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Abstract. In this paper, we investigate the synchronization of cltatstems consisting
of non-identical parametrically excited oscillators. Thackstepping design, which is a
recursive procedure that combines the choice of a Lyapunaatibn with the design of a
controller is generalized and employed so as to achieveabidimos synchronization
between a parametrically excited gyroscope and each of dnanpetrically excited
pendulum and Duffing oscillator. Numerical simulations emplemented to verify the
results.
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1 Introduction

Chaotic behaviour is a well-known phenomenon in physicgjireering, biology, and
many other scientific disciplines. Recently, it has reagivauch attention [1,2]. The
control and synchronization of chaotic systems, represarmthallenge, since a chaotic
system is extremely sensitive to small pertubations. Nbstanding, the possibility
of control and synchronization of chaotic systems undetrageiconditions have been
established [1-8]. Due to the connection between contrdlsymchronization, recent
studies cast the problem of synchronization in the framkwbcontrol theory.

In this light, various techniques have been proposed foiegirty synchronization
between identical and non-identical systems. For instathee active control scheme
proposed by Bai and Lonngren [9] has received considerat#ateon in the last few
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years due to its simplicity and robustness. This scheme das modified over time,
but recently, Lei et al. [10] applied Lyapunov stability tirg and Routh-Hurwitz criteria
to synchronize identical parametrically excited systenubing the active control tech-
nique. The backstepping design scheme which can guaraluieal gtability, tracking
and transient performance for a broad class of strict-faekimonlinear systems, has
been widely employed for controlling, tracking and synctizang many chaotic systems
[11-16] as well as hyperchaotic systems [18]. The advastafjbackstepping include
applicability to a variety of chaotic systems with or with@xternal excitation, need for
only one controller to realize synchronization, and haegireement of less control effort
in comparison with other control methods [12, 13, 18].

In [12], Tan et al. proposed an adaptive backstepping defsigsynchronizing
identical chaotic systems. However, in practice most sysiee non-identical. There-
fore, it is very necessary to synchronize two non-identitelotic systems. Since non-
identical chaotic systems have different nonlinear furdi different number of equilib-
rium points, different phase maps and shapes, synchramizat non-identical chaotic
systems is difficult to achieve and hence has received lesstiain [19-21, 23, 24].

Ge et al. [19] constructed control functions based on lireapling of the state
variables of the drive and response systems. However, #te gariables need to be
seperated from the others and coupled into a linear coupding to add into the syn-
chronized systems. This is difficult to realize in practide.[20], the controller was
designed by constructing the Lyapunov function or cal@ndat yapunov exponent to
realize synchronization, but the calculations of Lyapuexponent is usually difficult. To
address the problems associated with the applicationgafdhtrollers in [19, 20], LU et
al. [21] presented a nonlinear feedback control strategsyfiochronizing different chaotic
systems. In addition, the method of active control has beplied by Njah and Vincent
[22] to synchronize between single and double well Duffirapr\der Pol oscillator and
Vincent in [23] applied the method to achieve synchronaatbetween different 4-D
chaotic systems while Zhang et al. [18] proposed an actackdtepping method to solve
this problem. All the approaches described in [18-21, 23j@dluding the active-sliding
mode control [24] employed control functions which are nuioadly equal to the dimen-
sion of the system. This requirement makes the controllerg gomplex for practical
applications. A recent analysis in [16, 17] shows that thepside backstepping design
[12], besides its efficiency would also reduce considerdt#ycontroller complexity, since
only one control function is required to achieve the synoiration goal. Thus, in this
paper we proposed a generalized adaptive backsteppitggtfar synchronizing non-
identical chaotic systems. This problem has not been tlgateviously in the literature
to the best of our knowledge.

