
Nonlinear Analysis: Modelling and Control, 2009, Vol. 14, No. 2, 199–216

Effect of Time-Delay on a Ratio-Dependent
Food Chain Model

B. Patra1, A. Maiti2, G. P. Samanta3

1Department of Mathematics, Krishnagar Collegiate School
Krishnagar-741101, India

2Department of Mathematics, Presidency College
Kolkata-700073, India

alakeshmaity@hotmail.com
3Department of Mathematics, Bengal Engineering and ScienceUniversity, Shibpur

Howrah-711103, India
g p samanta@yahoo.co.uk

Received: 2008-01-09 Revised: 2008-11-22 Published online: 2009-05-26

Abstract. This paper aims to study the effect of time-delay on a tritrophic food chain
model with Michaelis-Menten type ratio-dependent functional responses. Boundedness
of the time-delayed system is established. A simple criterion for deterministic extinction
is derived. It has been shown that the time-delay may introduce instability in the system
through Hopf bifurcation. Computer simulations are carried out to explain the analytical
findings. It is discussed how these ideas illuminate some of the observed properties of
real populations in the field, and explores practical implications.
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1 Introduction

The use of mathematics in the modelling of biological phenomena has become more
prevalent in recent years. The gradual invasion of the field of biology by mathematicians
is already yielding a number of benefits for both the fields. A number of realistic mathe-
matical models now exists but the analytical results about the dynamical behaviour of
such models is still largely lacking. This is specially truein case of three-species models.
In fact, after getting started with the pioneering works of Lotka [1] and Volterra [2],
two-species models have so far dominated the field of Biomathematics. But the limited
“caricature” of ecological systems by two species can account for only a small number of
the phenomena that are commonly exhibited in nature. To the best of our knowledge, it
was only in the late seventies that some interest in the mathematics of three-species food
chain models (composed of prey, predator and superpredator) emerged (Freedman and
Waltman [3], Gilpin [4], Gard [5]). Subsequently, some golden rules are derived in the
the theory of three-species models (for detailed references, see Maiti and Samanta [6]).
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Actually, the most crucial element in modelling of tritrophic systems is the choice of
functional responses. Most of the three-species models aredesigned with Lotka-Volterra
or Holling type prey-dependent functional responses but such functional responses have
faced a number of questions since late eighties. A large number of papers are now
available to get into the details of those heated phases of transition. Beside this, in many
field studies, certain three-species communities have become the focus of considerable
attention. In the following, we mention some of them. It willindicate the relevance of
theoretical studies of three-species systems.

It is well known that approximately one third of world food production is lost due to
pests. The farmers have to suffer from heavy economic lossesdue to these pests. Usually,
pesticides are used to control pests but the long list of side-effects of pesticides forces
the scientists to find alternative methods for pest control.For this reason, the method of
bio-control of pests is getting much more importance in almost all developing countries.
In this method, a pest is controlled (destroyed) by introducing a parasitoid or predator,
which is natural enemy to the concerned pest. For example, the most important pests
like Spodopterasp. of maize (Zea mays) is controlled by using parasitoids likeCotesia
marginiventris(see Ashley [7], Jalali et al. [8], Turlings and Fritzsche [9], and Fritzsche
Hoballah and Turlings [10] for experimental evidences). Toreduce the indiscriminate use
of pesticides, recently tea scientists are using predatorsor pathogens to control the pests
of tea (Das and Barua [11], Das et al. [12], Kabir [13], Mochizuki [14]). Similar studies
can also be found in Gomez and Zamora [15] and Van Loon et al. [16]. The literature
abounds with many such evidences. Some other three-speciessystems have also got the
attention of the scientists. For example, in waste treatment process, the bacteria lives
on the waste (or nutrient) while other organisms as ciliatesfeed on the bacteria (Li and
Kuang [17]). Thus three-species systems like nutrient-bacteria-ciliate, plant-herbivore-
parasitoid, plant-pest-predator, et cetera are emerging in different branches of biology in
their own right. These are the examples of three-species “food chains”. That is, behaviour
of the entire community arise from the coupling of these interacting species, where the
species at the third trophic level prey on the species at the second trophic level and the
species at the second trophic level feed on the species at thefirst trophic level (see Fig. 1).
A distinct feature of these food chains is the so calleddomino effect: if one species dies
out, all the species at higher trophic level die out as well. Of course, there are many other
types of three-species systems. In this paper, we are not interested in those systems.

