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Abstract. One considers the motion of nonlinear systems close to gwgiilibrium
positions in the presence of coarse-graining in time on tieet@and, and coarse-graining
in time on the other hand. By considering a coarse-grairmeé t&s a time in which
the increment is notd¢ but rather(dt¢). > dt, one is led to introduce a modeling
in terms of fractional derivative with respect to time; aildeWwise for coarse-graining
with respect to the space variabte After a few prerequisites on fractional calculus via
modified Riemann-Liouville derivative, one examines in taded way the solutions of
fractional linear differential equations in this framewkpand then one uses this result in
the linearization of nonlinear systems close to their égpiilm positions.

Keywords: coarse-grained time, coarse-grained space, fractal fimetjonal analysis,
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1 Introduction

1.1 Coarse-graining, fractals, fractional derivative
General motivation of the article

The motivation of the present article is the need to deriveathematical framework for
dealing with dynamical systems defined in coarse-grainadespand with coarse-grained
time and, to this end, to use the fact that fractional cakappears to be intimately related
to fractal and self-similar functions.

Coarse-grained space-time in physics

Coarse-grained and thus fractional spaces are basic in €8s work [1-6]. Fractals
are basic in Nottale’s work [7—10], and transparent in Opdiper [11]. See also [12,13].
In these works fractals are introduced as a tool to revigtfthundation of physics as
natural science.
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Fractional derivative, self-similarity, fractal dimersi

Fractional derivative has been introduced formally by kitla by using an integral in-
volving the function under consideration, and in most cdbesfractional calculus is
more or less a formal calculus which is very often converted Laplace’s transform.
This has been true until when Kolwankar [14, 15], startingnfrthe Holder exponent
of functions defined on Cantor’s sets, arrived at the definitf fractional derivative in
terms of increment. Later, we arrived at the same identifinabut by using the opposite
way. We started from a fractional derivative defined as timdt lof fractional difference,
which allowed us to obtain the generalized fractional Teglgeries, and we so found that
the Holder exponent is exactly the order of the fractioreahtive of the function under
consideration.

Information, coarse-graining, Blder exponent

In an attempt to relate coarse-graining with Holder exponge shall refer to information
theory. Indeed, in the Shannon information theory framéwiors known that the amount
of information (uncertainty should be better) involvedtie random variablé& which is
uniform on the intervala, b) is h(X) = In(b — a), see for instance [16].

This being the case, assume that we have two non-randonbhesiiaandy which
are related by the relatian= f(z). We shall say that x and y involved the same grade of
granularity when

. WAy

azio A(|Az]) ~
and on the contrary we shall say that, there is a coarseigggiinenomenon when this
limitis g, different from the unit, in other words, when one has

|dy| = Clde|”,

whereC' is a constant, and is such that) < 5 < 1, in which case the coarse-graining
effect takes place in the-space. On the contrary when> 1 one then hagdy|'/? = dz
and it is they-space which involves coarse-graining. This paramgté& exactly the
Holder’s coefficient, and in quite a natural way we come ssifeactional calculus.

Non-differentiability, randomness and stochastics

As a last, but not least remark, we shall notice that noredsffitiability and randomness
are mutually related in their nature, in such a way that stidi fractals on the one hand
and fractional Brownian motion on the other hand are oftamlp in the same paper.
Indeed, as pointed out by Nottale [7], a function which istewrous everywhere but is
nowhere differentiable necessarily exhibits random-tikpseudo-random features, in the
sense that various samplings of this functions on the savea giterval will be different.
This may explain the huge amount of literature which extethdstheory of stochastic
differential equation [17,18] to stochastic dynamics eniby fractional Brownian motion
[17-24].
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1.2 Purpose and organisation of the article
Organization of the paper

We shall focus on fractional derivative defined by finite elifnce, which, as a result,
provides various extensions of the Leibnitz formula. Thecker is organised as follows.
For the convenience of the reader, we first bear in mind thengis$ of the fractional
modified Riemann-Liouville derivative and the fractionaljlor’s series, as well as some
useful formulae which one can so obtain (Section 2). Thenaamsiders the problem
of modeling velocity with coarse-grained time and coarssirged space and by this way,
via fractional analysis, we come across fractional deisegiSection 3). In the Sections 4
and 5, we consider solving different types of linear fractidinear differential equations
with constant coefficients on the one hand, and time-vargirgdficient on the other hand.
Then we shall consider systems of linear fractional diff¢ied equations (Section 6).
This material will be the basis to analyze the stability ofiliwear systems close to their
equilibrium positions, and simple illustrative examples provided in the Section 7.

