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Abstract. Combined free and forced convection in a two dimensional rectangular cavity
with a uniform heat source applied on the right vertical wallis studied numerically. A
circular heat conducting horizontal cylinder is placed somewhere within the cavity. The
present study simulates a practical system, such as a conductive material in an inert
atmosphere inside a furnace with a constant flow of gas from outside. Importance
is placed on the influences of the configurations and physicalproperties of the
cavity. The development mathematical model is governed by the coupled equations
of continuity, momentum and energy and is solved by employing Galerkin weighted
residual finite element method. In this paper, a finite element formulation for steady-
state incompressible conjugate mixed convection and conduction flow is developed. The
computations are carried out for wide ranges of the governing parameters, Reynolds
number (Re), Richardson number (Ri), Prandtl number (Pr) and some physical
parameters. The results indicate that both the heat transfer rate from the heated wall and
the dimensionless temperature in the cavity strongly depend on the governing parameters
and configurations of the system studied, such as size, location, thermal conductivity of
the cylinder and the location of the inflow and outflow opening. Detailed results of the
interaction between forced airstreams and the buoyancy-driven flow by the heat source are
demonstrated by the distributions of streamlines, isotherms and heat transfer coefficient.

Keywords: heat transfer, finite element method, mixed convection, heat conducting
horizontal circular cylinder, rectangular cavity.

Nomenclature

AR aspect ratio D cylinder diameter [m]
Cp specific heat of the fluid g gravitational acceleration [ms−2]

at constant pressure [J/kg K] Gr Grashof number
CBC convective boundary conditions h convective heat transfer coefficient

217



Md. M. Rahman, M. A. Alim, M. A. H. Mamun

H height of the cavity [m] Pr Prandtl number
k thermal conductivity of fluid Ra Rayleigh number

[Wm−1K−1] Re Reynolds number
ks thermal conductivity of solid Ri Richardson number

[Wm−1K−1] T dimensional temperature [K]
K thermal conductivity ratio of the u, v velocity components [ms−1]

solid and fluid U, V non-dimensional velocity
L width of the cavity [m] components
Lx distance betweeny-axis and V cavity volume [m3]

the cylinder center [m] w height of the inflow and
Ly distance betweenx-axis and outflow openings [m]

the cylinder center [m] x, y Cartesian coordinates [m]
Nu average Nusselt number X, Y non-dimensional Cartesian
p pressure [Nm−2] coordinates
P non-dimensional pressure

Greek symbols

α thermal diffusivity [m2s−1] ν kinematic viscosity of the fluid
β thermal expansion coefficient [K−1] [m2s−1]
θ non-dimensional temperature ρ density of the fluid [Kg m−3]

Subscripts

i inlet state av average

1 Introduction

The studies of buoyancy driven flow characteristics in cavities are received considerable
attention in recent years due to its extensive applicationsin the field of engineering,
for example cooling of electronic devices, furnaces, lubrication technologies, chemical
processing equipment, drying technologies etc. Analysis of above phenomena incorpo-
rating a solid heat conducting obstruction extends its usability to various other practical
situations. Particularly a conductive material in an inertatmosphere inside a furnace with
a constant flow of gas from outside constitutes a practical application for the present
simulation. Many authors have recently studied heat transfer in enclosures with partitions,
which influence the convection flow phenomenon.

