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Abstract. This paper aims to study the effect of time-delay on a tritiogood chain
model with Michaelis-Menten type ratio-dependent funaéiboresponses. Boundedness
of the time-delayed system is established. A simple cdtefor deterministic extinction
is derived. It has been shown that the time-delay may intredustability in the system
through Hopf bifurcation. Computer simulations are catigat to explain the analytical
findings. It is discussed how these ideas illuminate somé@bbserved properties of
real populations in the field, and explores practical ingilans.
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1 Introduction

The use of mathematics in the modelling of biological pheananhas become more
prevalent in recent years. The gradual invasion of the fieldalogy by mathematicians
is already yielding a number of benefits for both the fields.ufnber of realistic mathe-
matical models now exists but the analytical results abloaitdynamical behaviour of
such models is still largely lacking. This is specially tinease of three-species models.
In fact, after getting started with the pioneering works a@ftha [1] and Volterra [2],
two-species models have so far dominated the field of Bioemastics. But the limited
“caricature” of ecological systems by two species can astfmur only a small number of
the phenomena that are commonly exhibited in nature. Toékedf our knowledge, it
was only in the late seventies that some interest in the mraties of three-species food
chain models (composed of prey, predator and superpredatmrged (Freedman and
Waltman [3], Gilpin [4], Gard [5]). Subsequently, some gatdrules are derived in the
the theory of three-species models (for detailed referersee Maiti and Samanta [6]).
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Actually, the most crucial element in modelling of tritraptsystems is the choice of
functional responses. Most of the three-species modeldemigned with Lotka-Volterra
or Holling type prey-dependent functional responses bcit $unctional responses have
faced a number of questions since late eighties. A large eurobpapers are now
available to get into the details of those heated phaseawdition. Beside this, in many
field studies, certain three-species communities haverbedbe focus of considerable
attention. In the following, we mention some of them. It viilticate the relevance of
theoretical studies of three-species systems.

It is well known that approximately one third of world foodopluction is lost due to
pests. The farmers have to suffer from heavy economic lakseto these pests. Usually,
pesticides are used to control pests but the long list of-effbxts of pesticides forces
the scientists to find alternative methods for pest conffol. this reason, the method of
bio-control of pests is getting much more importance in atadl developing countries.
In this method, a pest is controlled (destroyed) by intraniyi@ parasitoid or predator,
which is natural enemy to the concerned pest. For examptemtbst important pests
like Spodopterasp. of maize Zea mayyis controlled by using parasitoids likeotesia
marginiventris(see Ashley [7], Jalali et al. [8], Turlings and Fritzsch§ End Fritzsche
Hoballah and Turlings [10] for experimental evidences)rdauce the indiscriminate use
of pesticides, recently tea scientists are using predatgoathogens to control the pests
of tea (Das and Barua [11], Das et al. [12], Kabir [13], Moclkiz[14]). Similar studies
can also be found in Gomez and Zamora [15] and Van Loon et @]. [The literature
abounds with many such evidences. Some other three-spgsiesns have also got the
attention of the scientists. For example, in waste treatmescess, the bacteria lives
on the waste (or nutrient) while other organisms as cilifeesl on the bacteria (Li and
Kuang [17]). Thus three-species systems like nutrientdsacciliate, plant-herbivore-
parasitoid, plant-pest-predator, et cetera are emergidgferent branches of biology in
their own right. These are the examples of three-speciesl‘thains”. That is, behaviour
of the entire community arise from the coupling of theserating species, where the
species at the third trophic level prey on the species atebersl trophic level and the
species at the second trophic level feed on the speciesfitsthteophic level (see Fig. 1).
A distinct feature of these food chains is the so catledhino effectif one species dies
out, all the species at higher trophic level die out as wellc@urse, there are many other
types of three-species systems. In this paper, we are moésted in those systems.

Prey
|

Predator

!
Top-predator

Fig. 1. The feeding relationship in a tritrophic food chain.