Bibliographical note

Kolwankar and Gangal [14, 15] considered a function definea dractal set, and after
introducing its derivative in terms of Holder exponenteytarrive at fractional derivative
and fractional (local) Rolle-Taylor’s formula. In our apaich, we worked in the opposite
way. Firstly, irrespective of any fractal set, we start frira expression of the fractional
derivative as the limit of a fractional difference involgian infinite number of terms, and
therefore we obtain the fractional generalized Taylorisese whereby we come across
the Holder’s exponent.

In order to deal with functions which are not differentigbBen Adda and Cres-
son [12] introduced a so-called quantum derivative, déiférfrom the Nottale’s scale-
derivative, which also provides a (local) Rolle-Taylor&arihula. Here, we shall use a
different modeling based on fractional derivative.

The Section 2 below is a background on some results for theecdence of the
reader, and all the remaining should be thought of as theibatibn of the article.

2 Summary of some results on fractional analysis

2.1 Fractional derivative via fractional difference

This second section is a short review, but ut we think it isassary for the convenience
of the reader.

In this section, we use the term of fractional analysis mdtef fractional calculus,
to emphasize the fact that we do not use the formal definitidraotional derivative via
integral, but rather we work on the finite increments thereslthat is to say we define
fractional Brownian motion as the quotient of two incrensent

Definition 1. Let f: R — R, « — f(z) denote a continuous (but not necessarily
differentiable) function, and let > 0 denote a constant discretization span. Define

179



G. Jumarie

the forward operatoF'IW (h) by the equality (the symbok= means that the left side is
defined by the right side) whegedenotes a real-valued exponent.

FWP(h)f(z) := f(z+ ph), (1)

then the fractional difference of order 0 < « < 1, of f(x) is defined by the expression
[16,22,23,25-27].

> «
A% f(a) = (FW = 1)° 1) = SO0 () o + (= Ryl @
k=0
and its fractional derivative of orderis defined by the limit

) — iy A7 (@) = (0)
F (@) = lim o :

®3)

This definition is close to the standard definition of deiix@{calculus for begin-
ners), and as a direct result, theth derivative of a constant is zero.

2.2 Modified fractional Riemann-Liouville derivative (via integral)
An alternative to the Riemann-Liouville definition of friacial derivative

In order to circumvent some drawbacks involved in the ctad®iemann-Liouville defi-
nition, we have proposed the following alternative to therRann-Liouville definition of
F-derivative, which is moreover fully supported by the Ditiim 1.

Definition 2 (Riemann-Liouville definition revisited) Refer to the function of the
Definition 1
(i) Assume thatf («) is a constank. Then its fractional derivative of orderis

K
[e3 — —x <
DK 7F(1—a)x , a<0, (4)
DK =0, a>0. (5)
(i) When f(z) is not a constant, then one will set
fz) = £(0) + (f(z) — f(0)),
and its fractional derivative will be defined by the expressi

£ (x) = D2 f(0) + DI (f(x) — £(0)),

in which, for negativey, one has

D2 (/@) = 1(0) = F=a /(x—f)“"‘lf(ﬁ)dﬁ, a <0, (6)
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whilst for positivea, one will set

D2 (f(z) — f(0)) = D f(0) = (" V(x))

/

1 i/(xfg)*a(f(g)ff(o))dg, 0<a<l1. (7)
0

Whenn < o < n + 1, one will set
F(z) = (f(a’”)(x))(n), n<a<n+1, n>1. (8)

The main idea in this definition is that a fractional diffetiable function is consid-
ered as the sum of a constant with a self-similar functioncivhas such, takes on the
value zero atr = 0.

We shall refer to this fractional derivative as to thmdified Riemann Liouville
derivative

Remark that this definition is different from other definitgin the literature (see
for instance [28-30] in the sense that it removes the effetthe initial value of the
considered function.

2.3 Fractional Taylor's series for one-variable functions

A generalized Taylor expansion of fractional order whiclplggs to non-differentiable
functions reads as follows [31-35].

Proposition 1. Assume that the continuous functibpn’k — R, = — f(x) has frac-
tional derivative of ordek«, for a givena, 0 < o < 1, and any positive integé; then
the following equality holds, which reads

> ak

where f(“%) (1) holds for the fractional derivativ®“D* ... D f(z), k times.
With the notation
I'(1+ ak) =: (ak)!,
one has the formula
0o pak
f(z+h) :;mf<ak>(x), 0<a<l (10)

which looks like the classical one.
Alternatively, in a more compact form, one can write

f(+ h) = Eq (h°D3) £ (2),
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whereD,, is the derivative operator with respectt@andE,, (y) denotes the Mittag-Leffler
function defined by the expression

= (11)
P (1 + ak)’

Bibliographical note

Kolwankar and Gangal [14,15] had previously discovereditketerm of this series (10),

referred to as local fractional Taylor's series (we wouléfpr the terms of fractional

Rolle’s formula) but their approach is quite different framrs. They started from func-
tions defined on fractal set, and then they arrive at the éf&@é@xponent, whilst we began
with the formal definition of fractional derivatives in tesnof increment, and we came
across the Mittag-Leffler function.

