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Abstract. The problem of classification of spatial Gaussian procesgmhation into
one of two populations specified by different regression rmeendels and common
stationary covariance with unknown sill parameter is cdex®d. Unknown parameters
are estimated from training sample and these estimatorplagged in the Bayes
discriminant function. The asymptotic expansion of theested error rate associated
with Bayes plug-in discriminant function is derived. Nureat analysis of the accuracy
of approximation based on derived asymptotic expansioménsmall training sample
case is carried out. Comparison of two spatial samplinggtesbased on values of this
approximation is done.
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1 Introduction

In classical discriminant analysis sometimes called stiped classification, the observa-
tions to be classified and observations in training sam@easumed to be independent.
However, in practical situations with temporally and saiiti distributed data this is
usually not the case. Data that are close together in timegacesare likely to be
correlated. Thus, to include temporal or spatial depenidstiitthe classification problem
is very important.

When populations are completely specified an optimal diaasibn rule in the sense
of minimum misclassification probability is the Bayesiaagdification rule (BCR). In
practice, however, the complete statistical descriptiopopulations is usually not pos-
sible. Training sample is required for the estimation ofggthebabilistic characteristics of
both populations. When estimators of unknown parameterased, the expressions for
the expected error rate are very cumbersome even for théesitgpocedures of DA. This
makes it difficult to build some qualitative conclusions eféfore, asymptotic expansions
of the expected error rate are especially important.
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Many authors have investigated the performance of the plugrsion of the BCR
when parameters are estimated from training samples wdtbpiendent observations or
training samples, where observations are temporally digren(see e.g., [1, 2]).
Switzer [3] was the first to treat classification of spatiaiada work that was extended
in [4]. However, neither of these authors analyse the eats of classificationSaltyte
and Ducinskas [5] derived the asymptotic expansion of ttigeeted error rate when
classifying the observation of a univariate Gaussian ranfield into one of two classes
with different regression mean models and common variahois.result was generalized
to multivariate spatial-temporal regression modeSiltyte-Benth and Duginskas [6].
However, in these papers the interclass spatial correlatas assumed equal zero. Also,
the observation to be classified were assumed independenttfaining samples in all
publications listed above.

In this paper, both restrictions are deleted, i.e. intsglgpatial correlations and
spatial correlations between observation to be classifiddraining sample assumed are
not equal zero. Performance of the plug-in linear discranirfunction when the param-
eters are estimated from training sample formed by cladsifisservations of Gaussian
random field is analyzed. We use the maximum likelihood (Mdfjreators of unknown
parameters of means and common variance assuming thattied sprrelation is known.
Similar problems for group spatial classification is coesatl in [7].

2 The main concepts and definitions

The main objective of this paper is to classify the obseovetibf spatial Gaussian process
{Z(s): se Dc R™}.

The model of observatiof (s) in population(2; is
Z(s) =a'(s)B +(s), )

wherex(s) is agx 1 vector of non random regressors ahds ag x 1 vector of parameters,

[ = 1,2. The error term is generated by zero — mean stationary $isssian process
{e(s): s € D C R™} with covariance function defined by nuggetless model for all
s,u €D

cov{e(s),e(u)} = r(s —u)o?, (2)

wherer(s — u) is the spatial correlation function and is variance as a sill parameter.

Consider the problem of classification of the observatfgn= Z(s() into one of
two populations specified above with given training sanple

Training sampld” is specified byl’ = (77, T3), whereT; is then; x 1 vector ofn,
observations o (s) from €, 1 = 1,2, n = ny + na.

Then the model of " is

T=X3+E, 3)
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where X is then x 2¢ design matrix,d’ = (81, 55) and E is then-vector of random
errors that has multivariate Gaussian distributhdn(0, o2 R).
The design matrixXX in (3) is specified by

X = X1 8 Xy,

where symboks denotes the direct sum of matrices aiNd is the n; x ¢ matrix of
regressors fo¥}, [ = 1, 2.