Specifically, we illustrate this approach using non-idesdtparametrically excited
systems. Parametrically excited systems have been widglpred for modeling the
dynamic behaviour of many engineering systems such asaséighlatforms, buildings
under earthquakes, orientation information [25—28] andrsdHowever, not much atten-
tion has been given to the study of synchronization of patacadly excited systems.
A few reports, can be found in [10,28-32]. In [10] the synctization of identical
parametrically excited pendulum and the Duffing oscillateere considered separately
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by Lei et al., while in [29-31], the synchronization of ideal nonlinear gyroscope
were treated. In all of the above reports, synchronizatetwben non-identical system
were not treated except in [32], where we considered thehsgnization of different
parametrically driven oscillators using active controthwel.

The rest of the paper is organized as follows: in the follaysection, we formulate
the problem, while in Section 3, we give a brief descriptibthe systems under consider-
ation. The adaptive synchronization between the paraomtroscope and pendulum are
presented in Section 4 and that between the parametricappesind Duffing oscillator is
presented in Section 5. Numerical simulations are alsagiveerify the results. Finally,
the paper is concluded in Section 6.

2 Problem formulation

Consider a chaotic system described by
z=Alt)z + f(x), (1)

wherez(t) € R™ is an n-dimensional state vector of the systetfy,) € R" is a time-
periodic matrix for the system parameter, ahdR"™ — R™ is the nonlinear part of
the drive system which is continuously differentiable aatis§ies the global Lipschitz
condition,

| f(z1) = f(x2)]| < cllwy —x2]|, V1,22 € R™ forsomec > 0. (2)
The response system is given by

y = B(t)y + g(y) + u(t), (3)

wherey(t) € R™ denotes the state vector of the responding sysfet) € R™ is the
matrix of the response system parameter, @an®R” — R™ is the nonlinear part of the
responding system.(t) € R™ is a controller which is to be designed.

If A(t) = B(t)andf(x) = g(y), thenz andy are the states of two identical systems.
If A(t) # B(t) or/fandf(z) # g(y), thenz andy are the states of two different chaotic
systems. The case for two different chaotic systems is whdteat here.

By properly choosing:, synchronization between the drive and response system can
be achieved. The dynamics of the synchronization errorbearbtained as

é=C(t)e+g(y) — fz) + u(?), 4)

whereC'(t) = B(t) — A(t) is the matrix of the linear part of the error dynamics paramet
ande = y — z. Hence, the synchronization goal is to méke,;_. . |le(t)|| = 0.

In the absence of the contral(t), the error system (4) would have an equilibrium at
(0,0). If a controlu(t) is chosen such that the equilibriu®, 0) remains unchanged,
then the synchronization problem can be transformed to dhaealizing asymptotic
stabilization of system (4) aboy0,0). Thus our objective is to design an adaptive
feedback controller for system (3) that guarantees gldballgy at the origin.
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The backstepping design procedure contaisteps. At first an intermediate control
function «; shall be developed using an appropriate Lyapunov functign, Next an
update for the parameter estimate is designed, theretiféestabilizing functiony; and
an update law are designed to render the derivative of theechayapunov function
negative definite. We illustrate the approach with examipl&ections 4 and 5.

3 System description

Detailed description of the systems under study can be fonrj@7, 29, 31, 33] and
references therein.
The equation governing the motion of tharametrically excited gyrs given by [29]

I’l = Y1,

5
y1 = g(x1) — ayy — by} + Bsina; + fsinwtsinzy, ©)

2 (1—cos z1)2

whereg(z1) = —a* 5 -
The nonlinear gyro given by equation (5) is taken to be theedsystem. It exhibits

varieties of dynamical behaviour including chaotic motiedisplayed in Fig. 1 for the

following parameters® = 100, 3 =1, a = 0.5, b = 0.05, w = 2, andf = 35.5.

dx/dt

-1.5 -1 -0.5 0 0.5 1 15
Fig. 1. The phase portrait of the chaotic gyro.