We have already mentioned that the most important elemegireidator-prey inter-
actions is the functional response or trophic function elcent times, the ratio-dependent
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functional response has become the focus of considerablgtian in ecological litera-
ture. A number of research papers have analyzed the merasi@fdependent functional
response in comparison with others (see Arditi et al. [18}y it al. [19], and references
cited there in). Further, predator-prey models with sudivsdependent functional res-
ponse are strongly supported by numerous field and labgraiqgreriments (Arditi and
Ginzburg [20], Arditi and Berryman [21], Arditi et al. [2232, Hanski [24], Arditi and
Saiah [25], Gutierrez [26], Blaine and DeAngelis [27], Piadg et al. [28], Bernstein et
al. [29], Cosner et al. [30], Arditi et al. [31]). Also, thei®a growing evidences that in
some situations, especially when predators have to searébdd (and therefore have to
compete for food), a more suitable functional responseldhmriratio-dependent (Arditi
et al. [31], Cosner et al. [30], Hsu et al. [32, 33], Xiao andR(i34]).

We now make a general comment on the realistic modellinga$ystems. Usually,
a model in theoretical ecology is considered under the freone of a set of ordinary
differential equations. It is a fact that ordinary diffetiah equations have long played
an important role in the history of theoretical ecology. Hwer, they are generally
the first approximations of the considered real system. Meadistic models should
include some of the past states of these systems; that &yida real system should
be modelled by differential equations with time-delays.wNbis well understood that
many of the processes, both natural and manmade, in biatuegicine, et cetera, involve
time-delays. Time-delays occur so often, in almost eveyation, that to ignore them
is to ignore reality. Kuang [35] mentioned that animals ntake time to digest their
food before further activities and responses take placehande any model of species
dynamics without delays is an approximation at best. Now kdyond doubt that in an
improved analysis, the effect of time-delay due to the tieguired in going from egg
stage to the adult stage, gestation period, et cetera, estéken into account. Detailed
arguments on importance and usefulness of time-delaysiistie models may be found
in the classical books of Macdonald [36], Gopalsamy [37] Kneng [35].

In recent years, theoretical ecologists have laid down imsaémportance on the
effect of time-delay on realistic models. Still, there isdenying that a lack of analytic
results on time-delayed models persists. In fact, after¢ioent developments in the
field of computers, it has become a strong tendency of thedkieal ecologists to study
the dynamical bahaviours of models numerically, withoyt analytic guide. No doubt,
numerical simulations provide a basic understanding afdlsystems, even when analytic
results are unavailable. However, analytic results areomapt because they can show
the dynamical behaviour of a class of models, rather thanrécpkar model. This is
particularly important in ecology, where confidence in éxaan of any particular model
is weak. Not that we neglect the increased computation dgpsaad speed of present day
computers, far from it, but it is beyond doubt that a bettealyic understanding of the
models would make the use of numerics even more useful.

The present paper is designed to study the effect of distne¢edelay on a tritrophic
food chain model with ratio-dependent functional respsns€he rest of the paper is
structured as follows. In Section 2, we have introduced #sdhdeterministic model.
Section 3 is equipped with the dynamical behaviours of thetesy. In Section 4, our
analytical results are validated through numerical sitita Section 5 contains the
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general discussions of the paper and biological implicatmf our mathematical findings.

2 Themodd

In the present paper we are concerned with a tritrophic fdwdncmodel with ratio-
dependent functional responses. Our basic model is agfoathulated by Hsu et al. [19].
The model equations are

dx X\ 1 miXY

W (oA LAY g s

a " ( K) mav+x TO>0

dYy leY 1 ngZ

L maAr gy 22 gy 1
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where XY, Z denote the population densities of prey, predator and tegator, re-
spectively. Herer > 0 and K > 0 are the prey intrinsic growth rate and carrying
capacity, respectively. Fér= 1, 2; m;, a;, d;, n; are positive constants denoting maximal
predator growth rates, half saturation constants, predatath rates, and yield constants,
respectively.

The model we have just specified has ten parameters, whicaswaatalysis difficult.
To reduce the number of parameters and to determine whicbioations of parameters
control the behavior of the system, we non-dimensionafiezestystem (1). We choose

X (11Y alagZ

T=p Y=, 2= and t=r1T.

