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Abstract. In this paper, we treat the problem of output feedback stabilization of nonlinear
uncertain systems. We propose an output feedback controller that guarantees global
uniform practical stability of the closed loop system.
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1 Introduction

The problem of stabilization for uncertain systems has beenwidely investigated for many
years [1–11]. In these studies, the origin was not supposed to be an equilibrium point of
the uncertain system. So we can no longer expect to design a controller that guarantee the
stability of the origin as an equilibrium point. In [1], a class of state feedback controls is
proposed in order to guarantee uniform ultimate boundedness of every system response
within an arbitrarily small neighborhood of the zero state.[5], [9] and [6] presented
controllers that guarantee exponential stability of a ballcontaining the origin of the state
space and the radius of this ball can be made arbitrary small.In order to study uncertain
dynamical systems, the authors in [12] introduced the notion of input to state practical
stability. In [13], the concept of input to state practical stability is extended to stochastic
case and an output feedback controller is proposed for a class of stochastic nonlinear
systems with uncertain nonlinear functions.

Most of the recent nonlinear controllers are designed for anuncertain system that
has a nominal linear part and the controller is designed based on the knowledge of the
upper bound, possibly time varying and state dependent, of the uncertainties vector norm.
Another class of uncertain systems which has also received considerable attention, namely
systems with nominal part which is affine in the control. Sucha class of systems is impor-
tant because it may represent many physical systems. In [2,8,10] authors investigated the
state feedback stabilization problem for these systems. Inthis paper, we will synthesis
an output feedback controller for this class of systems. It should be noted that output
feedback stabilization problem for uncertain system with linear nominal part has been

145



A. Benabdallah

discussed in ( [3, 4, 7, 11]). Under the assumption that the uncertain part is bounded by
a known function that depends only on the output, they construct an output feedback
controller that guarantees global exponential stability of the closed loop system. Here, we
will suppose that the unknown part is bounded by a function that depends on the input and
the output. We will design an output feedback controller that guarantees global uniform
practical stability of the closed loop system. In Section 2,we recall the definition of global
uniform practical stability and we give a sufficient condition to assure it. In Section 3, we
state the main result. Throughout this paper‖.‖ denotes the Euclidean norm ofR

n.

2 Practical stability

Consider a system described by

ẋ = F (t, x) (1)

with t ∈ R+ is the time andx ∈ R
n is the state. As a first step, we need to recall what is

meant by global uniform practical stability of (1).
Forr ≥ 0, denoteBr = {x ∈ R

n/‖x‖ ≤ r}.

Definition 1. The system (1) is said globally uniformly practically stable if there exists
r ≥ 0 such that:

(i) for all ε > r, there existsδ = δ(ε) > 0 such that, for allt0 ≥ 0,

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0;

(ii) for all ε > r andc > 0, there existsT (ε, c) > 0 such that, for allt0 ≥ 0,

‖x(t)‖ < ε, ∀t ≥ t0 + T (ε, c), ‖x0‖ < c.

The origin may not be an equilibrium point of the system (1). But, since theBr ball
is an attractor and0 ∈ Br, it follows that at least zero cannot be a globally unstable equi-
librium provided that zero is an equilibrium but it could be alocally unstable equilibrium,
even when the ball is an attractor forr > 0. If system (1) satisfies the requirements of
Definition 1 withr = 0, then it is globally uniformly asymptotically stable.

The following theorem gives sufficient conditions to assureglobal practical stability.
Its proof can be deduced from [1]. It uses the following comparison function definitions.
A function α : [0, +∞[→ [0, +∞[ is said to be of classK, if it is continuous, strictly
increasing andα(0) = 0. It is of classK∞ if, in addition, it is unbounded.

Theorem 1. Consider system(1) with F (., .) continuous. Suppose that there exist aC1

function V (., .) : R+ × R
n → R, K∞ functionsα1(.), α2(.), a classK α3(.) and a

small positive real number̺ such that the following inequalities hold for allt ∈ R+ and
x ∈ R

n.

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖),
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∂V

∂t
+

∂V

∂x

(

F (t, x)
)

≤ −α3(‖x‖) + ̺.