Prey
↓

Predator
↓

Top-predator

Fig. 1. The feeding relationship in a tritrophic food chain.

We have already mentioned that the most important element inpredator-prey inter-
actions is the functional response or trophic function. In recent times, the ratio-dependent
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functional response has become the focus of considerable attention in ecological litera-
ture. A number of research papers have analyzed the merits ofratio-dependent functional
response in comparison with others (see Arditi et al. [18], Hsu et al. [19], and references
cited there in). Further, predator-prey models with such ratio-dependent functional res-
ponse are strongly supported by numerous field and laboratory experiments (Arditi and
Ginzburg [20], Arditi and Berryman [21], Arditi et al. [22, 23], Hanski [24], Arditi and
Saiah [25], Gutierrez [26], Blaine and DeAngelis [27], Poggiale et al. [28], Bernstein et
al. [29], Cosner et al. [30], Arditi et al. [31]). Also, thereis a growing evidences that in
some situations, especially when predators have to search for food (and therefore have to
compete for food), a more suitable functional response should be ratio-dependent (Arditi
et al. [31], Cosner et al. [30], Hsu et al. [32,33], Xiao and Ruan [34]).

We now make a general comment on the realistic modelling of ecosystems. Usually,
a model in theoretical ecology is considered under the framework of a set of ordinary
differential equations. It is a fact that ordinary differential equations have long played
an important role in the history of theoretical ecology. However, they are generally
the first approximations of the considered real system. Morerealistic models should
include some of the past states of these systems; that is, ideally, a real system should
be modelled by differential equations with time-delays. Now it is well understood that
many of the processes, both natural and manmade, in biology,medicine, et cetera, involve
time-delays. Time-delays occur so often, in almost every situation, that to ignore them
is to ignore reality. Kuang [35] mentioned that animals musttake time to digest their
food before further activities and responses take place andhence any model of species
dynamics without delays is an approximation at best. Now it is beyond doubt that in an
improved analysis, the effect of time-delay due to the time required in going from egg
stage to the adult stage, gestation period, et cetera, has tobe taken into account. Detailed
arguments on importance and usefulness of time-delays in realistic models may be found
in the classical books of Macdonald [36], Gopalsamy [37] andKuang [35].

In recent years, theoretical ecologists have laid down immense importance on the
effect of time-delay on realistic models. Still, there is nodenying that a lack of analytic
results on time-delayed models persists. In fact, after therecent developments in the
field of computers, it has become a strong tendency of the theoretical ecologists to study
the dynamical bahaviours of models numerically, without any analytic guide. No doubt,
numerical simulations provide a basic understanding of these systems, even when analytic
results are unavailable. However, analytic results are important because they can show
the dynamical behaviour of a class of models, rather than a particular model. This is
particularly important in ecology, where confidence in exact form of any particular model
is weak. Not that we neglect the increased computation capacity and speed of present day
computers, far from it, but it is beyond doubt that a better analytic understanding of the
models would make the use of numerics even more useful.

The present paper is designed to study the effect of discretetime-delay on a tritrophic
food chain model with ratio-dependent functional responses. The rest of the paper is
structured as follows. In Section 2, we have introduced the basic deterministic model.
Section 3 is equipped with the dynamical behaviours of the system. In Section 4, our
analytical results are validated through numerical simulation. Section 5 contains the
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general discussions of the paper and biological implications of our mathematical findings.

2 The model

In the present paper we are concerned with a tritrophic food chain model with ratio-
dependent functional responses. Our basic model is actually formulated by Hsu et al. [19].
The model equations are

dX

dT
= rX

(

1 − X

K

)

− 1

η1

m1XY

a1Y + X
, X(0) > 0,

dY

dT
=

m1XY

a1Y + X
− d1Y − 1

η2

m2Y Z

a2Z + Y
, Y (0) > 0,

dZ

dT
= −d2Z +

m2Y Z

a2Z + Y
, Z(0) > 0,

(1)

whereX, Y, Z denote the population densities of prey, predator and top predator, re-
spectively. Herer > 0 and K > 0 are the prey intrinsic growth rate and carrying
capacity, respectively. Fori = 1, 2; mi, ai, di, ηi are positive constants denoting maximal
predator growth rates, half saturation constants, predator death rates, and yield constants,
respectively.