2.4 Some useful relations

The equation (9) provides the useful relation

df=2T1l+a)df, 0<a<l, (12)
or in afinite difference form\* f 2 T'(1 + a)Af.
Corollary 1. The following equalities hold, which are

DY =T(y+ DIy +1—-a)2?™® >0, (13)
or, what amounts to the same (we aet n + 6)

D" =T(y+ DIy +1=n—0)27 "0 0<f<1,

(u(@)v(2))" = u'Y (z)o(z) = u(z)o® (), (14)
(flu@)])” = fl(w)u' (), (15)
(flu(@)])™ = £ () ()1, (16)
(flu@)])® = (1 = a)lu ! £ (w)u'® (). (17)

u(z) is non-differentiable in(14) and (15) and differentiable in(16), v(z) is non-dif-
ferentiable in(14), and f (u) is differentiable in(15) and non-differentiable i(16).

Corollary 2. Assume thaf(xz) and z(t) are two%® — DR functions which both have
derivatives of ordery, 0 < a < 1, then one has the fractional derivative chain rule

(@) = T2 — @)z L1 (@) (). (18)

For more formulae, which can be so derived with the modifieehiRinn-Liouville
derivative, see [14].
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2.5 Integration with respect to (dx)*

The integral with respect talz)* is defined as the solution of the fractional differential
equation

dy = f(z)(dz)*, >0, y(0)=0, 0<a<1 (19)
which is provided by the following result:

Lemma 1. Let f(z) denote a continuous function, then the solutigm), y(0) = 0, of
the equatior(29)is defined by the equality

y= / () = a / (x— O f(©)de, 0<a<l. (20)

0

For the proof, see for instance [35].
Thefractionalintegration by part formula reads

b b

/ @ (@)o(a)(de)® = [u(@)o(@)]) - / u(@)® (2)(d)®, (21)

a a

as a direct consequence of (17).

For an extended bibliography on fractional calculus, one aansult for instance
[29,30,36-52].

In the next section, we shall show that fractional differeiscquite suitable to obtain
a modeling of dynamics involving coarse-grained time octfahtime.

3 Application to modeling coarse-graining in time and space

3.1 Coarse-graining in time and fractional derivative

For fixing the thought, let us assume that we are dealing witteehanical point with the
massm which is moving in a one-dimensional coarse-grained spafinetl by the space
co-ordinater(t), wheret denotes the time.

On a modeling standpoint, we shall assume that in a coaeseegttime, the instant
point is not infinitely thin but rather has a thickness. Saltifdt > 0, and(dt). refer
respectively to the size of the thin time increment and tingtaf the coarse-grained time
increment, then we should hate < (dt)..

Modeling coarse-graining phenomenon in time

In order to describe the coarse-graining phenomenon in iman analytical point of
view, we shall assume that the differential element, i.e. itlcrement in time is nait,

but rather is(d¢)®, wherea, 0 < a < 1, is a real-valued parameter which characterizes
the grade of the phenomenon.
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By this way, we shall hav&lt)® > dt.

At first glance, we would have to select a modeling amgitg® anda(dt), but an
additional underlying condition is th&tlt)./dt should increase indefinitely ak tends
to zero, therefore the model.

Coarse-grained time and fractal time

It appears thaty is exactly the fractal dimension of the space in whiclis running.
Indeed, in the plane, let us consider a curve line of ledgttith a covering with disjoint
balls of diameters. Let N(¢) denote the number of balls so involved. The fractal
(Hausdorf) dimensiorf of the curve is defined as the limit

f= lgig)lf(lnN(s)/lns).

Usually one has the equalify = L /e which provides the dimensiah but in the case of
a fractal curve, one will hav®& = L /<%, therefore

T — o
f= 1813)1 (Ine*/Ine).

Definition 3. With this assumption, the coarse-grained time velocity p&#icle will be
defined by the expression

U (t) = dx, 0<a<l. (22)

Application of fractional derivative to the coarse-gratheelocityu,, (¢)
We have the following
Lemma 2. The coarse-grained velocity, is provided by the fractional derivative
dzx d%x
= —(aD)!
e =t~ (ane

Proof. According to the fractional Taylor’s series one has the étyua

=(a) 'z ™), 0<a<1, dt>0. (23)

d%z(t) = o!(dt)®. O

3.2 Coarse-graining in space and fractional derivative

We can now duplicate the rationale above to the space coatedi(t).

Modeling coarse-graining phenomenon in space

In order to describe the coarse-graining phenomenon on agtmal point of view, we
shall assume that the differential in such a space isdnadt > 0, but rather is(dz)?,
wherea, 0 < o < 1, is a real-valued parameter which characterizes the grateo
phenomenon.