Then the system (1) takes the form (after some simplification

dz bxy
x

— =x(1l—2) — , 0) >0,
dt z( ) z+y 0)
dy maxy cyz
— = —py — : 0) >0, 2
Wy My y(0) )
dz
— = —_— 0 0
o qz + ;. 2(0) >0,
Wherebi’rar’ 7"p7 :77221’ - 7"q7

We have already dlscussed the usefulness of time- delayalrstle modelling of
ecosystems. Here we consider the following modificatiohefrhodel (2) incorporating
discrete time-delay in it.

dz bxy

2 (1) —

gr x(l—x) Tty (0) >0,

dy maxy cyz

W oty Wy y(0) >0, ®)
dz ey(t—7)

= = 0 0

TR I v o prap v | R g
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The delayr in (3) may be regarded as a gestation period or reaction tintkeotop-
predatorZ. We think it worth mentioning that the necessity of such nisthas already
been emerged from the field experiment also. Reeve [38] aiadwexperiments to de-
termine the nature of the functional response of cleridlb8dtanasimus dubiusn bark
beetleDendroctonus frontalisluring attack of the host tree. Analyzing the experimental
findings, he has suggested that a model including ratio+tgrece and time-delay for
T. dubiusandD. frontalis interaction may determine the net stabilizing or destainij
effect onD. frontalis dynamics.

3 Dynamical behaviours

3.1 Dynamicswhen T =0

Hsu et al. [19] have already studied some important dyndrh&fzaviours of the system
(3) whenr = 0. We mention here some of their results.

Theorem 1. All solutions of the systeif8) that start inR? are uniformly bounded when
T=0.

Theorem 2. The systen(3) always possesses the trivial equilibriuBy(0,0,0) and
equilibrium E4(1,0,0). The third boundary equilibrium poinEs(z, §,0) exists if and
only if m > p and m — bm + bp > 0. When this condition is satisfied, ¢ are given by

. m-—bm+bp . (m-—p)i
f=— ="
m D

Theorem 3. The interior equilibriumE™* (z*, y*, z*) of the systen(3) exists if and only
if the following conditions are satisfied:

(i) e>q,
(i) A>1,
(i) 0<b< 2.
Furthermorex*, y*, z* are given by

:71)4“4(1_1)) *=(A-1)z*, and z*zi(e_q)y,

A Y q

*

- m_
whereA = =T
On deterministic extinction, we have the following theosem

Theorem 4. Ifthe interior equilibriumE* does not exist, then the top predator of mg@g!
will die out. Specifically, if one of the following three cdtiwhs holds,

(i) e<q,
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(i) e>q, 0< AL,
(i) e>q,A>1andb> A/(A — 1), thenlim;_, z(¢) = 0.

Theorem 5. If b > 1, andm > b/(b — 1)(p + ¢), thenlim, . (x(t),y(t), 2(t)) =
(0,0,0).

Theorem 6. If ¢ > gand0 < A < 1, thenlim;_ y(¢t) = 0 andlim;_, z(t) = 0.
Furthermore, ifb > (1 +p + ¢) andz(0)/y(0) < {b— 1 +p+<)}/(1 +p+ ¢),
thenlim;_, o (x(t), y(t), 2(t)) = (0,0,0), and ifb < 1, thenlim;_, o (x(t), y(t), 2(t)) =
(1,0,0).

Remark 1. The above theorems give conditions for the extinction ofttigepredator,
the extinction of both middle and top predators (but not theyspeciest, and total
extinction of all the three species. The Theorem 6 statddfthize middle predator is a
high capacity and aggressive consumer (characterizedrtyy l@lues ob) and there is
a shortage of prey to begin with, then all three species wilegtinct. The last part of
Theorem 6 suggests that if middle predator is a low capaoitggmer, then prey species
will persist.

Now we study the stability of the most important equilibrigpoint E* (z*, y*, 2*).
The variational matrix of (3) a&* is given by

vy vz O
*
V(E*) = |va1 va2 a3,
0 w32 w33

where
* *2
vpi=2"|—1+ (:c*bjjy )2], 12:_(x*biy )
my*2 i ma* cx* cy*?
Ty Y [‘ T E P ol K OT)
er*2 eyt
W= T e g

The characteristic equation is
A+ AN+ AN+ A3 =0,

where

(m —bjz"y” | (e—cJy"z"
(@ +y )2 (Y +2)?