The model we have just specified has ten parameters, which makes analysis difficult.
To reduce the number of parameters and to determine which combinations of parameters
control the behavior of the system, we non-dimensionalize the system (1). We choose

x =
X

K
, y =

a1Y

K
, z =

a1a2Z

K
and t = rT.

Then the system (1) takes the form (after some simplification)

dx

dt
= x(1 − x) − bxy

x + y
, x(0) > 0,

dy

dt
=

mxy

x + y
− py − cyz

y + z
, y(0) > 0,

dz

dt
= −qz +

eyz

y + z
, z(0) > 0,

(2)

whereb = m1

η1a1r , m = m1

r , p = d1

r , c = m2

η2a2r , e = m2

r , q = d2

r .
We have already discussed the usefulness of time-delay in realistic modelling of

ecosystems. Here we consider the following modification of the model (2) incorporating
discrete time-delay in it.

dx

dt
= x(1 − x) − bxy

x + y
, x(0) > 0,

dy

dt
=

mxy

x + y
− py − cyz

y + z
, y(0) > 0,

dz

dt
= z

[

− q +
ey(t − τ)

y(t − τ) + z(t − τ)

]

, z(0) > 0.

(3)

202



Effect of Time-Delay on a Ratio-Dependent Food Chain Model

The delayτ in (3) may be regarded as a gestation period or reaction time of the top-
predatorZ. We think it worth mentioning that the necessity of such models has already
been emerged from the field experiment also. Reeve [38] conducted experiments to de-
termine the nature of the functional response of clerid beetle Thanasimus dubiuson bark
beetleDendroctonus frontalisduring attack of the host tree. Analyzing the experimental
findings, he has suggested that a model including ratio-dependence and time-delay for
T. dubiusandD. frontalis interaction may determine the net stabilizing or destabilizing
effect onD. frontalisdynamics.

3 Dynamical behaviours

3.1 Dynamics when τ = 0

Hsu et al. [19] have already studied some important dynamical behaviours of the system
(3) whenτ = 0. We mention here some of their results.

Theorem 1. All solutions of the system(3) that start inR
3
+ are uniformly bounded when

τ = 0.

Theorem 2. The system(3) always possesses the trivial equilibriumE0(0, 0, 0) and
equilibrium E1(1, 0, 0). The third boundary equilibrium pointE2(x̂, ŷ, 0) exists if and
only if m > p and m− bm + bp > 0. When this condition is satisfied,x̂, ŷ are given by

x̂ =
m − bm + bp

m
, ŷ =

(m − p)x̂

p
.

Theorem 3. The interior equilibriumE∗(x∗, y∗, z∗) of the system(3) exists if and only
if the following conditions are satisfied:

(i) e > q,

(ii) A > 1,

(iii) 0 < b < A
A−1 .

Furthermorex∗, y∗, z∗ are given by

x∗ =
b + A(1 − b)

A
, y∗ = (A − 1)x∗, and z∗ =

(e − q)y∗

q
,

whereA = m
c{(e−q)/e}+p .

On deterministic extinction, we have the following theorems :

Theorem 4. If the interior equilibriumE∗ does not exist, then the top predator of model(3)
will die out. Specifically, if one of the following three conditions holds,

(i) e ≤ q,
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(ii) e > q, 0 < A ≤ 1,

(iii) e > q, A > 1 andb ≥ A/(A − 1), thenlimt→∞ z(t) = 0.

Theorem 5. If b > 1, and m ≥ b/(b − 1)(p + c), then limt→∞(x(t), y(t), z(t)) =
(0, 0, 0).

Theorem 6. If e > q and0 < A ≤ 1, thenlimt→∞ y(t) = 0 and limt→∞ z(t) = 0.
Furthermore, ifb > (1 + p + c) and x(0)/y(0) < {b − (1 + p + c)}/(1 + p + c),
thenlimt→∞(x(t), y(t), z(t)) = (0, 0, 0), and ifb < 1, thenlimt→∞(x(t), y(t), z(t)) =
(1, 0, 0).