By this way we shall havédz)® > dz.
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Definition 4. With this assumption, the coarse-grained velocity on thhtriv, (t) of a
particle in a coarse-grained space, will be defined by theessjion

(dx)*
dt ’
In the special case when= 2k + 1, k integer, the equation (24) is meaningful for

bothdz > 0 anddz < 0, and will so define the coarse-grained velocity on the leftror
the right of the particle.

v (t) = dz >0, 0<a<l. (24)

Application of fractional derivative to the modeling of ese-grained velocity,, (¢)

Lemma 3. Given a functiory = f(x) and its inverse: = ¢(y), their fractional deriva-
tives of ordery, 0 < a < 1 satisfy he conditions

Yy (@) (y) = (1 —a)) (ay)' . (25)

Proof. One has the equality

Yy (2)z!® (y) = (%) <%) = <j:—g) (j{%)’

and we take account of (13) which relat&se (resp.d®y) with (dz)* (resp. (dy)®) to
get the result. O

With this prerequisite, we can then state the following

Lemma 4. The coarse-grained velocity, (¢) is provided by the expression
va(t) = al (1 = a)!) (@) 2@ (1) := p(a) (xt)* (@ (1), (26)
Proof. Equation (24) yields the expression

al(dz)* _ (dz)* 1

= — al(+(@
it al ot a.(t (:c))

Vo (t) = (27)

which definesv,, () in terms of the fractional derivative of time with respectsipace.
And substituting (23) into (24) yields the sought result

v () = (1 — a)!) (@) 12 (t) =: pa) (@) 2 (1), (28)

4 Solution of the equationz(® (t) = a(t)xz(t) + b(t)

4.1 Linear equation with time-varying coefficient

The following results in the Section 4 and 5 are basic for opse, because we shall come
across these types of equations in our analysis of nonlgyeaems via the linearization
technique.
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Solution of the fractional differential equation
29 (t) = b(z), x(0) = zo. (29)

One has successively

xT T

/d“g =z(t) —xg = /b(T)(dT)a,
therefore
z(t) = 20 + / (t —7)**b(r) dr. (30)

0

Solution of the fractional differential equation
2 (t) = a(t)z +b(t), x(0) = zo. (31)
This solution can be obtained by duplicating the so-calladrange technique of

constant variation as follows:
First of all, the solution of the homogeneous equatitih (1) = a(t)z(t) is

x(t) = CEQ{ /a(T)(dT)a}, (32)
0

whereC denotes a constant.
This being the case, let us look for a special solution of iralete equation in the
form
t

() = C(t)Ea{ / o(7)(dr)° }
0
Applying the rule (14) we obtain the fractional derivative
t
C@(t) = b(t)Eal{ / a(f)b(T)dT},
0
therefore the expression
t t
et - | b(r)Egl{ / a(u)(du)“}(df)“, (33)
0 0
and the general solution

x(t) = (aco + C(t))Ea{ /a(T)(dq—)a}, (34)
0
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4.2 Linear equation with constant coefficient
(i) Here, we consider the equation
2 (t) = ax(t) + b, (35)

wherea andb denote two constants. In this case, the equation (34) direlds
t
z(t) = zoEa (at®) 4 bE4 (at®) /E;l((]ﬂ'a)(d’r)a. (36)
0
(ii) An alternative is to remark that a particular solutiditlee complete equation is
x(t) = —b/a,
in such a manner that the general solution could be writtemedisin the form
z(t) = | zo —i—é Eq (at®) — b (37)
a) a’
At first glance, on the surface, it is not clear at all that Y4u8d (4.9) are exactly the
same. And in effect they are. One has the following
Lemma 5. The expression&6) and (37) are different pictures of the same unique solu-
tion of (35).

Proof. Step 1. We refer to the basic relation (see [35] for the proof)

E, ()\(Jc + y)a) =K, ()\xo‘)Ea ()\ya), (38)
to write
Eo(Mz — 2)%) = Ea(Az¥) Eq (M—2)*) = Eo(0) =1, (39)

therefore the equality
E,(A(—2)%) = Eo((-1)*Az%) = E; ' (Aa®). (40)
Step 2. With this data at hand, we come back to (36) to write

bE, (at®) / ECD (ar) (dr)?
0

— bE, (at®) / Ea(a(—7)*)(dr)® = b / Eo(alt — 7)) (dr)°
0 0

b vttt D o
= 2 [Ea(att = 1)) = = [Eafat®) - 1].
Combining this result with the solutiory E,, (at®) yields (37). O
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5 Solution of the equationaz?® + bx(® + ¢ =0

5.1 Preliminary remarks on fractional (sin, cos ) and (sinh, cosh ) functions

Following classical calculus, we shall write

E,(t) = cosh, t + sinh, t, (41)
with

cosha t 1= 271 (E,(t) + Eo(—t)), (42)
and

sinhg t 1= 27" (Ea(t) + Ea(—1)). (43)