Ay = —vi1 —vag —vgg =" +

)
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Az = v22v33 + V11V22 + V11U33 — V12021 — V23V32

_ (me+be—be)x*y*?z (e —c)xtyrz* max*2y*
- (Z* + y*)Q(y* + z*)2 (y* + z*)2 (Z* + y*>2’
Az = —det V(E™) = 012021033 + v11023032 — V11022033
mex*2 *2Z
= * *\2 y* *)2 > 0.
(x* +y*)2(y* + 2%)
Now
A =A1A5 — Az

= — (U11)2U22 - (U11)2U33 + V11V12V21 — U22(U33)2 - U11(U22)2 — 2011022033
+ V22V12V21 + V23V32V22 — (U22)2U33 - U11(U33)2 + V23V32V33

:((mfb)eerc)x*y*‘gz (m—b)x* N (e—c)z* JrZ(mfb)(efc):r*Qy”‘Qz”‘

m(m _ b):C*Sy*2 (6 _ C)Qx*y*Qz*Q (6 _ C>x*2y*z* mx*By*

Then we have the following theorem on local stabilityfof.
Theorem 7. E* is locally asymptotically stable if and onlyf; > 0 andA > 0.

The theorem directly follows from Routh Hurwitz criteriosg43 > 0). A sufficient
condition for local asymptotic stability af* is the following:

Theorem 8. If m > bande > ¢, thenE* is locally asymptotically stable.
Proof. We notice that

(i) m>bande>c= A; >0,

(i) As > 0 for all values of the parameters,

(i) m>bande>c= A= A1A;, — A3 > 0.

Hence, the theorem follows from Routh Hurwitz criterion. O

3.2 Dynamicswhen T # 0

Whenrt # 0, the system (3) has the same equilibria as in the previows CEse main
purpose of this section is to study the stability behavioEdfz*, y*, z*) in the presence

of discrete delay{ # 0). Before doing that we present some important results on
boundedness and deterministic extinction.

Theorem 9. All solutions of the time-delayed syst€®) that start in}Rfjr are uniformly
bounded.
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Proof. Let (z(t),y(t), z(t)) be any solution of the system (3) that startRA. Since
42 < z(1 - z), we have
(

limsupz(t) < 1.

t—oo
LetW = mx + by. Now

dw CpYyz
A 1— ) — _
g” mx(l —x) — bpy e

< mzx —bpy < 2mx — 6W, where § = min{l,p}.

Therefore

aw
Y L sW < 2m.
@ oW sem

Applying a theorem on differential ineqalities (Birkhoffid Rota, [39]), we obtain

OSW(%y)SQTerw

and fort — oo,
2m

0<sw< —.
- T4

Therefore, it is possible to find two positive numbersndt’ such thaty(t) < x for
t>t.
If e < g, then
dz
— <z(e—q)=—-kz, where k=qg—e.
dt
So, fort > T,
2z < 2(0)e™*
which gives

lim z = 0.
t—oo

Therefore, in the following, we assume that- q.
Since

%<<e—q>z<t>{ yt—1) }s<e—q>z<t>7

dt — ylt—7)+2z(t —71)

we have, fot > 7, 2(t) < z(t—7)el*=97, which is equivalentta (t—7) > z(t)e~ (=97,
Therefore, fott > ¢’ 4 7, we have

.
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A standard comparison argument shows that

lim sup 2(t) < me(ef‘])f
t—oo q

Hence the theorem. O

The following theorem gives a criterion for deterministixtiaction of the time-
delayed system (3).

Theorem 10. If e < ¢ and m < p, then lim;_, y(t) =0 and lim;_ . z(t) = 0.

Proof. If m < pthen

—py < (m—p)y=-ly, where I=p—m.

So, fort > 7,y < y(0)e~ .
Therefore,

tlgrolo y=0
It is already shown in the proof of Theorem 9 that ik ¢ thenlim; .., z = 0.
Hence the theorem is established. O

Remark 2. The above theorem indicates that is the death rates exceedtiesponding
maximal growth rates (i.ed; > m,;, i = 1,2), then the predator and top-predator both
will die out but the prey persists. It is worth mentioned tfaatthe time-delayed system,
the result of Theorem 5 hold as well. From this, we may roughly that if the maximal
predator growth rate is high enough, then there might be e aftetal extinction.

We now study the stability behaviour d#*(z*, y*, z*) for the system (3). We
linearize the system (3) by using the following transforioas :

r=x"+x, y=y"+y, z=2z"+2.