Denote byr, the vector of correlations betweéefy andT'. SinceZ, is correlated
with training sample, we have to deal with conditional dsition of Z, givenT = ¢
with means., and variance?, that are defined by

ppy = E(Zo|T; ) = 208+ ao(T — XB), 1=1,2, (4)

oty = V(Zo|T; ) = o°F, (5)
where

xy ='(s0), ag=r4R™", k=1-r(R 'r. (6)

Under the assumption that the populations are completagifspd and for known
prior probabilities of populationg; andwy (71 + m2 = 1), the Bayes discriminant
function (BDF) minimizing the probability of misclassifitan (PMC) is formed by the
log-ratio of conditional densities

Wi(Zo) = (Zo - %(N(l)t + Mgt)) (13 — 13,) /og, + 7, (7)
wherey = In(m /m2).

In practical applications the parameters of the PDF arellysuet known. Then the
estimators of unknown parameters can be found from traisamgples taken separately
from Q; andQs. When estimators of unknown parameters are used, the plugrsion
of BDF (BPDF) is obtained.

Let 49, 137 andégy be the estimators ofY ., p5; andogy, respectively, obtained
by replacings ando? in equations (4) and (5) with their estimatgtainds? based o'
Putl’ = (3,02) and¥’ = (3, 62).

The BPDF is obtained by replacing the parametkrs? in (7) with their estimators.
Then the BPDF for random T is

WT(Z(); \iJ) = <Z() — Oé()(T — XB) — %SC/OHB) (xéGB) (kﬁ'2) + v, (8)

with H = (I, I,) andG = (I, —1I,), wherel, denotes the identity matrix of order

Definition 1. The actual error rate for BPDF is defined as

2
(i) = mn, ©)
=1

157



K. Ducinskas

where, forl =1, 2,
Por = Por (= 1)'Wr(Zo; ¥) > 0[$%), (10)
is the conditional probability thalt/; (Zo; \IJ) misclassifiesZ, when it comes fronf);

(conditional probability is based on conditional disttiobn of Z, with meany®;7 and
variances?;.).

In the considered case, the actual error rate specified ji{1Q) fords (z°; \i/) can
be rewritten as

2
P(¥) = Zﬂl@(Ql), (11)
=1
whered(-) is the standard normal distribution function, and
Qi = (=1)"((a +b3) 4GB + 6°vk) [ (o) G0 0GR, (12)
where forl = 1,2
a; =yl —apXpB, b=apX —x,H/2. (13)

Definition 2. The expectation of the actual error rate with respect to ibteilbution of T,

designated ag&{ P(¥)}, is called the expected error rate (EER).
It is known (see [8]), that the ML estimators Gfando? based ol are

Bur = X(X'R'X) ' X'R'T, (14)

6% = (T = XPur) BT = X Barr) /. (15)
Using the properties of multivariate Gaussian distribuitds easy to prove that

Brir ~ Nog(8,55), $p =0 (X'R71X) 7", (16)

GhL ~ 0 Xn—2q/(n — 2q). (17)

ML estimator of$3 and bias adjusted ML estimator of are used in BPDF, |¢3 =
Burr, 6% =63,.n/(n —2q).
Then by using (14)—(17) it is easy to show (see e.g., [9]) that

Er(AB) =0, Er(AF'AB)=%s, Er(A6°AB) =0, (18)
Er(A6%) =0, Ep(A6)? =20"/(n—2q), (19)
where
AB=p3-08, As*=62—05>
Put
Af = (prr — por)?/ (ko?). (20)

Let A\, (R) be the largest eigenvalue &fand lety(-) be the standard normal distribu-
tion density function.
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3 The asymptotic expansion of EER

Make the following assumptions:

(A1) n(X'X)"! — V, asn — oo, whereV is positively definite2q x 2¢ matrix with
finite determinant;

(A2) rank(X) = 2¢; Apmaz(R) < v < 400, @asn — oo;
(A3) ni/ng — u,asny,ne — 0o, 0 < u < oo,

Theorem 1. Suppose that observatidfy to be classified by BPDF and let assumptions
(A1)—(A3) hold. Then the asymptotic expansion of EER is

