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Abstract. One considers the motion of nonlinear systems close to theirequilibrium
positions in the presence of coarse-graining in time on the one hand, and coarse-graining
in time on the other hand. By considering a coarse-grained time as a time in which
the increment is notdt but rather(dt)c > dt, one is led to introduce a modeling
in terms of fractional derivative with respect to time; and likewise for coarse-graining
with respect to the space variablex. After a few prerequisites on fractional calculus via
modified Riemann-Liouville derivative, one examines in a detailed way the solutions of
fractional linear differential equations in this framework, and then one uses this result in
the linearization of nonlinear systems close to their equilibrium positions.
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1 Introduction

1.1 Coarse-graining, fractals, fractional derivative

General motivation of the article

The motivation of the present article is the need to derive a mathematical framework for
dealing with dynamical systems defined in coarse-grained spaces and with coarse-grained
time and, to this end, to use the fact that fractional calculus appears to be intimately related
to fractal and self-similar functions.

Coarse-grained space-time in physics

Coarse-grained and thus fractional spaces are basic in El Naschie’s work [1–6]. Fractals
are basic in Nottale’s work [7–10], and transparent in Ord’spaper [11]. See also [12,13].
In these works fractals are introduced as a tool to revisit the foundation of physics as
natural science.
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Fractional derivative, self-similarity, fractal dimension

Fractional derivative has been introduced formally by Liouville by using an integral in-
volving the function under consideration, and in most casesthis fractional calculus is
more or less a formal calculus which is very often converted into Laplace’s transform.
This has been true until when Kolwankar [14, 15], starting from the Hölder exponent
of functions defined on Cantor’s sets, arrived at the definition of fractional derivative in
terms of increment. Later, we arrived at the same identification, but by using the opposite
way. We started from a fractional derivative defined as the limit of fractional difference,
which allowed us to obtain the generalized fractional Taylor’s series, and we so found that
the Hölder exponent is exactly the order of the fractional derivative of the function under
consideration.

Information, coarse-graining, Ḧolder exponent

In an attempt to relate coarse-graining with Hölder exponent, we shall refer to information
theory. Indeed, in the Shannon information theory framework, it is known that the amount
of information (uncertainty should be better) involved in the random variableX which is
uniform on the interval(a, b) is h(X) = ln(b − a), see for instance [16].

This being the case, assume that we have two non-random variablesx andy which
are related by the relationy = f(x). We shall say that x and y involved the same grade of
granularity when

lim
∆x↓0

h(|∆y|)

h(|∆x|)
= 1,

and on the contrary we shall say that, there is a coarse-graining phenomenon when this
limit is β, different from the unit, in other words, when one has

|dy| = C|dx|β ,

whereC is a constant, andβ is such that0 < β < 1, in which case the coarse-graining
effect takes place in thex-space. On the contrary whenβ > 1 one then has| dy|1/β = dx
and it is they-space which involves coarse-graining. This parameterβ is exactly the
Hölder’s coefficient, and in quite a natural way we come across fractional calculus.

Non-differentiability, randomness and stochastics

As a last, but not least remark, we shall notice that non-differentiability and randomness
are mutually related in their nature, in such a way that studies in fractals on the one hand
and fractional Brownian motion on the other hand are often parallel in the same paper.
Indeed, as pointed out by Nottale [7], a function which is continuous everywhere but is
nowhere differentiable necessarily exhibits random-likeor pseudo-random features, in the
sense that various samplings of this functions on the same given interval will be different.
This may explain the huge amount of literature which extendsthe theory of stochastic
differential equation [17,18] to stochastic dynamics driven by fractional Brownian motion
[17–24].
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1.2 Purpose and organisation of the article

Organization of the paper

We shall focus on fractional derivative defined by finite difference, which, as a result,
provides various extensions of the Leibnitz formula. The article is organised as follows.
For the convenience of the reader, we first bear in mind the essential of the fractional
modified Riemann-Liouville derivative and the fractional Taylor’s series, as well as some
useful formulae which one can so obtain (Section 2). Then oneconsiders the problem
of modeling velocity with coarse-grained time and coarse-grained space and by this way,
via fractional analysis, we come across fractional derivative (Section 3). In the Sections 4
and 5, we consider solving different types of linear fractional linear differential equations
with constant coefficients on the one hand, and time-varyingcoefficient on the other hand.
Then we shall consider systems of linear fractional differential equations (Section 6).
This material will be the basis to analyze the stability of nonlinear systems close to their
equilibrium positions, and simple illustrative examples are provided in the Section 7.