In a like manner, we shall write

E,(it) = cosq t +ising t, (44)
with

cosq t =271 (B, (it) + Eo(—it)), (45)
and

sing t 1= (20) " (Ea(it) — Eq(—it)). (46)

5.2 Solution of the equationz(?® = ax, a = const

It is of order to point out that the simple equation
z(2) (t) = ax(t), (47)

gives rise to some problems regarding its definition witlpees to the fractional deriva-
tive. Indeed, on using the operatbfdx = D, at first glance, we could write (47) either
in the form

D**x(t) = ax(t), (48)
or
DDx(t) = ax(t), (49)

but these two equations do not have the same solution. Indeeds assume that
0 < 2a < 1, and let us work with the Laplace’s transfrai(s) of x(¢t). Taking the
Laplace’s transform of the equation (47) yields

s2* X (s) — s> 12(0) = r’ X (s),
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therefore we obtain

5204711(0)
820‘ _ 7«2 ’

X(s) = 0<2a<1, (50)

whilst the equation (49) provides
§2° X (s) — 227 12(0) — s 12 (0) = 12X (s)
and

520 12(0) 4 s 12()(0)
2 )

X(s) = 0<a<l. (51)

s2x —p
As aresult we have to carefully select between the equat#8)sand (49) when we
set define our problem. If the physical system which we ardéirgwavith involves both

(@) (t) and () (t), then we shall refer td* andD*D*, and we shall consider the
equation (49).

5.3 Solution of the differential linear equation involving both D% and D**

Formally, with the above remark, the equation

a(z) () + b(x) () + ¢ = 0, (52)
can be re-written in the form

a(D¥ —r1)(D¥ —ry) =0, (53)
wherer; andry are the solutions of the equation

ar? +br +c¢=0. (54)

An alternative is to say that if we seek a solution in the farm E,, (rt%), then on
substituting into (52), we find thatis provided by the equation (54).

Whenr, # 79, then the general solution can be written as

z(t) = C1E, (rlt“) + CYE, (rgt"‘), (55)

whereC; andCs are two constants which depend upon the initial conditions.
When the equation (54) has only one solutioa r; = r5, the solution is

z(t) = (C1 4 Cat®) Eo (7t%). (56)
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6 A class of fractional linear differential vector equations

We consider the following vector fractional linear diffat@l equation, written in the
matrix form,

X@(t) = a(t)AX, (57)

with the following notations. X (t) = (z1(t), z2(¢))? is a vector inR" (heren = 2
for convenience)(t) is a sufficiently regular scalar valued function, afids a constant
n x n-matrix (heren = 2) with the eigen-values; andry, with the supplementary
conditionr; # ro. Our purpose in the following is to determine the solutiorfsf), and
to this end, we shall proceed as follows.

Step 1. According to the basic of matrix calculus, we caneniin the form

A=VRV~! (58)

whereR is the diagonal matrixiag(ry,r2), and wheré/ is the matrix the columns of
which are the eigenvectors anduvs of A.
Step 2. Using (58), we can then re-write (57) as

X@(t) = a(t)VRV X (1)

or, what amounts to the same,
VX (@(t) = a(t)RV X (1) (59)
On making the change of variable ! X « Y, (59) turns to be the vector equation
Y@ (1) = a(t)RY (1),

which can be split in the two one-dimensional equations
y () = altrai(t), i=1,2, (60)

of which the solutions are respectively

t

yi(t) = y:(0)E, (m/a(ﬂ(dr)“), 1=1,2. (61)

0

In the special case wherft) = t1 =, one has

t

/Tl—a(dT)Oé =al(l—a)lt

0

and

yz(t) = yi(O)Ea (Oé'(]. - a)'nt) (62)

190



Oscillation of Non-Linear Systems Close to Equilibrium Fos in the Presence of Coarse-Graining

7 Application to dynamics close to equilibrium position

7.1 One-dimensional systems subject to fractional distudinces

The present section displays two illustrative examplestviiliustrate the kindf results
one may so expec¢tobtain in this framework.
We consider the scalar-valued dynamics

dz = f(x)dt, (63)

with the equilibrium positionzg, i.e. f(zo) = 0 defined as the solution, when it exists, of
the equatiory (zp) = 0. Close to this equilibrium position, one has the variatiqnation

d(6x) = fy(xo)ox dt. (64)

We assume that this equation is disturbed by an externalin@gi(d¢)*, 0 < o < 1,
in such a manner that it turns to be

d(6x) = fo(zo)dzdt + w(t)(dt)®, 0<a< 1. (65)

w(dt)(dt)® is an approach via Maruyama’s formula (see for instance) f@lihodelling
fractional white noisebut we can drop these considerations here for the monaatt
consider the equation (65) on a formal standpoint only. Barenience we set := Jz,
so that (65) now reads

dy = fo(zo)ydt + w(t)(dt)®, 0<a<1. (66)

