∥∥∥∥∥ 6 d,

max{nk − nk−1} 6 ξ <
τ lnµ− ln d

lnµ
.

(17)

Then the discrete-time dynamical system (15) with delayed impulses is globally exponen-
tially stable, and the convergence rate is − lnµ+ (τ lnµ− ln d)/ξ.
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4 Examples

In this section, we provide two numerical examples to illustrate the effectiveness of the
proposed criteria in this paper.

Example 1. Consider the following difference system:

x(n+ 1) =

(
0.88 0.08
0.69 0.93

)
x(n) +

(
−0.35 0.13
0.34 −0.15

)
f
(
x(n)

)
, (18)

where x(n) = (x1(n), x2(n))T, it is assumed that f(x) = (f1(x1), f2(x2))T with
f(s) = 0.5 tanh(s). Here the initial conditions of each nodes are chosen as x(0) =
(−1.2, 0.8)T. The time responses of the state variables of (18) are depicted in Fig. 2(a).
We can find that dynamical system without impulsive controller is unstable.

Now, we design the controller

Uk
(
x
(
nk − τ(k)

))
= Sat

((
−0.74 0

0 −0.75

)
x
(
nk − τ(k)

))
with τ(k) = 3 and nk = 4k, k ∈ N. Choose ε = 0.28, H = diag(−0.5,−0.5), ξ = 4,
P = I . From Theorem 2 we have L = 0.5, τ = 3,

BTPB + ε−1BTPAATPB + εL2 + L2ATPA− P =

(
4551 0.5056

0.5056 0.4531

)
6 3P,(

I + ΣiF + Σ−i H
)T
P
(
I + ΣjF + Σ−j H

)
6 0.25I,

max{nk − nk−1} = 4 6 ξ <
τ ln(µ+ 1)− ln d

ln(µ+ 1)
= 4.7582.

It is easy to verify that the conditions of Theorem 1 are satisfied, and therefore system (18)
has globally exponential stability. The time responses of the state variables are depicted
in Fig. 2(b).

(a) (b)

Figure 2. Transient response of state variable x(t) of system (18): (a) without controller; (b) with actuator
saturation.
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Example 2. Consider the difference system (1) with

B =

−0.33 0.2 0.3
0 0.72 0.22

0.33 0.17 0.47

 , A =

−0.31 0.1 0.3
0 0.2 0.2

0.3 0.17 −0.4

 ,

where x(n) = (x1(n), x2(n), x3(n))T, it is assumed that f(x) = (f1(x1), f2(x2),
f3(x3))T with f(s) = tanh(s). Here, the initial conditions of each nodes are chosen as
x(0) = (0.12,−0.4, 0.4)T. The time responses of the state variables of (1) are depicted
in Fig. 3(a).

Now, we design the controller

Uk(·) = Sat

−0.54 0 0
0 −0.55 0
0 0 −0.57

x
(
nk − τ(k)

)
with τ(k) = 4 and nk = 5k, k ∈ N. Choose ϑi = 0.125, i = 1, 2, . . . , 8, H =
diag(0.2, 0.2, 0.2), ξ = 5. From Theorem 2 we have L = 1, τ = 4, ‖B‖ + L‖A‖ =

1.5675 6 µ = 1.5675, ‖I +
∑8
i=1 ϑi(ΣiF + Σ−i H)‖ 6 d = 0.83, max{nk − nk−1} =

5 6 ξ < (τ lnµ − ln d)/ lnµ = 5.4145. It is easy to verify that the conditions of
Theorem 2 are satisfied, the dynamical system (1) has globally exponential stability. The
time responses of the state variables are depicted in Fig. 3(b).

From above it is easy to see that it is difficult to obtain the results by traditional design
methods. In fact, the rate of convergence may not be very fast, efficient, but the controller
more corresponds to actual fact and are more direct.

(a) (b)

Figure 3. Transient response of state variable x(t) of system (1): (a) without controller; (b) with actuator
saturation.

5 Conclusions

Based on a discrete-time delayed-impulsive difference inequality, auxiliary matrix and
some other inequality techniques, we obtained some simple sufficient conditions ensuring
exponential stability for impulses in discrete-time systems with actuator saturation. The

Nonlinear Anal. Model. Control, 24(5):804–818
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method in this paper can be extended to study other discrete delayed-impulsive systems
or delayed-impulsive control problem. Furthermore, studying the delayed impulsive sta-
bilization problem of discrete-time delayed systems will be another interesting topic for
future research.
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