Then the linear system is given by

% = Au(t) + Bu(t — 7), 4)

whereu(t) = [z1 y1 21]7, A = (aij)3x3, B = (bij)3x3, and

by* b:):*2
a1=x%1—1 4+ — e
! (2" +y*)2}’ CGEYRE
my*? . { ma* N cz* cy*?
o] = ————. A9o= — Qoqg———
21 (z* +y*)27 22=Y (z* + y*)? (y* + 2*)2 > 423 (y* +Z*)2’
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and all othew;; = 0,

62*2 €y*Z*

bBQZW’ 5332—(

y* + Z*)Q
and othewb;; = 0.
We look for solution of the model (4) of the form(t) = pet, 0 # p € R3. This
leads to the following characteristic equation:

A ar A2+ ao + (asA? + agh + a5)e_)‘7 =0, (5)
where
a1 = —ai1 — G2, Q2 = Q1122 — A12021, a3 = —b33,

Gy = (6111 + C122)b33 — az3b32, a5 = arzas1bsz — a11(022b33 - 023b32)-

It is well known that the signs of the real parts of the solui@f (5) characterize the
stability behaviour of*. Therefore, substituting = ¢ + in in (5) we obtain real and
imaginary parts, respectively, as

& =3¢’ +a (52 *772) +azd+ [{613 (52*772) +a4§+a5} cosNT
+(2a3€+a4)nsinnr] e ¢ =0, (6)

and

(362 =) +2a16n+azn+ [(2az€+aq)n cosnr
—{a3(§2—772)+a4€+a5} sinm‘}e_&zo. (7

A necessary condition for a stability changefof is that the characteristic equation (5)
has purely imaginary solutions. Hence to obtain the stgiliterion, we set = 0 in (6)
and (7) to obtain

ain® = (a5 — a3n2) coSNT + agn sinnt (8)
and

— 1% + agn = —ayn cosnT + (a5 — a3772) sin 7. (9)

Eliminating r by squaring and adding (8) and (9), we get the equation fardehingn
as

n® +din* + dan® + ds = 0, (10)

whered; = a? — 2as — a3, do = a3 + 2azas — a3, d3 = —a2.
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Substituting;? = o in (10), we get a cubic equation given by
F(o) = o 4+ dyo? + doo + ds = 0. (12)

We notice thatF" is continuous everywhere with'(0) < 0 andlim,_ F(o) = oc.
Therefore, the cubic (11) always has at least one positive feonsequently, the stability
criteria of the system for = 0 will not necessarily ensure the stability of the system for
7 # 0. Without loss of generality, we assume that equation (1%)thigee positive roots,
denoted by, 05 andos, respectively. Then equation (10) has three positive rcaig

m =01, N2=1+/02, 13=+/03.
Let

)

; 1 2 (a1as — asaq — ajasn? + asn?
T]g]) = — |arccos L ( 17— T 5 21 320 5 4770) + 2jm
Mk (as — azng)? + ainy

k=1,2,3; j=0,1,2....

Then +in, is a pair of purely imaginary roots of the equation (5) with= T,ij),
k=1,2,3; j=0,1,.... Clearly

lim 7 =00, k=1,2,3.

j—o0
Thus, we can define

« _ (do) _ : { (j)} —
U l min T a.nd .
ko 1<k<3,4>1 UF 0 = Tko

Now we state a lemma which was proved by Ruan and Wei [40].

Lemma 1. Consider the exponential polynomial

P e e My = A p Ol A p(©)
+ [pﬁ”A”‘l o “’M e

+o+ |:p(1'rn)>\n—1 +. .+ pgﬁ)ﬁ\ +p£lm)} 6_)\7—”,

wherer; >0 (i=1,2,...,m) andpy) (t=0,1,...,m—1; j=1,2,...,n)are constants.
As(t1,T2,...,Tm) vary, the sum of the orders of the zerosf\,e=*71,... e~*™) on
the open half plane can change only if a zero appears on ose®the imaginary axis.

Then we have the following theorem on the stabilityRf.