Then, system(1) is globally uniformly practically stable withr = α−1

1 ◦α2 ◦α−1

3 (̺) and

Br =
{

x ∈ R
n/‖x‖ ≤ α−1

1 ◦ α2 ◦ α−1

3 (̺)
}

,

where “◦” denotes the composition.

Remark 1. Consider a control system havingx as state andu as input:(Σ) ẋ=f(x, u),
x ∈ R

n, u ∈ R
m, wheref is a smooth function. This system is said to be input to state

practical stable (see [12]) if there exist a functionβ of classKL (ie β : [0, +∞[×[0, +∞[
→ [0, +∞[, such that for each fixedt, the functionβ(., t) is of classK and for each
fixed s, the functionβ(s, .) is non increasing and tends to zero at infty), a functionγ of
classK and a nonnegative constantd such that for any initial conditionx(0) and each
measurable essentially bounded controlu the associated solutionx(t) exists and satisfies
‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖u‖∞) + d, where‖u‖∞ denotessup{‖u(t)‖, t ≥ 0}. It
is clear that if system(Σ) is input to state practical stable then it is globally uniformly
practically stable in the sense of Definition 1 whenu = 0.

3 Output feedback stabilization

Throughout this paper, we deal with uncertain dynamical systems described by
{

ẋ = f(t, x) + g(t, x)u + g(t, x)ξ(t, x, u),

y = h(t, x),
(2)

wheret ∈ R+ is the time,x(t) ∈ R
n is the state,u(t) ∈ R

m is the control input and
y ∈ R

p is the output.f : R+×R
n → R

n, g : R+×R
n → R

n×m andh : R+×R
n → R

p

are known functions satisfyingf(t, 0) = 0 andh(t, 0) = 0 for all t ∈ R+. f andg are
supposed to be locally Lipschitz inx and continuous int. The functionξ : R+×R

n×R
m

→ R
m represents uncertainties in the plant. The nominal system corresponding to system

(2) is given by
{

ẋ = f(t, x) + g(t, x)u,

y = h(t, x).
(3)

Our aim is to design an output feedback controller such that system (2) is globally practi-
cally stable. We consider the following assumptions pertaining to system (2).

(A1) There exist nonnegative real scalar functionsρ1(., .), ρ2(., .), with

ρ1(t, y) < 1

such that

‖ξ(t, x, u)‖ ≤ ρ1(t, y)‖u‖ + ρ2(t, y)

for all t ∈ R+, y ∈ R
p, u ∈ R

m.
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In order to design an output feedback variable structure control, the author in [14]
consider uncertain systems with linear nominal part and such that the unknown function
satisfies assumption (A1).

We will consider the problem of choosing an output feedbacku(t, y) such that, for all
uncertainties satisfying the assumption (A1), system (2) is globally uniformly practically
stable. We will assume that the nominal system (3) is globally asymptotically stabilizable.
Indeed, we suppose that the assumptions below are fulfilled.

(A2) There exist an output feedbacku0(t, y), aC1 functionV (., .), K∞ functionsα1(.),
α2(.), a classK α3(.) satisfying

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), (4)

∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u0(t, y)
)

≤ −α3(‖x‖) (5)

for all x ∈ R
n.

(A3) There exists a functionϕ(., .) : R+ × R
p → R

m such that

∂V

∂x
g(t, x) = ϕT (t, y). (6)

For anyε1, ε2 > 0, the proposed controller is given by

u(t, y) = u0(t, y) + u1(t, y) + u2(t, y), (7)

whereu0 is given by assumption (A2) and

u1(t, y) = −
θ1(t, y)2‖u0(t, y)‖2

θ1(t, y)‖ϕ(t, y)‖‖u0(t, y)‖ + ε1

ϕ(t, y), (8)

u2(t, y) = −
θ2(t, y)2

θ2(t, y)‖ϕ(t, y)‖ + ε2

ϕ(t, y), (9)

whereθ1(t, y) = ρ1(t, y)(1 − ρ1(t, y))−1, θ2(t, y) = ρ2(t, y)(1 − ρ1(t, y))−1 andV is
the Lyapunov function satisfying assumption (A2).