Bibliographical note

Kolwankar and Gangal [14, 15] considered a function defined on a fractal set, and after
introducing its derivative in terms of Hölder exponent , they arrive at fractional derivative
and fractional (local) Rolle-Taylor’s formula. In our approach, we worked in the opposite
way. Firstly, irrespective of any fractal set, we start fromthe expression of the fractional
derivative as the limit of a fractional difference involving an infinite number of terms, and
therefore we obtain the fractional generalized Taylor’s series, whereby we come across
the Hölder’s exponent.

In order to deal with functions which are not differentiable, Ben Adda and Cres-
son [12] introduced a so-called quantum derivative, different from the Nottale’s scale-
derivative, which also provides a (local) Rolle-Taylor’s formula. Here, we shall use a
different modeling based on fractional derivative.

The Section 2 below is a background on some results for the convenience of the
reader, and all the remaining should be thought of as the contribution of the article.

2 Summary of some results on fractional analysis

2.1 Fractional derivative via fractional difference

This second section is a short review, but ut we think it is necessary for the convenience
of the reader.

In this section, we use the term of fractional analysis instead of fractional calculus,
to emphasize the fact that we do not use the formal definition of fractional derivative via
integral, but rather we work on the finite increments themselves, that is to say we define
fractional Brownian motion as the quotient of two increments.

Definition 1. Let f : R → R, x → f(x) denote a continuous (but not necessarily
differentiable) function, and leth > 0 denote a constant discretization span. Define
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the forward operatorFW (h) by the equality (the symbol:= means that the left side is
defined by the right side) whereρ denotes a real-valued exponent.

FW ρ(h)f(x) := f(x + ρh), (1)

then the fractional difference of orderα, 0 < α < 1, of f(x) is defined by the expression
[16,22,23,25–27].

∆αf(x) := (FW − 1)αf(x) =

∞∑

k=0

(−1)k

(
α

k

)
f [x + (α− k)h], (2)

and its fractional derivative of orderα is defined by the limit

f (α)(x) = lim
h↓0

∆α(f(x)− f(0))

hα
. (3)

This definition is close to the standard definition of derivative (calculus for begin-
ners), and as a direct result, theα-th derivative of a constant is zero.

2.2 Modified fractional Riemann-Liouville derivative (via integral)

An alternative to the Riemann-Liouville definition of fractional derivative

In order to circumvent some drawbacks involved in the classical Riemann-Liouville defi-
nition, we have proposed the following alternative to the Riemann-Liouville definition of
F-derivative, which is moreover fully supported by the Definition 1.

Definition 2 (Riemann-Liouville definition revisited). Refer to the function of the
Definition 1

(i) Assume thatf(x) is a constantK. Then its fractional derivative of orderα is

Dα
xK =

K

Γ(1− α)
x−α, α ≤ 0, (4)

Dα
xK = 0, α > 0. (5)

(ii) Whenf(x) is not a constant, then one will set

f(x) = f(0) +
(
f(x)− f(0)

)
,

and its fractional derivative will be defined by the expression

f (α)(x) = Dα
xf(0) + Dα

x

(
f(x)− f(0)

)
,

in which, for negativeα, one has

Dα
x

(
f(x)− f(0)

)
:=

1

Γ(−α)

x∫

0

(x− ξ)−α−1f(ξ) dξ, α < 0, (6)
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whilst for positiveα, one will set

Dα
x

(
f(x)− f(0)

)
= Dα

xf(0) =
(
f (α−1)(x)

)′

=
1

Γ(−α)

d

dx

x∫

0

(x− ξ)−α
(
f(ξ)− f(0)

)
dξ, 0 < α < 1. (7)

Whenn < α ≤ n + 1, one will set

f (α)(x) :=
(
f (α−n)(x)

)(n)
, n < α ≤ n + 1, n ≥ 1. (8)

The main idea in this definition is that a fractional differentiable function is consid-
ered as the sum of a constant with a self-similar function which, as such, takes on the
value zero atx = 0.