Er(P(¥)) = Zﬂl@(Ql)
=1

+mp(@Q@{C + 27/ (n —29) } /280 + O(1/n?), (21)

where fori =1,2
Qi = —Ao/2+ (=1)'v/Ao, (22)
C =ASsN Ak, A=apX — zo(H/2+ yG/Ag). (23)

Proof. ExpandingP(¥) in the Taylor series about points= (3 andé2 = o2, we have
P(¥) = Ps + PyAB + P, AG?
+ 5 (ABEIAS + 205 Py s + P2 (A6)%) + Rs, (24)

whereRj3 is Lagrange remainder.
Taking the expectation of the right side of (24) and using,({10) we get

Er(P(¥)) = Ps + %tr(ﬁgzﬁ) + P, - ‘742(] + Er(Rs). (25)
Note that

Py =m(Q1)(NapGBB G zoA/k?) (26)
and

e = mp(Qu)7*/ (0 D). 27

Remember, that Lagrange remaindgy is the third order polynomial with respect
to the components ah3 and A62. Coefficients of this polynomial are the third order
partial derivatives oP(\i/) with respect to3 and42 estimated in the neighbourhood of
their true values.
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It is obvious that all third order moments of components ofnmally distributed
vectorAgS are equal 0 and

Er(862)° =8/(n —29)* = O(1/n?).
Third order partial derivatives ab(6;) with respect tg3 ands? are bounded by the

uniformly integrable functions in the same neighbourhood.
Then we can conclude that

Er(Rs) = O(1/n?). (28)
Notice that

A3 = (¢hGB)?/ (ko). (29)
Putting (26)—(29) into (25) we complete the proof of the tiego. O

It is easy to notice that this formula agrees with the forraderived before by other
authors (see e.g., [2]).

4 Example and discussions

The first numerical example is considered to confirm the asgyuof the approximation
based on proposed asymptotic expansion of the expectedrateoin the finite (even
small) training sample case.

In this example, observations are assumed to arise fromariafte spatial Gaus-
sian process o with unknown constant mean and an isotropic exponentiaetation
function given byr(h) = exp{—|h|/a}. Then semivariogram has the forpth) =
o%(1 — exp{h/a}).

With an insignificant loss of generality the cases with= 1, n; = ny = ng
andm, = m = 0.5 are considered. The Machalanobis distance between mébrgina
distributions ofZ° is specified byA = |(31 — 52)/c|. Then from (5), (6) and (20) it
follows thatk = 1 — 7y R~'rg, A¢ = A/VE, v =0.

Denote theoretical values of EER by TER.

Assume thaD is a5 x 5 square grid points o3 with unit spacing.

For greater interpretability, correlatiom(h) function is reparametrized as
r(h) = pl", wherep represents the correlation between adjacent poinf8.inUsing
K-optimal spatial sampling design (SSD) (see [10])4og [0.25;1) andn; = ny = 2
we have

D, = {(0,3), (354)}7 Dy = {(1,0), (453)}7

whereD; is the set of points itD, where training samplé; is taken; = 1, 2.
Let the observation to be classified is taken at paint (2, 2).
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The values of AER and the values of index of relative accutdgroposed asymp-
totic expansion specified by

n = |AER — TER|/TER

are given in Table 1 for various values of and for training pemnaesign described above.
Independent observations cage= 0) is included in Table 1 in order to estimate the
effect of the spatial correlation to the expected error.rate
Table 1 shows that AER values increases with spatial cdivala