In order to get the solution of (66) we writgt) in the formy(t) = y1(¢)y2(¢),
which we substitute into (66) to obtain the two equations

dyr = fu(z0)yr dt, (67)
dys = (y1) " tw(t)(dt)>. (68)
The equation (67) direct yields

y1(t) = y1(0) exp (fa(20)t). (69)

In order to obtain the solution of (68), we multiply its bottess bya! and we notice
thata! dys, = d%y- to have

(@) 4y = 20
2 (t>* 'yl(ﬁ)’

therefore the expression

0

(dr)* (70)

which is taken in the sense of (20).
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7.2 Equilibrium position of a two-dimensional systems
We consider a theoretical two-dimensional system defingtiégquations
o(t) = f(z,y,u), (71)

with the equilibrium position(zg, yo,uo) and we assume that, due to coarse-graining
effect in time, the actual dynamics turns to be

m(a) (t) = f(l‘, yvu)a (73)
y () = g(,y,u). (74)

The dynamical equations of the small deviatigny, @) from the equilibrium posi-
tion are

(1) = aF + by + ¢, (75)

7)) =d T+ + T, (76)
with

a:= fo(x0,90,u0), b:=f, c:= fu, (77)
and

al = Gz, bl = gy(x07y0; UO), Cl = Gu- (78)

In order to analyze the stability of the equilibrium, we stedsume that the per-
turbationwu on the control parameter is zero, and according to SectiseGgefer to the
equation of the eigenvalues of the system, which reads

r? —(a+b)r+ (ab —ba') =0
with

a+bl = de +gy7 (79)
abt/ —a'b = fxgy - fygz- (80)

Example 1. We consider a particle with the mass and subject to the potential func-
tion V (), driven by the dynamical equation

mi(t) = —Va (), (81)
or in the vector form

z(t) =y, (82)
y(t) = —m™Va(x), (83)
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We further assume that the particle is at rest@ati.e. that the equilibrium position
is (zg, 0). We then have the fractional differential equations

(1) = y(b),
Yy (t) = —m~V(a),

which provide the deviation equations

7 =g, (84)
7Y = —m ™ Wou (07 (85)

The equation (85) yields
§(t) = 9(0) Eo (= m™Vau (20)t*), (86)

whilst (84) provides

#(t) — #(0) = FODH(1) = — LD By (— m Vg (20)t?). (87)

7.3 Coarse-graining in time and in space. Comparison

We come back to the equation (63), is€¢) = f(z), to examine what happens about its
equilibrium positionzy when it is affected by coarse-graining in time (CGT), on the o
hand, and by coarse-graining in space (CGS) on the other hand

Of course, for continuously differentiable deviation, dvas the equation

y1(t) = fa(zo)ya(t). (88)

This being the case, assume that the system (63) is subj&@®10 thenu,, (¢) is
substituted for:(¢) and inserting (23) into (63) direct yields the modeling

2 (t) = () f (=),
therefore the deviation equation

s (1) = (o) fu(o)ya(2). (89)

Assume now that the system is subject to CGS, theri}, {$) which is substituted
to (¢), and on inserting (28), we obtain the dynamical equation

2 () = p~Ha)(@t)' " f(),

therefore the deviation equation

ys (1) = p (L — @)y ™ f(wo) + 25 fulwo))ys, (90)
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which suggests that, = 0 should be considered as a special value.
These equations yield the expressions

y1(t) = y1(0) exp (fu(20)t), (91)
Y2(t) = y2(0) Eq (o) fz (0)t*), (92)
(t) = (o), (Gl o L) ), (93)

which allow us to compare the three phenomena.

8 Concluding remarks

In the present article, we have shown how fractional dexigatan be used to analyze dy-
namical systems involving coarse-grained time, and wededunainly on the oscillations
of nonlinear systems close to their equilibrium positiofit of course, the approach
could be applied to various other problems, provided thay thvolve a linearization
technique.

For instance, let us consider the coarse-grained time digahsystem

wheref(.) is a nonlinear function and(t) is an external control. Assume that the special
control functionug(t) is selected, to ensure that the system tracks the corresmgpnd
trajectoryl'() (t), Z(()a) (t) = f(lC(), Uo, t)

According to the classical approach to controlling nordindynamics via the lin-
earization technique, we will consider the system

y$ (1) = £ (20, w0, )y + 1) (20, o, ),

in whichv(t) is selected in order to have thaft) tends to zero as time increases.

References

1. M. S. El Naschie, A review oF infinity theory and the mass spectrum of high energy particle
physics,Chaos Soliton. Fract19, pp. 209-236, 2004.