The first slave system under consideration gagametrically excited chaotic pen-
dulum which can be described by [27]

Tg = Y2,

Yo = —hya — sinxg — pcoswt sinxg + u(t),

(6)

whereu is a control input to be determined. The chaotic attractohisfpendulum (6) for
the following parameters = 0.1, p = 2.0 andw = 2.0 is displayed in Fig. 2.
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dx/dt
IS
T

Fig. 2. The phase portrait of the chaotic pendulum.

The second slave system igparametrically excited Duffing systesnbject to har-

monic parametric excitation in the form [33]
ij = Y2,

. 3 : (@)

Yo = —YY2 + T2 — 2° + pxe sin Qf + u(t),

whereu is a control input to be determined.
The phase portrait of the chaotic attractor associated Bitfiing system (7) for
~v=10.2,4 =0.5andQ2 = 1.0is given in Fig. 3.

15 T T T T T T T

05

dx/dt
o
T

-0.5 [

Fig. 3. The phase portrait of the chaotic Duffing oscillator.

Q
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4 Adaptive synchronization between the gyroscope and pentlum

Here we synchronize the parametric gyroscope (5) with thrarmpatric pendulum (6),
where the gyro is the drive system and pendulum is the resmystem.

Let the error state between (5) and (6)dhe= x2 — z1 ande, = y2 — 1.

Using the above definition, we have the following error dyi@nfor the drive-
response system as:

€x = Y2 — Y1,
€y = —hys —sinze — pcoswisinzy — g(x1) + ayr (8)
+ by® — Bsinzy — fsinwtsina; + u(t).
The objective is to find a control law so that system (8) is itz at the origin.
Starting from the first equation of system (8), an estimattadilizing functiony; (e, ) has

to be designed for the virtual contrg) in order to make the derivative &f (e, ) = %eﬁ,
negative definite whea; (e,) = —e,. Define the error variables as

we = ey — ai(ey). 9)
Considering thée,,, w-2) subspace given by
€x = W2 — €g,

we = —hey +y1(a—h+ by1?) — g(x1) — sin(e, + 21)(1 + pcoswt) (20)
—sinz1 (0 + fsinwt) + wa — e, + u(t)

which form the complete system.
Choosing the Lyapunov function
1

‘/2(63;511&) = ‘/l(e;c) + )

w3, (11)
The derivative of equation (11) along the error dynamicg {40

Vy = —ei + wy [ — hey + 1 (a —h+ by12) — g(z1) — sin(z2)(1 + pcoswt)

—sinz1 (6 + fsinwt) + wa + u(t)]. (12)
If
u(t) = —[— hey +y1(a — h+byr?) — g(z1) — sin(z2)(1 + pcoswt)
—sinz1 (B + fsinwt) + 2ws], (13)
then
Vo=—e2—wi<0 (14)
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is negative definite and according to Lasalle-Yoshizawartra [34], the error dynamics
will converge to zero as — oo, while the equilibrium(0, 0) remains global asymptoti-
cally stable. Thus, the synchronization between two nemiidal parametrically excited
system is achieved via the adaptive backstepping design.

We performed numerical simulations for the systems wittapuaaters as stated ear-
lier and the initial conditions arér;,y;) = (1,—1), (z2,y2) = (1,1). In Fig. 4 and
Fig. 5, we display a situation where the control was de-at#iy and activated at= 0
respectively. It is very clear that the synchronization baen achieved since the error
dynamics ¢1, e2) between the drive and the response systems approacheszerooco.

ey

(b)

I I I .
0 20 40 60 80 100
Time, t

Fig. 4. Error dynamics of the coupled system when the actwroller is de-activated
for a parametric gyro and pendulum: @), (b) ey.

&y
S A N o N s oo
.

(@)
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(b)

05 L L L L
0 20 40 60 80 100

Time, t

Fig. 5. Error dynamics of the coupled system when the activeroller is activated for
a parametric gyro and pendulum: @), (b) e,.