Remark 1. The above theorems give conditions for the extinction of thetop predator,
the extinction of both middle and top predators (but not the prey speciesx, and total
extinction of all the three species. The Theorem 6 states that if the middle predator is a
high capacity and aggressive consumer (characterized by large values ofb) and there is
a shortage of prey to begin with, then all three species will go extinct. The last part of
Theorem 6 suggests that if middle predator is a low capacity consumer, then prey species
will persist.

Now we study the stability of the most important equilibriumpointE∗(x∗, y∗, z∗).
The variational matrix of (3) atE∗ is given by

V (E∗) =





v11 v12 0
v21 v22 v23

0 v32 v33



 ,

where

v11 =x∗

[

− 1 +
by∗

(x∗ + y∗)2

]

, v12 =− bx∗2

(x∗ + y∗)2
,

v21 =
my∗2

(x∗ + y∗)2
, v22 =y∗

[

− mx∗

(x∗ + y∗)2
+

cz∗

(y∗ + z∗)2

]

, v23 =− cy∗2

(y∗ + z∗)2
,

v32 =
ez∗2

(y∗ + z∗)2
, v33 =− ey∗z∗

(y∗ + z∗)2
.

The characteristic equation is

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = −v11 − v22 − v33 = x∗ +
(m − b)x∗y∗

(x∗ + y∗)2
+

(e − c)y∗z∗

(y∗ + z∗)2
,
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A2 = v22v33 + v11v22 + v11v33 − v12v21 − v23v32

=
(me + bc − be)x∗y∗2z

(x∗ + y∗)2(y∗ + z∗)2
+

(e − c)x∗y∗z∗

(y∗ + z∗)2
+

mx∗2y∗

(x∗ + y∗)2
,

A3 = − detV (E∗) = v12v21v33 + v11v23v32 − v11v22v33

=
mex∗2y∗2z

(x∗ + y∗)2(y∗ + z∗)2
> 0.

Now

∆ =A1A2 − A3

= − (v11)
2v22 − (v11)

2v33 + v11v12v21 − v22(v33)
2 − v11(v22)

2 − 2v11v22v33

+ v22v12v21 + v23v32v22 − (v22)
2v33 − v11(v33)

2 + v23v32v33

=
((m−b)e+bc)x∗y∗3z

(x∗+y∗)2(y∗+z∗)2

[

(m−b)x∗

(x∗+y∗)2
+

(e−c)z∗

(y∗+z∗)2

]

+
2(m−b)(e−c)x∗2y∗2z∗

(x∗+y∗)2(y∗+z∗)2

+
m(m − b)x∗3y∗2

(x∗ + y∗)4
+

(e − c)2x∗y∗2z∗2

(y∗ + z∗)4
+

(e − c)x∗2y∗z∗

(y∗ + z∗)2
+

mx∗3y∗

(x∗ + y∗)2

Then we have the following theorem on local stability ofE∗.

Theorem 7. E∗ is locally asymptotically stable if and only ifA1 > 0 and∆ > 0.

The theorem directly follows from Routh Hurwitz criterion (asA3 > 0). A sufficient
condition for local asymptotic stability ofE∗ is the following:

Theorem 8. If m > b ande > c, thenE∗ is locally asymptotically stable.

Proof. We notice that

(i) m > b and e > c ⇒ A1 > 0,

(ii) A3 > 0 for all values of the parameters,

(iii) m > b and e > c ⇒ ∆ = A1A2 − A3 > 0.

Hence, the theorem follows from Routh Hurwitz criterion.

3.2 Dynamics when τ 6= 0

Whenτ 6= 0, the system (3) has the same equilibria as in the previous case. The main
purpose of this section is to study the stability behavior ofE∗(x∗, y∗, z∗) in the presence
of discrete delay (τ 6= 0). Before doing that we present some important results on
boundedness and deterministic extinction.

Theorem 9. All solutions of the time-delayed system(3) that start inR
3
+ are uniformly

bounded.
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Proof. Let (x(t), y(t), z(t)) be any solution of the system (3) that start inR
3
+. Since

dx
dt ≤ x(1 − x), we have

lim sup
t→∞

x(t) ≤ 1.