Theorem 11. Suppose thaty* exists withA; > 0 and A > 0. ThenE* is locally
asymptotically stable for alt € [0, 7).
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Proof. SinceE™ exists withA; > 0 andA > 0, therefore all the roots of the equation (5)

have negative real parts when = 0. Now it is easy to see that when # r(]),

k=1,2,3; j = 0,1,2..., equation (5) has no root with zero real part aridis the

minimum value ofr, so that equation (5) has purely imaginary roots. Henceyappthe

above lemma, we conclude that all roots of the equation (& hagative real parts when
€ [0,7*). This proves the theorem. O

Now we show the existence of Hopf bifurcation ndar by takingr as bifurcation
parameter.

Theorem 12. Suppose thab* exists withA; > 0, A > 0 and F’(n2) = 3ng + 2d1n2 +
ds # 0. Then the systef8) exhibits a supercritical Hopf bifurcation ned™* for r = 7*.

Proof. The theorem will be proved if we can show tt{%ﬁ} > 0. To show this, we
differentiate (6) and (7) with respecttoand then seg = 0 {0 obtaln
dg
D 12
)%+ D) = ), (12)
dg dn
—D(n —=H 13
()52 +CoGE = H), (13)
where
C(n)=as—3n*+a4 cosnr+2asn sinn —7{ (as—asn®) cosnT+asnsinnr},
D(n)=-2a1m — 2azncosnT + a4 sinnr — T{ (a5 — a3n2) sinnT — aqn cos 777'},
G(n) :n{ (a5 - a3n2) sin T — a4m cos 777},
H(n) :77{ (a5 — a3772) cosnT + ay4nsin 777'}.

Solving (12) and (13) withr = 7* andn = n, we get after a little algebraic
manipulation that

{%] _ ngF' (1)
dr|,_..  C2(no) + D?(no)

#0, since F'(n}) #0.

We finally show tha%],_.. > 0. If % < 0for 7 < 7* and close tor*, then
equation (5) has a roodi(r) with positive real part, which contradicts Theorem 11. This
completes the proof. O

4 Numerical simulation

In this section we present computer simulation of some gwistof the system (3) using
MATLAB. The numerical solutions of the ordinary differeatiequation are obtained by
using the fourth order Runge-Kutta method. Beside verificatf our analytical findings,
these numerical solutions are very important from pratfioat of view.

210



Effect of Time-Delay on a Ratio-Dependent Food Chain Model

We choose the parameters of the system (3)a3.9, m=1.5, ¢=0.5, p=1,
g =1, e =2 7= 0and(z(0),y(0),z(0)) = (0.5,0.1,0.1). Then the conditions
of Theorem 7 is satisfied a4, = 0.3917 > 0, A = 0.0047 > 0, and consequently
E*(z*,y*, z*) = (0.35,0.07,0.07) is locally asymptotically stable. The phase portrait
is shown in Fig. 2(a). Clearly the solution is a stable spi@iverging toE*. Fig. 2(b)
shows thatz,y and z populations approach to their steady-state valieg* and z*
respectively in finite time.

Fig. 2. Herez(0)=0.5, y(0)=0.1, 2(0)=0.1 andb = 3.9, m=1.5, ¢c=0.5, p=1,
g =1, e =2, 7=0. (a) Phase portrait of the system (3) showing thatis locally
asymptotically stable; (b) Stable behavioungfy, = populations in finite time.

100 150 200 250 300 350 400 450 500
t

(b)

Fig. 3. Herez(0)=0.5, y(0)=0.1, 2(0)=0.1 andb=3.9, m=1.5, ¢=0.5, p=1,
g=1, e=2andr=2.1 < 7*. (a) Phase portrait of the system; (b) Behaviour of the
x,y, z intime.
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It is mentioned before that the stability criteria in the ese of delay£ = 0) will
not necessarily guarantee the stability of the system isgmee of delay« # 0). For
the above choices of parameters, it is seen that there igja@ipositive root of equation
(11) given byoy = 72 = 0.29 for which F’(n2) = 0.0475 # 0 andr = 7% = 2.2942.
Therefore by Theorem 1Z*(x*, y*, z*) loses its stability as passes through the critical
value7*. We verify that forr = 2.1 < 7%, E* is locally asymptotically stable (see
Figs. 3(a) and 3(b)). Keeping other parameters fixed, if we ta= 2.4 > 77, it is seen
that £* is unstable and there is a bifurcating periodic solutiornr riga (see Fig. 4(a)).
Oscillations ofz, y, z in finite time are shown in Figs. 4(b)-4(d).