We shall refer to this fractional derivative as to themodified Riemann Liouville
derivative.

Remark that this definition is different from other definitions in the literature (see
for instance [28–30] in the sense that it removes the effectsof the initial value of the
considered function.

2.3 Fractional Taylor’s series for one-variable functions

A generalized Taylor expansion of fractional order which applies to non-differentiable
functions reads as follows [31–35].

Proposition 1. Assume that the continuous functionf : R → R, x → f(x) has frac-
tional derivative of orderkα, for a givenα, 0 < α ≤ 1, and any positive integerk; then
the following equality holds, which reads

f(x + h) =

∞∑

k=0

hαk

Γ(1 + αk)
f (αk)(x), 0 < α ≤ 1, (9)

wheref (αk)(x) holds for the fractional derivativeDαDα . . . Dαf(x), k times.

With the notation

Γ(1 + αk) =: (αk)!,

one has the formula

f(x + h) =

∞∑

k=0

hαk

(αk)!
f (αk)(x), 0 < α ≤ 1 (10)

which looks like the classical one.
Alternatively, in a more compact form, one can write

f(x + h) = Eα

(
hαDα

x

)
f(x),
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whereDx is the derivative operator with respect tox andEα(y) denotes the Mittag-Leffler
function defined by the expression

Eα(y) :=

∞∑

k=0

yk

Γ(1 + αk)
. (11)

Bibliographical note

Kolwankar and Gangal [14,15] had previously discovered thefirst term of this series (10),
referred to as local fractional Taylor’s series (we would prefer the terms of fractional
Rolle’s formula) but their approach is quite different fromours. They started from func-
tions defined on fractal set, and then they arrive at the Hölder’s exponent, whilst we began
with the formal definition of fractional derivatives in terms of increment, and we came
across the Mittag-Leffler function.

2.4 Some useful relations

The equation (9) provides the useful relation

dαf ∼= Γ(1 + α) df, 0 < α < 1, (12)

or in a finite difference form∆αf ∼= Γ(1 + α)∆f .

Corollary 1. The following equalities hold, which are

Dαxγ = Γ(γ + 1)Γ−1(γ + 1− α)xγ−α, γ > 0, (13)

or, what amounts to the same (we setα = n + θ)

Dn+θxγ = Γ(γ + 1)Γ−1(γ + 1− n− θ)xγ−n−θ, 0 < θ < 1,
(
u(x)v(x)

)α
= u(α)(x)v(x) = u(x)v(α)(x), (14)

(
f [u(x)]

)α
= f ′

u(u)u(α)(x), (15)
(
f [u(x)]

)α
= f (α)

u (u)(u′
x)(α), (16)

(
f [u(x)]

)α
= (1 − α)!uα−1f (α)

u (u)u(α)(x). (17)

u(x) is non-differentiable in(14) and (15) and differentiable in(16), v(x) is non-dif-
ferentiable in(14), andf(u) is differentiable in(15)and non-differentiable in(16).