Let W = mx + by. Now

dW

dt
= mx(1 − x) − bpy − cpyz

y + z

≤ mx − bpy ≤ 2mx − δW, where δ = min{1, p}.

Therefore

dW

dt
+ δW ≤ 2m.

Applying a theorem on differential ineqalities (Birkhoff and Rota, [39]), we obtain

0 ≤ W (x, y) ≤ 2m

δ
+

W (x(0), y(0))

eδt

and fort → ∞,

0 ≤ W ≤ 2m

δ
.

Therefore, it is possible to find two positive numbersκ and t′ such thaty(t) ≤ κ for
t > t′.

If e ≤ q, then

dz

dt
≤ z(e − q) = −kz, where k = q − e.

So, fort > τ ,

z ≤ z(0)e−kt,

which gives

lim
t→∞

z = 0.

Therefore, in the following, we assume thate > q.
Since

dz

dt
≤ (e − q)z(t)

{

y(t − τ)

y(t − τ) + z(t − τ)

}

≤ (e − q)z(t),

we have, fort > τ, z(t) ≤ z(t−τ)e(e−q)τ , which is equivalent toz(t−τ)≥z(t)e−(e−q)τ .
Therefore, fort > t′ + τ , we have

dz

dt
≤ z(t)

{

eκ

κ + z(t)e−(e−q)τ
− q

}

= z(t)

{

(e − q)κ − qe−(e−q)τz(t)

κ + z(t)e−(e−q)τ

}

.
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A standard comparison argument shows that

lim sup
t→∞

z(t) ≤ (e − q)κ

q
e(e−q)τ .

Hence the theorem.

The following theorem gives a criterion for deterministic extinction of the time-
delayed system (3).

Theorem 10. If e < q and m < p, then limt→∞ y(t) = 0 and limt→∞ z(t) = 0.

Proof. If m < p then

dy

dt
≤ mxy

x + y
− py < (m − p)y = −ly, where l = p − m.

So, fort > τ , y ≤ y(0)e−lt.
Therefore,

lim
t→∞

y = 0.

It is already shown in the proof of Theorem 9 that ife < q thenlimt→∞ z = 0.
Hence the theorem is established.

Remark 2. The above theorem indicates that is the death rates exceed the corresponding
maximal growth rates (i.e.di > mi, i = 1, 2), then the predator and top-predator both
will die out but the prey persists. It is worth mentioned thatfor the time-delayed system,
the result of Theorem 5 hold as well. From this, we may roughlysay that if the maximal
predator growth rate is high enough, then there might be a case of total extinction.

We now study the stability behaviour ofE∗(x∗, y∗, z∗) for the system (3). We
linearize the system (3) by using the following transformations :

x = x∗ + x1, y = y∗ + y1, z = z∗ + z1.

Then the linear system is given by

du

dt
= Au(t) + Bu(t − τ), (4)

whereu(t) = [x1 y1 z1]
T , A = (aij)3×3, B = (bij)3×3, and

a11 =x∗

[

− 1 +
by∗

(x∗ + y∗)2

]

, a12 =− bx∗2

(x∗ + y∗)2
,

a21 =
my∗2

(x∗ + y∗)2
, a22 =y∗

[

− mx∗

(x∗ + y∗)2
+

cz∗

(y∗ + z∗)2

]

, a23 =− cy∗2

(y∗ + z∗)2
,
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and all otheraij = 0,

b32 =
ez∗2

(y∗ + z∗)2
, b33 = − ey∗z∗

(y∗ + z∗)2

and otherbij = 0.
We look for solution of the model (4) of the formu(t) = ρeλt, 0 6= ρ ∈ R

3. This
leads to the following characteristic equation:

λ3 + a1λ
2 + a2λ + (a3λ

2 + a4λ + a5)e
−λτ = 0, (5)

where

a1 = −a11 − a22, a2 = a11a22 − a12a21, a3 = −b33,

a4 = (a11 + a22)b33 − a23b32, a5 = a12a21b33 − a11(a22b33 − a23b32).