2. M.S. El Naschie, Non-linear dynamics and infinite dimenal topology in high energy
particle physicsChaos Soliton. Fract17, pp. 591-599, 2003.

3. M. S. El Naschie, Gravitational instanton in Hilbert spaand the mass of high energy
elementary particle€haos Soliton. Fract20, pp. 917-923, 2004.

4. M.S. El Naschie, On Penrose view of transfinite sets ancpatability and fractal character
of E-infinite spacetimeChaos Soliton. Fract25, pp. 531-533, 2005.

5. M. S. El Naschie, Elementary prerequisitesfibifinity (Recommended background readings
in nonlinear dynamics, geometry and topologghaos Soliton. Fract30, pp. 579—-605, 2006.

194



Oscillation of Non-Linear Systems Close to Equilibrium Fos in the Presence of Coarse-Graining

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. S. El Naschie, Internediate prerequisites ibinfinity (Further recommended background
readings in nonlinear dynamics, geometry and topologghaos Soliton. Fract. 30,
pp. 622—-628, 2006.

. L. Nottale,Fractal Space-Time and Microphysjd&forld Scientific, Singapore, 1993.

. L. Nottale, Scale relativity and fractal space-time. Aggtions to quantum physics, cosmology

and chaotic system§haos Soliton. Fract7, pp. 877-938, 1996.

. L. Nottale, Scale-relativity and quantization of theuwamse |. Theoretical frameworldstron.

Astrophys.327, pp. 867—889, 1997.
L. Nottale, The scale-relativity programn@&haos Soliton. Fract10(2—-3), pp. 459-468, 1999.

G. N. Ord, R.B. Mann, Entwined paths, difference equat@&nd Dirac equatiofhys. Rev. A
67(2), pp. 022105-1-7, 2003.

F. Ben Adda, J. Cresson, Quantum derivatives and thed@olger equationChaos Soliton.
Fract., 19, pp. 1323-1334, 2004.

R. Carrol, On quantum potentidppl. Anal, 84(11), pp. 1117-1149, 2005.

K. M. Kolwankar, A.D. Gangal, Holder exponents of irrtagusignals and local fractional
derivatives Pramana-J. Phys48, pp. 49-68, 1997.

K. M. Kolwankar, A. D. Gangal, Local fractional FokkelaRck equationPhys. Rev. Lett80,
pp. 214-217, 1998.

G. JumarieMaximum Entropy, Information without Probability and CdespFractals Kluwer
(Springer), Dordrecht, 2000.

B.B. Mandelbrot, J.W. van Ness, Fractional Brownian iom#, fractional noises and
applications SIAM Rev.10, pp. 422437, 1968.

B.B. Mandelbrot, R. Cioczek-Georges, Alternative mjerises and fractional Brownian
motion, Stoch. Proc. Appl 64, pp. 143-152, 1996.

L. Decreusefond, A.S. Ustunel, Stochastic analysishef fractional Brownian motion,
Potential Anal, 10, pp. 177-214, 1999.

T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic cakfiu fractional Brownian motion |.
Theory,SIAM J. Control Optim.38, pp. 582—612, 2000.

G. Jumarie, Stochastic differential equations withtfomal Brownian motion inputnt. J. Syst.
Sci, 6, pp. 1113-1132, 1993.

G. Jumarie, Fractional Brownian motions via random walkhe complex plane and via
fractional derivative. Comparison and further resultstwirt Fokker-Planck equation§€haos
Soliton. Fract, 4, pp. 907-925, 2004.

G. Jumarie, On the representation of fractional Browmietion as an integral with respect
to (dt)®, Appl. Math. Lett. 18, pp. 739-748, 2005.

B.B. Mandelbrot, R. Cioczek-Georges, A class of mictspsl and antipersistent fractional
Brownian motionsStoch. Proc. Appl60, pp. 1-18, 1995.

195



G. Jumarie

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

G. Jumarie, Fractional Brownian motion with complexiaace via random walk in the
complex plane, Applicationg€haos Soliton. Fract11(7), pp. 1097-1111, 2000.

G. Jumarie, Schrodinger equation for quantum-fraspiate-time of order n via the complex-
valued fractional Brownian motiomnt. J. Mod. Phys. A16(31), pp. 5061-5084, 2001.

G. Jumarie, Further results on the modelling of compiaatéls in finance, scaling observation
and optimal portfolio selectiorgyst. Anal. Model. Sind5(10), pp. 1483-1499, 2002.

V. V. Anh, N. N. Leonenko, Scaling laws for fractionalfdgion-wave equations with singular
initial data,Stat. Probabil. Let{.48, pp. 239-252, 2000.

