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Abstract. In this paper, we treat the problem of output feedback staibn of nonlinear
uncertain systems. We propose an output feedback comtibéé guarantees global
uniform practical stability of the closed loop system.
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1 Introduction

The problem of stabilization for uncertain systems has lvédaly investigated for many
years [1-11]. In these studies, the origin was not suppasbd ain equilibrium point of
the uncertain system. So we can no longer expect to desigmteotier that guarantee the
stability of the origin as an equilibrium point. In [1], a skof state feedback controls is
proposed in order to guarantee uniform ultimate boundedoksvery system response
within an arbitrarily small neighborhood of the zero stdtd, [9] and [6] presented
controllers that guarantee exponential stability of a bafitaining the origin of the state
space and the radius of this ball can be made arbitrary sinadicder to study uncertain
dynamical systems, the authors in [12] introduced the natibinput to state practical
stability. In [13], the concept of input to state practiclslity is extended to stochastic
case and an output feedback controller is proposed for & dfstochastic nonlinear
systems with uncertain nonlinear functions.

Most of the recent nonlinear controllers are designed foumcertain system that
has a nominal linear part and the controller is designeddasehe knowledge of the
upper bound, possibly time varying and state dependertteafihcertainties vector norm.
Another class of uncertain systems which has also receimesiderable attention, namely
systems with nominal part which is affine in the control. Sadtass of systems is impor-
tant because it may represent many physical systems. Inf@], 8uthors investigated the
state feedback stabilization problem for these systemshisnpaper, we will synthesis
an output feedback controller for this class of systems.hdtutd be noted that output
feedback stabilization problem for uncertain system wiitiedr nominal part has been
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discussed in ( [3,4,7,11]). Under the assumption that theemain part is bounded by
a known function that depends only on the output, they canstn output feedback
controller that guarantees global exponential stabilityre closed loop system. Here, we
will suppose that the unknown part is bounded by a functiahdlepends on the input and
the output. We will design an output feedback controllet thearantees global uniform
practical stability of the closed loop system. In Sectiow@ recall the definition of global
uniform practical stability and we give a sufficient conalitito assure it. In Section 3, we
state the main result. Throughout this pajpdrdenotes the Euclidean normR&f.

2 Practical stability

Consider a system described by
&= F(t,x) (1)

with ¢ € R is the time and: € R™ is the state. As a first step, we need to recall what is
meant by global uniform practical stability of (1).
Forr > 0, denoteB, = {x € R"/||z| < r}.

Definition 1. The system (1) is said globally uniformly practically seldflthere exists
r > 0 such that:

(i) forall e > r, there exist$ = §(¢) > 0 such that, for alt, > 0,

[zoll <6 = [lz(t)]| <&, Vi =to;

(i) forall e > r andc > 0, there existd (e, ¢) > 0 such that, for alt, > 0,

lz@®)]| <&, Vt>to+T(e,c), |zo] <c.

The origin may not be an equilibrium point of the system (1)t,Bince theB,. ball
is an attractor and € B,., it follows that at least zero cannot be a globally unstablg-e
librium provided that zero is an equilibrium but it could beally unstable equilibrium,
even when the ball is an attractor for> 0. If system (1) satisfies the requirements of
Definition 1 withr = 0, then it is globally uniformly asymptotically stable.

The following theorem gives sufficient conditions to asgylobal practical stability.
Its proof can be deduced from [1]. It uses the following congmn function definitions.
A function a:: [0, +oo[— [0,400[ is said to be of clas&, if it is continuous, strictly
increasing and.(0) = 0. Itis of classiC if, in addition, it is unbounded.

Theorem 1. Consider systerflL) with F'(.,.) continuous. Suppose that there exist'a
functionV(.,.): Ry x R™ — R, K functionsa;(.), as(.), a classk a3(.) and a
small positive real number such that the following inequalities hold for alke R, and
x e R™

ar([lz]]) < V(¢ z) < as((l]),
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ov. oV
B D (pt2) < —asllal) + o

Then, syster() is globally uniformly practically stable with = ;' o a0 a3 ' (0) and
B, = {z eR"/|lz| ;' oaz 005 (0)},
where “o” denotes the composition.

Remark 1. Consider a control system haviagas state and as input:(X) & = f(z,u),

x € R", v € R™, wheref is a smooth function. This system is said to be input to state
practical stable (see [12]) if there exist a functj®of classKCL (ie 5: [0, +o00[x [0, +00]

— [0, +o0], such that for each fixet| the functionj(.,¢) is of classK and for each
fixed s, the functioni(s, .) is non increasing and tends to zero at infty), a functjoof
classK and a nonnegative constadisuch that for any initial condition(0) and each
measurable essentially bounded contrtthe associated solutiar(¢) exists and satisfies
lz@)ll < B(|z(O)]],) + ([lullc) + d, wherel|u| denotessup{[u(t)], t > 0}. It

is clear that if systenX) is input to state practical stable then it is globally unifdy
practically stable in the sense of Definition 1 wheg- 0.