Corollary 2. Assume thatf(x) and x(t) are twoR → R functions which both have
derivatives of orderα, 0 < α < 1, then one has the fractional derivative chain rule

f
(α)
t

(
x(t)

)
= Γ(2− α)xα−1f (α)

x (x)x(α)(t). (18)

For more formulae, which can be so derived with the modified Riemann-Liouville
derivative, see [14].
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2.5 Integration with respect to(dx)α

The integral with respect to(dx)α is defined as the solution of the fractional differential
equation

dy = f(x)(dx)α, x ≥ 0, y(0) = 0, 0 < α ≤ 1 (19)

which is provided by the following result:

Lemma 1. Let f(x) denote a continuous function, then the solutiony(x), y(0) = 0, of
the equation(29) is defined by the equality

y =

x∫

0

f(ξ)(dξ)α = α

x∫

0

(x− ξ)α−1f(ξ) dξ, 0 < α ≤ 1. (20)

For the proof, see for instance [35].
Thefractional integration by part formula reads

b∫

a

u(α)(x)v(x)(dx)α = [u(x)v(x)]ba −

b∫

a

u(x)v(α)(x)(dx)α, (21)

as a direct consequence of (17).
For an extended bibliography on fractional calculus, one can consult for instance

[29,30,36–52].
In the next section, we shall show that fractional difference is quite suitable to obtain

a modeling of dynamics involving coarse-grained time or fractal time.

3 Application to modeling coarse-graining in time and space

3.1 Coarse-graining in time and fractional derivative

For fixing the thought, let us assume that we are dealing with amechanical point with the
massm which is moving in a one-dimensional coarse-grained space defined by the space
co-ordinatex(t), wheret denotes the time.

On a modeling standpoint, we shall assume that in a coarse-grained time, the instant
point is not infinitely thin but rather has a thickness. So, ifdt, dt > 0, and(dt)c refer
respectively to the size of the thin time increment and that one of the coarse-grained time
increment, then we should havedt < (dt)c.

Modeling coarse-graining phenomenon in time

In order to describe the coarse-graining phenomenon in timeon an analytical point of
view, we shall assume that the differential element, i.e. the increment in time is notdt,
but rather is(dt)α, whereα, 0 < α < 1, is a real-valued parameter which characterizes
the grade of the phenomenon.
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By this way, we shall have(dt)α > dt.
At first glance, we would have to select a modeling among(dt)α andα(dt), but an

additional underlying condition is that(dt)c/dt should increase indefinitely asdt tends
to zero, therefore the model.

Coarse-grained time and fractal time

It appears thatα is exactly the fractal dimension of the space in whichx is running.
Indeed, in the plane, let us consider a curve line of lengthL with a covering with disjoint
balls of diameterε. Let N(ε) denote the number of balls so involved. The fractal
(Hausdorf) dimensionf of the curve is defined as the limit

f := lim
ε↓0
−
(
lnN(ε)/ ln ε

)
.

Usually one has the equalityN = L/ε which provides the dimension1, but in the case of
a fractal curve, one will haveN = L/εα, therefore

f := lim
ε↓0
−
(
ln εα/ ln ε

)
.

Definition 3. With this assumption, the coarse-grained time velocity of aparticle will be
defined by the expression

uα(t) :=
dx

(dt)α
, 0 < α < 1. (22)

Application of fractional derivative to the coarse-grained velocityuα(t)

We have the following

Lemma 2. The coarse-grained velocityuα is provided by the fractional derivative

uα =
dx

(dt)α
= (α!)−1 dαx

(dt)α
= (α!)−1x(α)(t), 0 < α < 1, dt > 0. (23)

Proof. According to the fractional Taylor’s series one has the equality

dαx(t) = α!(dt)α. �

3.2 Coarse-graining in space and fractional derivative

We can now duplicate the rationale above to the space co-ordinatex(t).

Modeling coarse-graining phenomenon in space

In order to describe the coarse-graining phenomenon on an analytical point of view, we
shall assume that the differential in such a space is notd, d > 0, but rather is(dx)α,
whereα, 0 < α < 1, is a real-valued parameter which characterizes the grade of the
phenomenon.

By this way we shall have(dx)α > dx.
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Definition 4. With this assumption, the coarse-grained velocity on the right, vα(t) of a
particle in a coarse-grained space, will be defined by the expression

vα(t) :=
(dx)α

dt
, dx > 0, 0 < α < 1. (24)

In the special case whenα = 2k + 1, k integer, the equation (24) is meaningful for
bothdx > 0 anddx < 0, and will so define the coarse-grained velocity on the left oron
the right of the particle.