Omri and Nasrallah [1] studied mixed convection in an air-cooled cavity with dif-
ferentially heated vertical isothermal sidewalls having inlet and exit ports by a control
volume finite element method. They investigated two different placement configurations
of the inlet and exit ports on the sidewalls. Best configuration was selected analyzing
the cooling effectiveness of the cavity, which suggested that injecting air through the
cold wall was more effective in heat removal and placing inlet near the bottom and
exit near the top produce effective cooling. Later on, Singhand Sharif [2] extended
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their works by considering six placement configurations of the inlet and exit ports of
a differentially heated rectangular enclosure whereas theprevious work was limited to
only two different configurations of inlet and exit port. At the same time, a numerical
analysis of laminar mixed convection in an open cavity with aheated wall bounded by a
horizontally insulated plate was presented by Manca et al. [3], where three heating modes
were considered: assisting flow, opposing flow and heating from below. Results were
reported for Richardson number from0.1 to 100, Reynolds numbers from100 to 1000
and aspect ratio in the range0.1–1.5. They showed that the maximum temperature values
decrease as the Reynolds and the Richardson numbers increase. The effect of the ratio of
channel height to the cavity height was found to play a significant role on streamline and
isotherm patterns for different heating configurations. The investigation also indicated
that opposing forced flow configuration has the highest thermal performance, in terms of
both maximum temperature and average Nusselt number. Later, similar problem for the
case of assisting forced flow configuration was tested experimentally by Manca et al. [4]
and based on the flow visualization results, they pointed outthat forRe = 1000 there were
two nearly distinct fluid motions: a parallel forced flow in the channel and a recirculation
flow inside the cavity and forRe = 100 the effect of a stronger buoyancy determined
a penetration of thermal plume from the heated plate wall into the upper channel. Very
recently Manca et al. [5] experimentally analyzed opposingflow in mixed convection in
a channel with an open cavity below. Recently Rahman et al. [6] studied numerically
the opposing mixed convection in a vented enclosure. They found that with the increase
of Reynolds and Richardson numbers the convective heat transfer becomes predominant
over the conduction heat transfer and the rate of heat transfer from the heated wall is
significantly depended on the position of the inlet port.

However, many authors have studied heat transfer in enclosures with heat-conducting
body obstruction, thereby influencing the convective flow phenomenon. Shuja et al. [7]
investigated the effect of exit port locations and aspect ratio of the heat generating body
on the heat transfer characteristics and irreversibility generation in a square cavity. They
found that the overall normalized Nusselt number as well as irreversibility was strongly
affected by both of the location of exit port and aspect ratios. Papanicolaou and Jaluria [8]
studied mixed convection from an isolated heat sources in a rectangular enclosure. Later
on, Papanicolaou and Jaluria [9] performed computations onmixed convection from a
localized heat source in a cavity with conducting walls and two openings for application
of electronic equipment cooling. Hsu et al. [10] numerically investigated mixed con-
vection in a partially divided rectangular enclosure. Theyconsidered the divider as a
baffle inside the enclosure with two different orientationsand indicated that the average
Nusselt number and the dimensionless surface temperature dependent on the locations
and height of the baffle. Lee et al. [11] considered the problem of natural convection
in a horizontal enclosure with a square body. Natural convection in a horizontal layer
of fluid with a periodic array of square cylinder in the interior were conducted by Ha et
al. [12], in which they concluded that the transition of the flow from quasi-steady up to
unsteady convection depends on the presence of bodies and aspect ratio effect of the cell.
However, in the previous literature the body was consideredas a rigid wall but internal
heat transfer was not calculated. Few numerical studies taking into account heat transfer
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in the interior of the body have been conducted over the past couple of decades. One of the
systematic numerical investigations of this problem was conducted by House et al. [13],
who considered natural convection in a vertical square cavity with heat conducting body,
placed on center in order to understand the effect of the heatconducting body on the
heat transfer process in the cavity. They showed that for givenRa andPr an existence
of conducting body with thermal conductivity ratio less than unity leads to heat transfer
enhancement.

As the first step toward accurate flow solutions using the adaptive meshing technique,
this paper develops a finite element formulation suitable for analysis of steady-state conju-
gate mixed convection and conduction problems. The paper starts from the Navier-Stokes
equations together with the energy equations to derive the corresponding finite element
model. The computational procedure used in the developmentof the computer program is
described. The finite element equations derived and then thecomputer program developed
are then evaluated by example of mixed convection in a rectangular cavity with heat
conducting horizontal circular cylinder.