3 Output feedback stabilization

Throughout this paper, we deal with uncertain dynamicaksys described by

&= f(t,z) + g(t, x)u+ g(t, )&t z, u),
Y= h(t,l‘),

wheret € Ry is the time,z(t) € R™ is the stateu(t) € R™ is the control input and
y € RPisthe output.f: Ry xR — R"”, g: Ry xR” — R"*™ andh: Ry xR™ — RP
are known functions satisfyingi(t,0) = 0 andh(¢,0) = 0 forallt € R.. f andg are
supposed to be locally Lipschitz inand continuous in. The functiong: Ry xR"” xR™
— R™ represents uncertainties in the plant. The nominal systeresponding to system
(2) is given by

b= f(t2) + glt 2
y = h(t, ).

)

3

Our aim is to design an output feedback controller such fstem (2) is globally practi-
cally stable. We consider the following assumptions peitai to system (2).
(A1) There exist nonnegative real scalar functipn§, .), p2(.,.), with
pi(t,y) <1
such that
1€t 2, w)|| < po(t,y)llull + p2(t, )
forallt e Ry, y € RP, u € R™,
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In order to design an output feedback variable structurgrobrihe author in [14]
consider uncertain systems with linear nominal part antt hiat the unknown function
satisfies assumption (A1).

We will consider the problem of choosing an output feedhgeky) such that, for all
uncertainties satisfying the assumption (A1), systemgq#@Jabally uniformly practically
stable. We will assume that the nominal system (3) is glgtzeymptotically stabilizable.
Indeed, we suppose that the assumptions below are fulfilled.

(A2) There exist an output feedbaek(t,y), aC* functionV(.,.), K functionsa;(.),
as(.), aclassC as(.) satisfying

o () < V(t,2) < (el @
o+ T (F(t,) + (e, 2uoltw) < —asl]) ©
for all z € R™.

(A3) There exists a functiog(.,.): Ry x RP — R™ such that

ov

55 9(t:7) = " (t,y). (6)

For anye;, 5 > 0, the proposed controller is given by

u(tvy) = ’U,Q(ﬁ,y) +u1(tvy) +u2(tay)7 (7)

whereuy is given by assumption (A2) and

01(t,y)|luo(t, y)|?
t, )l y)lllwo(t, )| + €1

92(t,y)2
O O E o

whered: (t,y) = p1(t,y)(1 — p1(t,y)) "1 O2(t,y) = p2(t,y)(1 — pa(t,y)) " andV is
the Lyapunov function satisfying assumption (A2).
We have the following result.

ul(tay) = _91( @(tvy)a (8)

Ug(ﬁ,y) = _92(

Theorem 2. Consider an uncertain system described®)satisfying assumptiorn(&1),
(A2) and (A3) and subject to the control given lfy). Then the resulting closed-loop
system is globally uniformly practically stable.

Proof. First, note that controller (7) satisfies

[u(t, )| < Nuot, I + lur(t, y)|| + lua(t, y)|
< (1 + el(tvy))HuO(tvy)H + 92@79)' (10)

148



On the Practical Output Feedback Stabilization for Nomlimdncertain Systems

We will use the functiorl” as a Lyapunov function candidate for the closed-loop system
Its derivative along the trajectories of (2) is given by

oV oV

=5+ %(f(t,m) + g(t, w)u+ g(t, 2)E(t, =, u)).

Taking into account assumption (A1) we have

0 0 0
= S+ S (1) + gl 2)u) + Sl )6 )

ov. oV °)%

v oV v
< - -
< 57+ g Vo) +g(t @) *Haxg(t’x)

V(t)

V(t)

€@, z, u)|

(o1 (&, 2)[[ull + pa(t, 2)).

By assumption (A3) and (10) we have

V(t) < -+ 55 (ft2) + gt 2)uo(ty) + &' (1 y)ua(ty)

+ " (ty)ua(t,y) + (p2(t,y) + pi(t,y)02(t, ) llo(t,y)

On the one hand, using (8) and the fact that

p1(t,y) (1 +01(t,y)) = 0i(t, y)
we get

e (ty)ui(t,y) + pr(ty) (L+01(89) [[uo(t, y) et v)|| < e (11)
On the other hand, using (9) and the fact that

p2(t,y) + pr(t,y)b2(t,y) = 02(L,y)
we get

o (t.y)ua(t,y) + (p2(t,y) + p1(t,y)ba2(t.y) ot y)]| < e2. (12)
So, by assumption (A2), (11) and (12) we obtain the followipger bound oV’

V < —ay([l2]) + &1 + 2.