It is well known that the signs of the real parts of the solutions of (5) characterize the
stability behaviour ofE∗. Therefore, substitutingλ = ξ + iη in (5) we obtain real and
imaginary parts, respectively, as

ξ3−3ξη2+a1

(

ξ2−η2
)

+a2ξ+
[{

a3

(

ξ2−η2
)

+a4ξ+a5

}

cos ητ

+(2a3ξ+a4)η sin ητ
]

e−ξτ =0, (6)

and

η
(

3ξ2−η2
)

+2a1ξη+a2η+
[

(2a3ξ+a4)η cos ητ

−
{

a3

(

ξ2−η2
)

+a4ξ+a5

}

sin ητ
]

e−ξτ =0. (7)

A necessary condition for a stability change ofE∗ is that the characteristic equation (5)
has purely imaginary solutions. Hence to obtain the stability criterion, we setξ = 0 in (6)
and (7) to obtain

a1η
2 =

(

a5 − a3η
2
)

cos ητ + a4η sin ητ (8)

and

− η3 + a2η = −a4η cos ητ +
(

a5 − a3η
2
)

sin ητ. (9)

Eliminatingτ by squaring and adding (8) and (9), we get the equation for determiningη
as

η6 + d1η
4 + d2η

2 + d3 = 0, (10)

whered1 = a2
1 − 2a2 − a2

3, d2 = a2
2 + 2a3a5 − a2

4, d3 = −a2
5.
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Substitutingη2 = σ in (10), we get a cubic equation given by

F (σ) ≡ σ3 + d1σ
2 + d2σ + d3 = 0. (11)

We notice thatF is continuous everywhere withF (0) < 0 and limσ→∞ F (σ) = ∞.
Therefore, the cubic (11) always has at least one positive root. Consequently, the stability
criteria of the system forτ = 0 will not necessarily ensure the stability of the system for
τ 6= 0. Without loss of generality, we assume that equation (11) has three positive roots,
denoted byσ1, σ2 andσ3, respectively. Then equation (10) has three positive roots, say

η1 =
√

σ1, η2 =
√

σ2, η3 =
√

σ3.

Let

τ
(j)
k =

1

ηk

[

arccos

{

η2
0

(

a1a5 − a2a4 − a1a3η
2
0 + a4η

2
0

)

(a5 − a3η2
0)

2 + a2
4η

2
0

}

+ 2jπ

]

,

k = 1, 2, 3; j = 0, 1, 2 . . . .

Then ±iηk is a pair of purely imaginary roots of the equation (5) withτ = τ
(j)
k ,

k = 1, 2, 3; j = 0, 1, . . .. Clearly

lim
j→∞

τ
(j)
k = ∞, k = 1, 2, 3.

Thus, we can define

τ∗ = τ
(j0)
k0

= min
1≤k≤3,j≥1

{

τ
(j)
k

}

and η0 = ηk0
.

Now we state a lemma which was proved by Ruan and Wei [40].

Lemma 1. Consider the exponential polynomial

P (λ, e−λτ1 , . . . , e−λτm) = λn + p
(0)
1 λn−1 + . . . + p

(0)
n−1λ + p(0)

n

+
[

p
(1)
1 λn−1 + . . . + p

(1)
n−1λ + p(1)

n

]

e−λτ1

+ . . . +
[

p
(m)
1 λn−1 + . . . . + p

(m)
n−1λ + p(m)

n

]

e−λτm ,

whereτi≥0 (i=1, 2, . . . , m) andp
(i)
j (i=0, 1, . . . , m−1; j=1, 2, . . . , n) are constants.

As(τ1, τ2, . . . , τm) vary, the sum of the orders of the zeros ofP (λ, e−λτ1 , . . . , e−λτm) on
the open half plane can change only if a zero appears on or crosses the imaginary axis.

Then we have the following theorem on the stability ofE∗.

Theorem 11. Suppose thatE∗ exists withA1 > 0 and ∆ > 0. ThenE∗ is locally
asymptotically stable for allτ ∈ [0, τ∗).
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Proof. SinceE∗ exists withA1 > 0 and∆ > 0, therefore all the roots of the equation (5)
have negative real parts whenτ = 0. Now it is easy to see that whenτ 6= τ

(j)
k ,

k = 1, 2, 3; j = 0, 1, 2 . . ., equation (5) has no root with zero real part andτ∗ is the
minimum value ofτ , so that equation (5) has purely imaginary roots. Hence applying the
above lemma, we conclude that all roots of the equation (5) have negative real parts when
τ ∈ [0, τ∗). This proves the theorem.