Application of fractional derivative to the modeling of coarse-grained velocityvα(t)

Lemma 3. Given a functiony = f(x) and its inversex = g(y), their fractional deriva-
tives of orderα, 0 < α < 1 satisfy he conditions

y(α)(x)x(α)(y) =
(
(1− α)!

)−2
(xy)1−α. (25)

Proof. One has the equality

y(α)(x)x(α)(y) =

(
dαy

dxα

)(
dαx

dyα

)
=

(
dαy

dyα

)(
dαx

dxα

)
,

and we take account of (13) which relatesdαx (resp.dαy) with (dx)α (resp. (dy)α) to
get the result.

With this prerequisite, we can then state the following

Lemma 4. The coarse-grained velocityvα(t) is provided by the expression

vα(t) = α!
(
(1− α)!

)2
(xt)α−1x(α)(t) := ρ(α)(xt)α−1x(α)(t). (26)

Proof. Equation (24) yields the expression

vα(t) =
α!(dx)α

α!dt
= α!

(dx)α

dαt
= α!

(
t(α)(x)

)−1
(27)

which definesvα(t) in terms of the fractional derivative of time with respect tospace.
And substituting (23) into (24) yields the sought result

vα(t) = α!
(
(1− α)!

)2
(xt)α−1xα(t) =: ρ(α)(xt)α−1x(α)(t). (28)

4 Solution of the equationx(α)(t) = a(t)x(t) + b(t)

4.1 Linear equation with time-varying coefficient

The following results in the Section 4 and 5 are basic for our urpse, because we shall come
across these types of equations in our analysis of nonlinearsystems via the linearization
technique.
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Solution of the fractional differential equation
x(α)(t) = b(x), x(0) = x0. (29)

One has successively
x∫

x0

dαξ = x(t)− x0 =

x∫

a

b(τ)(dτ)α,

therefore

x(t) = x0 + α

t∫

0

(t− τ)α−1b(τ) dτ. (30)

Solution of the fractional differential equation

x(α)(t) = a(t)x + b(t), x(0) = x0. (31)

This solution can be obtained by duplicating the so-called Lagrange technique of
constant variation as follows:

First of all, the solution of the homogeneous equationx(α)(t) = a(t)x(t) is

x(t) = CEα

{ t∫

0

a(τ)(dτ)α

}
, (32)

whereC denotes a constant.
This being the case, let us look for a special solution of the complete equation in the

form

x(t) = C(t)Eα

{ t∫

0

a(τ)(dτ)α

}
.

Applying the rule (14) we obtain the fractional derivative

C(α)(t) = b(t)E−1
α

{ t∫

0

a(τ)b(τ)dτ

}
,

therefore the expression

C(t) =

t∫

0

b(τ)E−1
α

{ t∫

0

a(u)(du)α

}
(dτ)α, (33)

and the general solution

x(t) =
(
x0 + C(t)

)
Eα

{ t∫

0

a(τ)(dτ)α

}
. (34)
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4.2 Linear equation with constant coefficient

(i) Here, we consider the equation

x(α)(t) = ax(t) + b, (35)

wherea andb denote two constants. In this case, the equation (34) directyields

x(t) = x0Eα

(
atα
)

+ bEα

(
atα
)

t∫

0

E−1
α (aτα)(dτ)α. (36)

(ii) An alternative is to remark that a particular solution of the complete equation is

x(t) = −b/a,

in such a manner that the general solution could be written aswell in the form

x(t) =

(
x0 +

b

a

)
Eα

(
atα
)
−

b

a
. (37)

At first glance, on the surface, it is not clear at all that (4.8) and (4.9) are exactly the
same. And in effect they are. One has the following

Lemma 5. The expressions(36)and (37) are different pictures of the same unique solu-
tion of (35).