171



B. A. Idowu, U. E. Vincent, A. N. Njah

5 Adaptive synchronization between the gyroscope and Duffm
oscillator

Here we synchronize the parametric gyroscope (5) with tharpatric Duffing oscilla-
tor (7), where the gyro is the drive system and Duffing osali#s the response system.
Let the error state between (5) and (7)die= x2 — z1 andey, = y2 — 1.
Using above definition, we have the following error dynanfiicshe drive-response
system as:

€x = Y2 — Y1,
€y = —VY2 + T2 — T3 + pre sin Qt — g(z1) + ayy (15)
+by? — Bsinxy, — fsinwtsinz; + u(t).

The objective is to find a control law so that system (15) ibifitaed at the origin.
Starting from the first equation of system (15), an estineastabilizing function; (e,)
has to be designed for the virtual conteglin order to make the derivative &f (e,) =
1e,2, negative definite when, (e,) = —e,. Define the error variable as

wy = ey — i (ex). (16)

Considering thée,,, w-2) subspace given by

€z = W3 — €y,
Wy = —yey + 41 (a + by? — 'y) +ex(1 —e2 — 3eyxy — 327 + psin Q) a7
+ 21 (1 — 27 + psinQt) — g(z1) — sinay (B + fsinwt) + w2 + u(t),

which form the complete system.
Choosing the Lyapunov function

1
Valeyun) = Viles) + yus (18)

The derivative of equation (18) along the error dynamicg {47

Vo= —e2 +wa| —ve, +y1(a+byl —7)
+ ex(l — ei —3ezr1 — 31% + psin Qt)
+x1(1 — 22 + psinQt) — g(z1)
—sinz1 (B + fsinwt) + ws + u(t)]. (19)

If u(t) is chosen such that
u(t) =—[—vey +y1(a+by; —v) + e (1 —e2 — 3eyw1 — 327 + psin Qt)
+ 21 (1 — 27 4 psinQt) — g(21) — sina1 (8 + fsinwt) + 2ws], (20)
then

Vy = —e? ws <0 (22)

>
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is negative definite and according to Lasalle-Yoshizawartra [34], the error dynamics
will converge to zero ag — oo, while the equilibrium(0,0) remains global asymp-
totically stable. Thus, the synchronization between thepatric gyroscope and the
parametric Duffing oscillator is achieved via the adaptigekstepping design.

We performed numerical simulations for the systems wittapuaaters as stated ear-
lier and the initial conditions arérq,y1) = (1,—1), (xz2,y2) = (1,2.1). In Fig. 6 and
Fig. 7, we display a situation where the control was de-ateiy and activated at= 0. It
is very clear that the synchronization has been achievee $ive error dynamice(, es)
between the drive-response system approaches zérea.

€y

Time, t

f\ (b)

I I I I
0 20 40 60 80 100
Time, t

Fig. 6. Error dynamics of the coupled system when the actwgroller is de-activated
for a parametric gyro and Duffing oscillator: @), (b) ey.

o &b N on s o

(@)

0.6 A
0.4 ~

€y

02 | 4

o

20 40 60 80 100
Time, t

3.3 ©
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0 20 40 60 80 100
Time, t

Fig. 7. Error dynamics of the coupled system when the activgroller is activated for
a parametric gyro and Duffing oscillator: @), (b) e, .
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6 Conclusions

Backstepping is a systematic Lyapunov method to desigrr@losigorithms which sta-
bilize nonlinear systems. In this paper, we have been abtgriohronize non-identical
parametrically excited systems via adaptive backstepgasign for the first time. The
work by Ge et al. [35], Tan et al [12] etc have been extendediieze the set goal. To
the best of our knowledge, previous authors have not udilithe adaptive backstepping
design method to synchronize non-identical systems, othvltie active control have
been found valuable. The adaptive method implemented Hiengsafor flexibility in
the controller design and global stability based on the eypaite choice of Lyapunov
functions, thus, it can readily be extended to other nomidel chaotic systems other
than those with parametric excitation as well as higher dsmaal chaotic systems. Our
results, complimented with numerical simulations, shoat the method is effective and
feasible.
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