Now we show the existence of Hopf bifurcation nearE∗ by takingτ as bifurcation
parameter.

Theorem 12. Suppose thatE∗ exists withA1 > 0, ∆ > 0 andF ′(η2
0) = 3η4

0 + 2d1η
2
0 +

d2 6= 0. Then the system(3) exhibits a supercritical Hopf bifurcation nearE∗ for τ = τ∗.

Proof. The theorem will be proved if we can show that
[

dξ
dτ

]

τ=τ∗
> 0. To show this, we

differentiate (6) and (7) with respect toτ and then setξ = 0 to obtain

C(η)
dξ

dτ
+ D(η)

dη

dτ
= G(η), (12)

−D(η)
dξ

dτ
+ C(η)

dη

dτ
= H(η), (13)

where

C(η)=a2−3η2+a4 cos ητ+2a3η sin ητ−τ
{(

a5−a3η
2
)

cos ητ +a4η sin ητ
}

,

D(η)=−2a1η − 2a3η cos ητ + a4 sin ητ − τ
{(

a5 − a3η
2
)

sin ητ − a4η cos ητ
}

,

G(η)=η
{(

a5 − a3η
2
)

sin ητ − a4η cos ητ
}

,

H(η)=η
{(

a5 − a3η
2
)

cos ητ + a4η sin ητ
}

.

Solving (12) and (13) withτ = τ∗ and η = η0, we get after a little algebraic
manipulation that

[

dξ

dτ

]

τ=τ∗
=

η2
0F ′(η2

0)

C2(η0) + D2(η0)
6= 0, since F ′(η2

0) 6= 0.

We finally show that[ dξ
dτ ]τ=τ∗ > 0. If dξ

dτ < 0 for τ < τ∗ and close toτ∗, then
equation (5) has a rootλ(τ) with positive real part, which contradicts Theorem 11. This
completes the proof.

4 Numerical simulation

In this section we present computer simulation of some solutions of the system (3) using
MATLAB. The numerical solutions of the ordinary differential equation are obtained by
using the fourth order Runge-Kutta method. Beside verification of our analytical findings,
these numerical solutions are very important from practical point of view.
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We choose the parameters of the system (3) asb = 3.9, m = 1.5, c = 0.5, p = 1,
q = 1, e = 2, τ = 0 and (x(0), y(0), z(0)) = (0.5, 0.1, 0.1). Then the conditions
of Theorem 7 is satisfied asA1 = 0.3917 > 0, ∆ = 0.0047 > 0, and consequently
E∗(x∗, y∗, z∗) = (0.35, 0.07, 0.07) is locally asymptotically stable. The phase portrait
is shown in Fig. 2(a). Clearly the solution is a stable spiralconverging toE∗. Fig. 2(b)
shows thatx, y and z populations approach to their steady-state valuesx∗, y∗ and z∗

respectively in finite time.
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Fig. 2. Herex(0)=0.5, y(0)=0.1, z(0)=0.1 andb = 3.9, m=1.5, c=0.5, p=1,
q = 1, e = 2, τ = 0. (a) Phase portrait of the system (3) showing thatE∗ is locally

asymptotically stable; (b) Stable behaviour ofx, y, z populations in finite time.
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Fig. 3. Herex(0)=0.5, y(0)=0.1, z(0)=0.1 andb=3.9, m=1.5, c=0.5, p=1,
q = 1, e = 2 andτ = 2.1 < τ∗. (a) Phase portrait of the system; (b) Behaviour of the

x, y, z in time.
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It is mentioned before that the stability criteria in the absence of delay (τ = 0) will
not necessarily guarantee the stability of the system in presence of delay (τ 6= 0). For
the above choices of parameters, it is seen that there is a unique positive root of equation
(11) given byσ0 = η2

0 = 0.29 for which F ′(η2
0) = 0.0475 6= 0 andτ = τ∗ = 2.2942.