Proof. Step 1. We refer to the basic relation (see [35] for the proof)

Eα

(
λ(x + y)α

)
= Eα

(
λxα

)
Eα

(
λyα

)
, (38)

to write

Eα

(
λ(x − x)α

)
= Eα

(
λxα

)
Eα

(
λ(−x)α

)
= Eα(0) = 1, (39)

therefore the equality

Eα

(
λ(−x)α

)
= Eα

(
(−1)αλxα

)
= E−1

α

(
λxα

)
. (40)

Step 2. With this data at hand, we come back to (36) to write

bEα

(
atα
)

t∫

0

E(−1)
α

(
aτα

)
(dτ)α

= bEα

(
atα
)

t∫

0

Eα

(
a(−τ)α

)
(dτ)α = b

t∫

0

Eα

(
a(t− τ)α

)
(dτ)α

= −
b

a

[
Eα

(
a(t− τ)α

)]t
0

=
b

a

[
Eα

(
atα
)
− 1
]
.

Combining this result with the solutionx0Eα(atα) yields (37).
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5 Solution of the equationax(2α) + bx(α) + c = 0

5.1 Preliminary remarks on fractional (sin , cos ) and (sinh , cosh ) functions

Following classical calculus, we shall write

Eα(t) = coshα t + sinhα t, (41)

with

coshα t := 2−1
(
Eα(t) + Eα(−t)

)
, (42)

and

sinhα t := 2−1
(
Eα(t) + Eα(−t)

)
. (43)

In a like manner, we shall write

Eα(it) = cosα t + i sinα t, (44)

with

cosα t := 2−1
(
Eα(it) + Eα(−it)

)
, (45)

and

sinα t := (2i)−1
(
Eα(it)− Eα(−it)

)
. (46)

5.2 Solution of the equationx(2α) = ax, a = const

It is of order to point out that the simple equation

x(2α)(t) = ax(t), (47)

gives rise to some problems regarding its definition with respect to the fractional deriva-
tive. Indeed, on using the operatord/ dx = D, at first glance, we could write (47) either
in the form

D2αx(t) = ax(t), (48)

or

DαDαx(t) = ax(t), (49)

but these two equations do not have the same solution. Indeed, let us assume that
0 < 2α < 1, and let us work with the Laplace’s transfromX(s) of x(t). Taking the
Laplace’s transform of the equation (47) yields

s2αX(s)− s2α−1x(0) = r2X(s),
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therefore we obtain

X(s) =
s2α−1x(0)

s2α − r2
, 0 < 2α < 1, (50)

whilst the equation (49) provides

s2αX(s)− s2α−1x(0)− sα−1x(α)(0) = r2X(s)

and

X(s) =
s2α−1x(0) + sα−1x(α)(0)

s2α − r2
, 0 < α < 1. (51)

As a result we have to carefully select between the equations(48) and (49) when we
set define our problem. If the physical system which we are dealing with involves both
x(α)(t) andx(2α)(t), then we shall refer toDα andDαDα, and we shall consider the
equation (49).

5.3 Solution of the differential linear equation involvingboth Dα and Dαα

Formally, with the above remark, the equation

a(x)(2α)(t) + b(x)(α)(t) + c = 0, (52)

can be re-written in the form

a(Dα − r1)(D
α − r2) = 0, (53)

wherer1 andr2 are the solutions of the equation

ar2 + br + c = 0. (54)

An alternative is to say that if we seek a solution in the formx = Eα(rtα), then on
substituting into (52), we find thatr is provided by the equation (54).

Whenr1 6= r2, then the general solution can be written as

x(t) = C1Eα

(
r1t

α
)

+ C2Eα

(
r2t

α
)
, (55)

whereC1 andC2 are two constants which depend upon the initial conditions.
When the equation (54) has only one solutionr̂ = r1 = r2, the solution is

x(t) =
(
C1 + C2t

α
)
Eα

(
r̂tα
)
. (56)
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6 A class of fractional linear differential vector equations

We consider the following vector fractional linear differential equation, written in the
matrix form,

X(α)(t) = a(t)AX, (57)

with the following notations.X(t) = (x1(t), x2(t))
T is a vector inR

n (heren = 2
for convenience),a(t) is a sufficiently regular scalar valued function, andA is a constant
n × n-matrix (heren = 2) with the eigen-valuesr1 and r2, with the supplementary
conditionr1 6= r2. Our purpose in the following is to determine the solution of(57), and
to this end, we shall proceed as follows.