We have the following result.

Theorem 2. Consider an uncertain system described by(2) satisfying assumptions(A1),
(A2) and (A3) and subject to the control given by(7). Then the resulting closed-loop
system is globally uniformly practically stable.

Proof. First, note that controller (7) satisfies

‖u(t, y)‖ ≤ ‖u0(t, y)‖ + ‖u1(t, y)‖ + ‖u2(t, y)‖

≤
(

1 + θ1(t, y)
)

‖u0(t, y)‖ + θ2(t, y). (10)

148



On the Practical Output Feedback Stabilization for Nonlinear Uncertain Systems

We will use the functionV as a Lyapunov function candidate for the closed-loop system.
Its derivative along the trajectories of (2) is given by

V̇ (t) =
∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u + g(t, x)ξ(t, x, u)
)

.

Taking into account assumption (A1) we have

V̇ (t) =
∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u
)

+
∂V

∂x
g(t, x)ξ(t, x, u)

≤
∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u
)

+

∥

∥

∥

∥

∂V

∂x
g(t, x)

∥

∥

∥

∥

‖ξ(t, x, u)‖

≤
∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u
)

+

∥

∥

∥

∥

∂V

∂x
g(t, x)

∥

∥

∥

∥

(

ρ1(t, x)‖u‖ + ρ2(t, x)
)

.

By assumption (A3) and (10) we have

V̇ (t) ≤
∂V

∂t
+

∂V

∂x

(

f(t, x) + g(t, x)u0(t, y)
)

+ ϕT (t, y)u1(t, y)

+ ϕT (t, y)u2(t, y) +
(

ρ2(t, y) + ρ1(t, y)θ2(t, y)
)

‖ϕ(t, y)‖

+ ρ1(t, y)
(

1 + θ1(t, y)
)

‖u0(t, y)‖‖ϕ(t, y)‖.

On the one hand, using (8) and the fact that

ρ1(t, y)
(

1 + θ1(t, y)
)

= θ1(t, y)

we get

ϕT (t, y)u1(t, y) + ρ1(t, y)
(

1 + θ1(t, y)
)

‖u0(t, y)‖‖ϕ(t, y)‖ ≤ ε1. (11)

On the other hand, using (9) and the fact that

ρ2(t, y) + ρ1(t, y)θ2(t, y) = θ2(t, y)

we get

ϕT (t, y)u2(t, y) +
(

ρ2(t, y) + ρ1(t, y)θ2(t, y)
)

‖ϕ(t, y)‖ ≤ ε2. (12)

So, by assumption (A2), (11) and (12) we obtain the followingupper bound oṅV

V̇ ≤ −α3(‖x‖) + ε1 + ε2.

Lettingr = α−1

1 ◦α2◦α−1

3 (ε1+ε2) we deduce by Theorem 1 that the closed loop system
is globally practically stable.

Remark 2. Sinceα−1

1 ◦ α2 ◦ α−1

3 is continuous andα−1

1 ◦ α2 ◦ α−1

3 (0) = 0, we deduce
that, if ε1 → 0 andε2 → 0 thenr → 0. That is the controller (7) insures that solutions of
the closed loop system converge towards an arbitrarily small neighborhood of the origin.
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Remark 3. It should be remarked that when the nominal system is linear,i.e. f(t, x) =
Ax, g(t, x) = B andh(t, x) = Cx, the result of Theorem 2 will recover that of [7].

In the rest of this section, we give a class nominal systems satisfying assumptions
(A2) and (A3). We consider systems (2) with nominal autonomous part described by

{

ẋ = f(x) + g(x)u,

y = h(x),
(13)

wherex ∈ R
n, u, y ∈ R

m, f and them columns ofg are smooth,f(0) = 0 andh(0) = 0.
We will suppose that the uncertainties satisfy assumption (A1). For the nominal system
(13) we will make the following assumption.

(A4) There exist aC1 functionV (.) : R
n → R, K∞ functionsα1(.), α2(.), a classK

α3(.) satisfying

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),

LfV (x) ≤ −α3(‖x‖),

LgV (x) = h(x)T

for all x ∈ R
n.