Thus using the time-delay as control, it is possible to bitbakstable behaviour of
the system and drive it to an unstable state. Also it is ptessibkeep the populations at
a desired level using the above control.

L L L L L
0 50 100 150 200 250 300
t

@ (b)

01 T T T T T 018

>0.07F] N 01

50 100 150 200 250 300 0 50 100 150 200 250 300
t t

() (d)

Fig. 4. Here all other parameter values are same as in Figc&ex = 2.4 > 7°.
(a) Phase portrait of the system (3) showing a limit cyclechgrows out of E*;
(b)—(d) Oscillations oft, y, z populations respectively in finite time.

212



Effect of Time-Delay on a Ratio-Dependent Food Chain Model

5 Concluding remarks

In this paper, we have studied the effect of discrete tinlayden a ratio-dependent
tritrophic food chain model. It is shown that the time-deldysystem is uniformly
bounded, which, in turn, implies that the system is biolatficwell behaved. It has
long been recognized that most of the studies of continuous deterministic models
reveal two basic patterns: approach to an equilibrium or toné cycle. The basic
rationale behind such type of analysis was the implicit aggion that most food chains
we observe in nature correspond to stable equilibria of thdeh From this viewpoint,
we have presented the stability and bifurcation analysisefmost important equilibrium
point E*.

The nonlinear differential equation (3) may be looked upertlee mathematical
model for tea plant@amellia sinensi&..)-pest (e.g. Looper caterpillar)-beneficial preda-
tor (natural enemy of the pest) (e.8acillus thuringiensisor Sarcophagasp.) (Kabir,
[13]). Then we observe that the size of the tea plantin the absence and presence of
beneficial predatofz) arez andz*, respectively so that* — & > 0. Alsoy* — ¢ < 0
wherey andy* are respectively the size of the pest population in the atesend presence
of beneficial predators. This implies that predator attaicgests enhance fitness of tea
plants and cause depression for the pests. This gives gydtrearetical support to the
approach of bio-control of pests. A host of experiments hehbaid out by tea scientists
to study the possibility of implementing the technique aj-bbntrol of pests in tea. In
an experiment conducted by Das and Barua [B&illus thuringiensisvas found to be
very effective against looper caterpillars. MochizukiJfdund that at a few tea planta-
tions in central Japan, populationsArblyseius womerslewiere suppressing Kanzawa
spider miteTetranychus kanzawaien after they were sprayed with synthetic pyrethroid
pesticides. Also the above result — & > 0 is in good agreement with the experimental
findings of Gomez and Zamora [15] (dthormathophylla spinosa-Ceutorhynchsg.-
chalcid parasitoid interactions), Van Loon et al. [16] (Arabidopsis thaliana-Pieris
rapae-Cotesia rubeculanteractions) and Fritzsche-Haballash and Turlings [d0]4ea
mays-Spodoptera littoralis-Cotesia marginivenirigeractions).

It is mentioned by several researchers that the effect of-tielay must be taken
into account in order to have a biologically useful mathecahimodel (Macdonald [36],
Gopalsamy [37], Kuang [35]). In the model (3) the delay mayldked upon as the
gestation period or reaction time of the top-predator. & #ystem (3) is the model for
plant-pest-parasitoid interaction, then Theorem 10 ieghat the pest will be completely
eradicated when the death rates exceed the correspondkignatgrowth rates. Then a
rigorous analysis leads us to the Theorem 11 and 12 whichiometitat the stability
criteria in absence of delay is no longer enough to guarahteetability in presence
of delay, rather there is a critical value of the delay suctt the system is stable if the
delay lies below the critical value and become unstable whemlelay exceeds it. Such
regulatory impact of the time-delay is also illustratedbtigh computer simulation.

It is well known that natural populations of plants and arlanaeither increase
indefinitely to blanket the world nor become extinct (exciepsome rare cases due to
some rare reasons). Hence, in practice, we often want toceethe predator to an
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acceptable level in finite time. In order to accomplish this strongly suggest that in
realistic field situations (where effect of time-delays oamer be violated), the parameters
of the system should be regulated in such a way that the d¢onsglibf Theorem 11 are

satisfied.
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