Step 1. According to the basic of matrix calculus, we can writeA in the form

A = V RV −1, (58)

whereR is the diagonal matrixdiag(r1, r2), and whereV is the matrix the columns of
which are the eigenvectorsv1 andv2 of A.

Step 2. Using (58), we can then re-write (57) as

X(α)(t) = a(t)V RV −1X(t)

or, what amounts to the same,

V −1X(α)(t) = a(t)RV −1X(t). (59)

On making the change of variableV −1X ← Y , (59) turns to be the vector equation

Y (α)(t) = a(t)RY (t),

which can be split in the two one-dimensional equations

y
(α)
i (t) = a(t)riyi(t), i = 1, 2, (60)

of which the solutions are respectively

yi(t) = yi(0)Eα

(
ri

t∫

0

a(τ)(dτ)α

)
, i = 1, 2. (61)

In the special case whena(t) = t1−α, one has

t∫

0

τ1−α(dτ)α = α!(1− α)!t

and

yi(t) = yi(0)Eα

(
α!(1 − α)!rit

)
. (62)
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7 Application to dynamics close to equilibrium position

7.1 One-dimensional systems subject to fractional disturbances

The present section displays two illustrative examples which illustrate the kindf results
one may so expectt obtain in this framework.

We consider the scalar-valued dynamics

dx = f(x) dt, (63)

with the equilibrium positionx0, i.e. f(x0) = 0 defined as the solution, when it exists, of
the equationf(x0) = 0. Close to this equilibrium position, one has the variation equation

d(δx) = fx(x0)δxdt. (64)

We assume that this equation is disturbed by an external input w(t)(dt)α, 0 < α < 1,
in such a manner that it turns to be

d(δx) = fx(x0)δxdt + w(t)(dt)α, 0 < α < 1. (65)

w(dt)(dt)α is an approach via Maruyama’s formula (see for instance [51]) to modelling
fractional white noise,but we can drop these considerations here for the moment, and
consider the equation (65) on a formal standpoint only. For convenience we sety := δx,
so that (65) now reads

dy = fx(x0)y dt + w(t)(dt)α, 0 < α < 1. (66)

In order to get the solution of (66) we writey(t) in the formy(t) = y1(t)y2(t),
which we substitute into (66) to obtain the two equations

dy1 = fx(x0)y1 dt, (67)

dy2 = (y1)
−1w(t)(dt)α. (68)

The equation (67) direct yields

y1(t) = y1(0) exp
(
fx(x0)t

)
. (69)

In order to obtain the solution of (68), we multiply its both sides byα! and we notice
thatα! dy2 = dαy2 to have

y
(α)
2 (t) = α!

w(t)

y1(t)
,

therefore the expression

y2(t) = y2(0)α!

t∫

0

w(t)

y1(τ)
(dτ)α (70)

which is taken in the sense of (20).
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7.2 Equilibrium position of a two-dimensional systems

We consider a theoretical two-dimensional system defined bythe equations

ẋ(t) = f(x, y, u), (71)

ẏ(t) = g(x, y, u), (72)

with the equilibrium position(x0, y0, u0) and we assume that, due to coarse-graining
effect in time, the actual dynamics turns to be

x(α)(t) = f(x, y, u), (73)

y(α)(t) = g(x, y, u). (74)

The dynamical equations of the small deviation(x̃, ỹ, ũ) from the equilibrium posi-
tion are

x̃(α)(t) = ax̃ + bỹ + cũ, (75)