Table 1. Values of AERy for the K-optimal SSDn; = np = 2andm; = 72 = 0.5

A AER n AER n
p=0 p=0.25
0.2 0.46513 0.05910 0.46352 0.06198
0.6 0.39639 0.12350 0.39174 0.13057
1.0 0.33054 0.13503 0.32337 0.14497
1.4 0.26929 0.11267 0.26036 0.12446
1.8 0.21400 0.07451 0.20419 0.08703
2.2 0.16562 0.03693 0.15578 0.04898
2.6 0.12465 0.01061 0.11546 0.02105
3.0 0.09109 0.00141 0.08304 0.00632
p=05 p=0.7
0.2 0.45788 0.07155 0.44693 0.08900
0.6 0.37549 0.15162 0.34448 0.18464
1.0 0.29842 0.17120 0.25234 0.20497
1.4 0.22948 0.15163 0.17516 0.17812
1.8 0.17049 0.11192 0.11491 0.12797
2.2 012223 0.06952 0.07109 0.07652
2.6 0.08446 0.03648 0.04141 0.03823
3.0 0.05619 0.01638 0.02268 0.01613
p=08 p=0.9
0.2 0.43512 0.10673 0.40788 0.14390
0.6 0.31204 0.21332 0.24227 0.25848
1.0 0.20702 0.22758 0.12200 0.24158
1.4 0.12642 0.18748 0.05144 0.16326
1.8 0.07075 0.12474 0.01799 0.08168
2.2 0.03617 0.06730 0.00519 0.03076
2.6 0.01685 0.02970 0.00123 0.00912
3.0 0.00714 0.01091 0.00024 0.00241

Analysing the content of the Table 1 we can conclude the mep@pproximation
of EER based on derived asymptotic expansion is sufficiesmtiyurate even in small
training sample« = 4) case, because the values of the index of relative accusacy i
not so large« € [0.0241;0.25848]). It is interesting to notice thaf attains its minimal
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and maximal values (these values are underlined in the Tablethe same case with
strongest dependence among observations fi.e-, 0.9) but with different degree of
separation between populations (i.A.,= 0.3 andA = 0.6). It is to be noted that in
case of strongly separated populatioAs¥ 1) the proposed approximation often is more
accurate, than in case of “close” populatiods € 1).

So the results of numerical analysis give us strong argusrteriiope that proposed
asymptotic expansion will yield useful approximations gpected error rate of classifi-
cation of spatially correlated Gaussian observations iteftnaining (even small) sample
case.

The second example numerically illustrates the compag$tmo SSD based on the
minimum of AER criterion.

Assume thatD is a2 x 2 square grid points o3 with unit spacing. Let the
observation to be classified is taken at paifnt= (1,1) and T is taken in the second order
neighbourhood ofy i.e.n = 8.

Consider two SS[F; and¢, specified by

&= {507 Dl:{(172)a(272)a(271)5(270)}5 DQ:{(LO)v(0a0)7(0a1)7(052)}}7
§o = {507 Dl:{(172)a(271)a(071)5(170)}5 DQ:{(OaO)v(0a2)7(2a0)7(252)}}'
They are illustrated in Fig. 1.

Si &2

Fig. 1. Two different SSD witlD1 and D, points signed as andx, respectively.

Letdz(.l) be the sum of distances frosp to pionts inD;, for SSD;, i = 1,2,1 =1, 2.
Thendgg = |d§l) - d§1)| represents the degree the population labels assymetmjriring
sample. In the considered situation we hdﬁ@ =0, d(122) =4(v/2-1).

Two levels of populations seperability i.é\ = 0.2 andA = 2.0 are considered.
Optimality of the SSD for supervised classificatiris evaluated by AERI = 1, 2.

The values of AERfor [ = 1,2 are given in Table 2 for various values @&nda,
that represent the range of spatial correlation betweeargations of spatial Gaussian
process.

Analyzing the figures in Table 2 we can conclude that optityali SSD depends an
degree of population labels assymmetry in training sanglethe minimum of proposed
criterion is attained for symmetric SSP (di2 = 0). The larger value of AER is obtained
for & with largerd; .
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The conclusions described above are valid for both levgi®ptilations serepability

(A = 0.2 andA = 2.0) and for various values of the range for spatial correlation

Table 2. Values of AER! = 1,2 for A = 0.2andA = 2.0 andm; = 72

p o AER; AER; AER; AER:
A=0.2 A =20
0.14 0.5 0.45954 0.45977 0.15497 0.15613
0.37 1.0 0.45111 0.45220 0.10962 0.11477
0.51 1.5 0.44275 0.44464 0.07493 0.08171
0.62 2.0 0.43514 0.43769 0.05123 0.05801
0.67 25 0.42822 0.43130 0.03521 0.04127
0.72 3.0 0.42186 0.42540 0.02434 0.02946
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