M. Caputo, Linear model of dissipation whagds almost frequency dependent Geophys.
J. Roy. Astr. $13, pp. 529-539, 1967.

M. M. Djrbashian, A.B. Nersesian, Fractional derivatiand the Cauchy problem for
differential equations of fractional ordézy. Acad. Nauk Armjanskoi SSK1), pp. 3—29, 1968
(in Russian).

G. Jumarie, A non-random variational approach to sttahdinear quadratic Gaussian
optimization involving fractional noises (FLQGJ, Appl. Math. Comput.1-2 pp. 19-32,
2005.

G. Jumarie, Lagrangian mechanics of fractional ordemmitton-Jacobi fractional PDF,
Taylor’s series of non-differentiable functior@haos Soliton. Fract32(3), pp. 969-987, 2007.

G. Jumarie, Probability calculus of fractional orded diractional Taylor’s series application
to Fokker-Planck equation and information of non-randomcfions, Chaos Soliton. Fract.
40(3), pp. 1428-1448, 2009.

G. Jumarie, ¢From self-similarity to fractional defiva of non-differentiable functions via
Mittag-Leffler function,Applied Mathematical ScienceX40), pp. 1949-1962, 2008.

G. Jumarie, Table of some basic fractional calculus it derived from modified Riemann-
Liouville derivative for non-differentiable function#ppl. Math. Lett, 22(3), pp. 378-385,
2009.

D. Baleanu, O.P. Agrawal, Fractional Hamilton formaliwithin Caputo’s derivativeCzech.
J. Phys, 56, pp. 1087-1092, 2006.

R. Eid, S. 1. Muslih, D. Baleanu, E. Rabei, On fractioneth®dinger equation in-dimensional
fractional spacelNonlinear Analysis, Real World Applicatiars)(3), pp. 1299-1304, 2009.

A. El-Sayed, Fractional order diffusion-wave equation. J. Theor. Phys.35, pp. 311-322,
1996.

G. GrdssingQuantum CyberneticSpringer, Berlin, 1957

A. Hanyga, Multidimensional solutions of time-fracta diffusion-wave equation®roc. R.
Soc. London A458, pp. 933-957, 2002.

Y. Hu, B. @ksendal, Fractional white noise calculus goliaations to financednfin. Dimens.
Anal. Qu, 6, pp. 1-32, 2003.

196



Oscillation of Non-Linear Systems Close to Equilibrium Fos in the Presence of Coarse-Graining

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

. G. Jumarie, A Fokker-Planck equation of fractional ordith respect to timeJ. Math. Phys.
33(10), pp. 3536-3542, 1992.

M. Klimek, Lagrangian and Hamiltonian fractional seqigd mechanicsCzech. J. Phys51,
pp. 1247-1253, 2002.

J. Liouville, Mémoire sur le calcul des differentedl a indices quelconqued, de I'Ecole
Polytechniquel3, p. 71-162, 1832 (in French).

S. Muslih, D. Baleanu, Hamiltonian formulation of systewith linear velocities within
Riemann-Liouville fractional derivatived, Math. Anal. Appl.304, pp. 599603, 2005.

S. . Muslih, D. Baleanu, E. Rabei, Hamltonian formwatof classical fields within Riemann-
Liouville fractional derivativesPhys. Scripta73, pp. 436—438, 2006.

S. 1. Muslih, D. Baleanu, E. M. Rabei, Fractional Harmilgoequations of motion in fractional
time, Central European Journal of Physicy(4), pp. 549-557, 2007.

S. 1. Muslih, D. Baleanu, Fractional-Lagrange equatiohmotion in fractional spacd, Vib.
Control, 9—-1Q pp. 1209-1216, 2007.

T.J. Osler, Taylor’s series generalized for fractiotativatives and application§IAM. J.
Math. Anal, 2(1), pp. 37-47, 1971.

E.M. Rabei, K.I. Nawafleh, R.S. Hijawi, S.I. Muslih, D.aRanu, The Hamiltonian
formalism with fractional derivatived, Math. Anal. Appl.327, pp. 891-897, 2007.

P. Sainty, Construction of a complex-valued fractid®awnian motion of ordetV, J. Math.
Phys, 33(9), pp. 3128-3149, 1992.

N.T. Shawagfeh, Analytical approximate solutions famlmear fractional differential
equationsAppl. Math. Comput.131, pp. 517-529, 2002.

E. Barkai, Fractional Fokker-Planck equation, sohgiand applicationg?hys. Rev. E63,
pp. 1-17, 2001.

G. Jumarie, On the solution of the stochastic diffeemiijuation of exponential growth driven
by fractional Brownian motionAppl. Math. Lett. 18, pp. 817-826, 2005.

E. NelsonQuantum FluctuationsPrinceton University Press, Princeton, New Jersey, 1985.

W. Wyss, The fractional Black-Scholes equatibract. Calc. Appl. Anal. 3(1), pp.51-61,
2000.

197