ỹ(α)(t) = a′x̃ + b′ỹ + c′ũ, (76)

with

a := fx(x0, y0, u0), b := fy c := fu, (77)

and

a′ := gx, b′ := gy(x0, y0, u0), c′ := gu. (78)

In order to analyze the stability of the equilibrium, we shall assume that the per-
turbationũ on the control parameter is zero, and according to Section 6,we refer to the
equation of the eigenvalues of the system, which reads

r2 − (a + b′)r + (ab′ − ba′) = 0

with

a + b′ := fx + gy, (79)

ab′ − a′b = fxgy − fygx. (80)

Example 1. We consider a particle with the massm and subject to the potential func-
tion V (x), driven by the dynamical equation

mẍ(t) = −Vx(x), (81)

or in the vector form

ẋ(t) = y, (82)

ẏ(t) = −m−1Vx(x), (83)
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We further assume that the particle is at rest atx0, i.e. that the equilibrium position
is (x0, 0). We then have the fractional differential equations

x(α)(t) = y(t),

y(α)(t) = −m−1Vx(x),

which provide the deviation equations

x̃(α) = ỹ, (84)

ỹ(α) = −m−1Vxx(x0)ỹ. (85)

The equation (85) yields

ỹ(t) = ỹ(0)Eα

(
−m−1Vxx(x0)t

α
)
, (86)

whilst (84) provides

x̃(t)− x̃(0) = ỹ(0)D−αỹ(t) = −
mỹ(0)

Vx(x0)
Eα

(
−m−1Vxx(x0)t

α
)
. (87)

7.3 Coarse-graining in time and in space. Comparison

We come back to the equation (63), i.e.ẋ(t) = f(x), to examine what happens about its
equilibrium positionx0 when it is affected by coarse-graining in time (CGT), on the one
hand, and by coarse-graining in space (CGS) on the other hand.

Of course, for continuously differentiable deviation, onehas the equation

ẏ1(t) = fx(x0)y1(t). (88)

This being the case, assume that the system (63) is subject toCGT, thenuα(t) is
substituted foṙx(t) and inserting (23) into (63) direct yields the modeling

x(α)(t) = (α!)f(x),

therefore the deviation equation

y
(α)
2 (t) = (α!)fx(x0)y2(t). (89)

Assume now that the system is subject to CGS, then it isvα(t) which is substituted
to ẋ(t), and on inserting (28), we obtain the dynamical equation

x(α)(t) = ρ−1(α)(xt)1−αf(x),

therefore the deviation equation

y
(α)
3 (t) = ρ−1t1−α

(
(1− α)x−α

0 f(x0) + x1−α
0 fx(x0)

)
y3, (90)
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which suggests thatx0 = 0 should be considered as a special value.
These equations yield the expressions

y1(t) = y1(0) exp
(
fx(x0)t

)
, (91)

y2(t) = y2(0)Eα

(
(α!)fx(x0)t

α
)
, (92)

y3(t) = y3(0)Eα

(
(1 − α)x−α

0 f(x0) + x1−α
0 fx(x0)

(1− α)!
t

)
. (93)

which allow us to compare the three phenomena.

8 Concluding remarks

In the present article, we have shown how fractional derivative can be used to analyze dy-
namical systems involving coarse-grained time, and we focused mainly on the oscillations
of nonlinear systems close to their equilibrium positions.But of course, the approach
could be applied to various other problems, provided that they involve a linearization
technique.

For instance, let us consider the coarse-grained time dynamical system

x(α)(t) = f(x, u, t),

wheref(.) is a nonlinear function andu(t) is an external control. Assume that the special
control functionu0(t) is selected, to ensure that the system tracks the corresponding

trajectoryx0(t), x
(α)
0 (t) = f(x0, u0, t).

According to the classical approach to controlling nonlinear dynamics via the lin-
earization technique, we will consider the system

y
(α)
0 (t) = f (α)

x (x0, u0, t)y + f (α)
u (x0, u0, t)v,

in whichv(t) is selected in order to have thaty(t) tends to zero as time increases.
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