Therefore by Theorem 12,E∗(x∗, y∗, z∗) loses its stability asτ passes through the critical
value τ∗. We verify that forτ = 2.1 < τ∗, E∗ is locally asymptotically stable (see
Figs. 3(a) and 3(b)). Keeping other parameters fixed, if we take τ = 2.4 > τ∗, it is seen
that E∗ is unstable and there is a bifurcating periodic solution near E∗ (see Fig. 4(a)).
Oscillations ofx, y, z in finite time are shown in Figs. 4(b)–4(d).

Thus using the time-delay as control, it is possible to breakthe stable behaviour of
the system and drive it to an unstable state. Also it is possible to keep the populations at
a desired level using the above control.
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Fig. 4. Here all other parameter values are same as in Fig. 3 exceptτ = 2.4 > τ∗.
(a) Phase portrait of the system (3) showing a limit cycle which grows out ofE∗;

(b)–(d) Oscillations ofx, y, z populations respectively in finite time.
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5 Concluding remarks

In this paper, we have studied the effect of discrete time-delay on a ratio-dependent
tritrophic food chain model. It is shown that the time-delayed system is uniformly
bounded, which, in turn, implies that the system is biologically well behaved. It has
long been recognized that most of the studies of continuous time deterministic models
reveal two basic patterns: approach to an equilibrium or to alimit cycle. The basic
rationale behind such type of analysis was the implicit assumption that most food chains
we observe in nature correspond to stable equilibria of the model. From this viewpoint,
we have presented the stability and bifurcation analysis ofthe most important equilibrium
pointE∗.

The nonlinear differential equation (3) may be looked upon as the mathematical
model for tea plant (Camellia sinensisL.)-pest (e.g. Looper caterpillar)-beneficial preda-
tor (natural enemy of the pest) (e.g.Bacillus thuringiensisor Sarcophagasp.) (Kabir,
[13]). Then we observe that the size of the tea plant(x) in the absence and presence of
beneficial predator(z) arex̂ andx∗, respectively so thatx∗ − x̂ > 0. Also y∗ − ŷ < 0
whereŷ andy∗ are respectively the size of the pest population in the absence and presence
of beneficial predators. This implies that predator attack of pests enhance fitness of tea
plants and cause depression for the pests. This gives a strong theoretical support to the
approach of bio-control of pests. A host of experiments had been laid out by tea scientists
to study the possibility of implementing the technique of bio-control of pests in tea. In
an experiment conducted by Das and Barua [11],Bacillus thuringiensiswas found to be
very effective against looper caterpillars. Mochizuki [14] found that at a few tea planta-
tions in central Japan, populations ofAmblyseius womersleyiwere suppressing Kanzawa
spider miteTetranychus kanzawaieven after they were sprayed with synthetic pyrethroid
pesticides. Also the above resultx∗ − x̂ > 0 is in good agreement with the experimental
findings of Gomez and Zamora [15] (onHormathophylla spinosa-Ceutorhynchussp.-
chalcid parasitoid interactions), Van Loon et al. [16] (onArabidopsis thaliana-Pieris
rapae-Cotesia rubeculainteractions) and Fritzsche-Haballash and Turlings [10] (onZea
mays-Spodoptera littoralis-Cotesia marginiventrisinteractions).

It is mentioned by several researchers that the effect of time-delay must be taken
into account in order to have a biologically useful mathematical model (Macdonald [36],
Gopalsamy [37], Kuang [35]). In the model (3) the delay may belooked upon as the
gestation period or reaction time of the top-predator. If the system (3) is the model for
plant-pest-parasitoid interaction, then Theorem 10 implies that the pest will be completely
eradicated when the death rates exceed the corresponding maximal growth rates. Then a
rigorous analysis leads us to the Theorem 11 and 12 which mention that the stability
criteria in absence of delay is no longer enough to guaranteethe stability in presence
of delay, rather there is a critical value of the delay such that the system is stable if the
delay lies below the critical value and become unstable whenthe delay exceeds it. Such
regulatory impact of the time-delay is also illustrated through computer simulation.

It is well known that natural populations of plants and animals neither increase
indefinitely to blanket the world nor become extinct (exceptin some rare cases due to
some rare reasons). Hence, in practice, we often want to reduce the predator to an
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acceptable level in finite time. In order to accomplish this we strongly suggest that in
realistic field situations (where effect of time-delays cannever be violated), the parameters
of the system should be regulated in such a way that the conditions of Theorem 11 are
satisfied.
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