Systems (13) satisfying assumption (A4) are said to beC1 strictly passive. Letting
φ(.) : R

m → R
m be any smooth function such that

φ(0) = 0, yT φ(y) > 0 ∀y 6= 0, (14)

thenu(y) = −φ(y) globally asymptotically stabilizes the equilibriumx = 0 of system
(13) (see [15]).

Here, we consider the output feedback stabilization problem for uncertain system
(2) with nominal autonomous part satisfying assumptions (A1) and (A4). We propose the
following controller

u(y) = −φ(y) + u1(t, y) + u2(t, y), (15)

where

u1(t, y) = −
θ1(t, y)2‖φ(y)‖2

θ1(t, y)‖y‖‖φ(y)‖ + ε1

y,

u2(t, y) = −
θ2(t, y)2

θ2(t, y)‖y‖ + ε2

y,

whereθ1(t, y) = ρ1(t, y)(1−ρ1(t, y))−1, θ2(t, y) = ρ2(t, y)(1−ρ1(t, y))−1, ε1, ε2 > 0,
V is the Lyapunov function given by assumption (A4) andφ is any nonlinearity satisfying
condition (14).

We have the following corollary of Theorem 2.

Corollary 1. Consider an uncertain system described by(2) satisfying assumptions(A1)
and (A4) and subject to the control given by(15). Then the resulting closed-loop system
is globally practically stable.
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4 Example

As an example of systems satisfying assumptions (A1)–(A3),let us consider the following
planar system















ẋ1 = −x1 − x2e
−2t,

ẋ2 = x1 + u + cosx1 +
1

2
sin u,

y = x2.

This system is of the form (2) with

f(t, x) =

[

−x1 − x2e
−2t

x1

]

, g(t, x) =

[

0
1

]

, h(t, x) = x2

and

ξ(t, x, u) = cosx1 +
1

2
sin u.

We note that assumption (A1) is fulfilled with

ρ1(t, y) =
1

2
and ρ2(t, y) = 1.

Soθ1(t, y) = 1, θ2(t, y) = 2. Using the Lyapunov function

V (t, x) = x2
1 +

(

1 + e−2t
)

x2
2,

it is shown in [16] that the nominal system










ẋ1 = −x1 − x2e
−2t,

ẋ2 = x1 + u,

y = x2

in closed loop with the controlleru0(t, y) = −y(t) = −x2(t) is globally uniformly
exponentially stable. It is readily seen that assumption (A2) is satisfied with

α1(s) = s2, α2(s) = 2s2, α3(s) = s2.

Furthermore,

∂V

∂x
g(t, x) = 2

(

1 + e−2t
)

y.

Thus assumption (A3) is also fulfilled with

ϕ(t, y) = 2
(

1 + e−2t
)

y.
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Consequently, for givenε1 > 0 andε2 > 0, it follows from (7), (8) and (9) that

u(t, y) = −y −
2(1 + e−2t)y3

2(1 + e−2t)y2 + ε1

−
8(1 + e−2t)y

4(1 + e−2t)|y| + ε2

.

The differential equation of the closed loop system is










ẋ1 = −x1 − x2e
−2t,

ẋ2 = x1 − x2 −
2(1 + e−2t)x3

2

2(1 + e−2t)x2
2 + ε1

−
8(1 + e−2t)x2

4(1 + e−2t)|x2| + ε2

+ cosx1.
(16)

For simulation we selectx0 = [1/2, 1/2]T , ε1 = 0.1 and ε2 = 0.1. The result of
simulation is depicted in Fig. 1.
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Fig. 1. Trajectories of system (16).

5 Conclusion

In this paper, the problem of output feedback stabilizationfor nonlinear uncertain systems
with nominal part that is affine in the control is investigated. A controller that assures
global uniform practical stability of the closed-loop system is proposed, that is, the so-
lutions of the closed-loop system converge towards an arbitrary small neighborhood of
the origin. A special case of systems is also considered, namely systems with a strictly
passive nominal part.
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