Lettingr = a;l 00y 0 agl (e1+e2) we deduce by Theorem 1 that the closed loop system
is globally practically stable. O

Remark 2. Sincea; ' o ay 0 a3 ! is continuous and; ' o ay o a5 ' (0) = 0, we deduce
that, ife; — 0 andes — 0 thenr — 0. Thatis the controller (7) insures that solutions of
the closed loop system converge towards an arbitrarilylsmahborhood of the origin.
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Remark 3. It should be remarked that when the nominal system is lingarf (¢, z) =
Az, g(t,x) = B andh(t,x) = Cz, the result of Theorem 2 will recover that of [7].

In the rest of this section, we give a class nominal systertisfgag assumptions
(A2) and (A3). We consider systems (2) with nominal autonosyeart described by

&= f(x) +g(x)u,
y = h(z),
wherer € R", u,y € R™, f and then columns ofy are smoothf(0) = 0 andh(0) =0

We will suppose that the uncertainties satisfy assumptdr).(For the nominal system
(13) we will make the following assumption.

(A4) There exist &0 functionV(.): R® — R, K functionsa; (.), az(.), a classk
as(.) satisfying
ar(lz]]) < V(z) <
LV(z) < —as(||2[),
LgV(z) = h(z)"
forall x € R".

(13)

as([[z]),

Systems (13) satisfying assumption (A4) are said t@bestrictly passive. Letting
#(.): R™ — R™ be any smooth function such that

$(0) =0, y"d(y) >0 Vy#0, (14)
thenu(y) = —¢(y) globally asymptotically stabilizes the equilibrium= 0 of system
(13) (see [15)).

Here, we consider the output feedback stabilization probier uncertain system

(2) with nominal autonomous part satisfying assumptior) @nd (A4). We propose the
following controller

u(y) = —o(y) +ui(t, y) +ua(t, y), (15)
where

01(t,y)°l8(y)l1?
o1t oW + =1

92(ta y)2
0ot )yl + 22
whered (t,y) = p1(t,y)(1—p1(t,y)) =1, 02(t,y) = p2(t,y)(1—pi(t,y)) " e1, €2 >0,
V is the Lyapunov function given by assumption (A4) anid any nonlinearity satisfying
condition (14).

We have the following corollary of Theorem 2.

Ul(ta y) = -

U’?(ﬁa y) = -

Corollary 1. Consider an uncertain system described®)satisfying assumptior(®1)
and (A4) and subject to the control given i§¥5). Then the resulting closed-loop system
is globally practically stable.
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4 Example

As an example of systems satisfying assumptions (A1)—(&8)s consider the following
planar system

i = —m1 — z0e 2,
. 1.
To = X1+ U+ cosxy + §smu,

Y = xZa.

This system is of the form (2) with

R e PP R TR

1
and
1.
E(t,x,u) = cosxy + 5 sinu.

We note that assumption (A1) is fulfilled with

p1(t,y) = % and pa(t,y) = 1.

So06,(t,y) =1, 02(t,y) = 2. Using the Lyapunov function
V(t,x) =23 + (1 + e*Qt)xg,

it is shown in [16] that the nominal system

i = —m1 — z0e 2,

Z-2:Z1+’U,,

Y =22
in closed loop with the controllet(t,y) = —y(t) = —x2(t) is globally uniformly
exponentially stable. It is readily seen that assumptid?) (4 satisfied with
ai(s) =52 ao(s) =2s5%,  az(s) = s>
Furthermore,
ov

%g(t, x) = 2(1 + e*Qt)y.
Thus assumption (A3) is also fulfilled with

et,y) =2(1+e )y
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Consequently, for gives; > 0 ande; > 0, it follows from (7), (8) and (9) that
2(1 + e 2)y3 8(1+e 2
ult,y) = —y — ( )y ( )y

20+ e 2)y2+e1 41 +e )|yl +eo
The differential equation of the closed loop system is

I, =—x1 — £C2€72t,

2(1 —2t),.3 8(1 —2t 16
by = 2y — 3y 2L (L+e ), (16)

21+ e 2)a2 +e1 4(1+ e 2t)|zo| + &2 +eosm

For simulation we selecty, = [1/2,1/2]7, e; = 0.1 ande; = 0.1. The result of
simulation is depicted in Fig. 1.
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Fig. 1. Trajectories of system (16).

5 Conclusion

In this paper, the problem of output feedback stabilizaftsmonlinear uncertain systems
with nominal part that is affine in the control is investighteA controller that assures
global uniform practical stability of the closed-loop sstis proposed, that is, the so-
lutions of the closed-loop system converge towards anrarlismall neighborhood of
the origin. A special case of systems is also consideredelyasystems with a strictly

passive nominal part.
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