The objective of the present study is to investigate the effect of a heat conducting
solid cylinder, which may increase or decrease the heat transfer on mixed convection
in a rectangular vented cavity. Numerical solutions are obtained over a wide range of
Richardson number, Reynolds number, Prandtl number and various physical parameters.
The dependence of the thermal and flow fields on the sizes, locations and thermal con-
ductivity of the cylinder is studied in detail.

2 Model specification

The physical model considered here is shown in Fig. 1 along with the important geometric
parameters. A cartesian co-ordinate system is used with origin at the lower left corner
of the computational domain. It consists of rectangular cavities with a heat conducting
horizontal circular solid cylinder, whose right wall is subjected to hot withTh temperature
while the other sidewalls are kept adiabatic. The cavity dimensions are defined by height
H and widthL. The inflow opening located on the left adiabatic vertical wall and the
outflow opening on the opposite heated vertical wall is arranged as shown in the schematic
figures and may vary in location, placed either at the top or bottom position. The cavity
presented in Fig. 1(a) is subjected to an external flow that enters via the bottom of the
insulated vertical wall and leaves via the bottom of the opposite heated vertical wall. For
reasons of brevity, this case will be referred to as BB configuration from now. When
the horizontal cold jet enters into the cavity from the bottom of the insulated wall and
leaves from the top of the opposite vertical one is shown in Fig. 1(b), this case will be
referred as BT configuration. Similarly, Fig. 1(c) and 1(d) are referred to as TB and TT
configurations respectively. For simplicity, the heights of the two openings are set equal
to the one-tenth of the enclosure height. It is assumed that the incoming fluid flow through
the inlet at a uniform velocity,ui at the ambient temperatureTi and the outgoing flow is
assumed to have zero diffusion flux for all variables i.e. convective boundary conditions
(CBC). All solid boundaries are assumed to be rigid no-slip walls.
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Fig. 1. Four schematic configurations of thermally driven cavity: (a) BB configuration,
(b) BT configuration, (c) TB configuration, (d) TT configuration.

3 Mathematical formulation

The flow within the cavity is assumed to be two-dimensional, steady, laminar, incompress-
ible and the fluid properties are to be constant. The radiation effects are taken as negligible
and the Boussinesq approximation is used. The dimensionless equations describing the
flow are as follows:

∂U

∂X
+

∂V

∂Y
= 0, (1)
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For solid cylinder the energy equation is
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, (5)
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whereRe = uiL/v, Gr = gβ∆TL3/v2, Pr = v/α, Ri = Gr/Re2, andK = ks/k
(∆T = Th − Ti andα = k/ρcp are the temperature difference and thermal diffusivity
of the fluid respectively) are the Reynolds number, Grashof number, Prandtl number,
Richardson number and solid fluid thermal conductivity ratio respectively.

The above equations were non dimensionalized by using the following dimensionless
dependent and independent variables

X =
x

L
, Y =

y

L
, U =

u

ui

, V =
v

ui

, P =
p

ρu2
i

, θ =
T − Ti

Th − Ti

, θs =
Ts − Ti

Th − Ti

,

whereX and Y are the coordinates varying along horizontal and vertical directions
respectively,U andV are the velocity components in theX andY directions respectively,
θ is the dimensionless temperature andP is the dimensionless pressure.

Non-dimensional forms of the boundary conditions for the present problem are speci-
fied as follows:

At the inlet:U = 1, V = 0, θ = 0.
At the outlet: convective boundary condition (CBC),P = 0.
At all solid boundaries:U = 0, V = 0.
At the heated right vertical wall:θ = 1.
At the left, top and bottom walls:∂θ

∂N
= 0.

At the fluid-solid interface:( ∂θ
∂N

)fluid = K(∂θs

∂N
)solid.

WhereN is the non-dimensional distances eitherX or Y direction acting normal to
the surface andK is the dimensionless ratio of the thermal conductivity (ks/k).

The average Nusselt number at the heated wall is calculated by Nu= 1
Lh

∫ Lh

0
h(y)y

k
dy

and the bulk average temperature is defined asθav =
∫

θ dV /V , whereLh andh(y) are
the length and the local convection heat transfer coefficient of the heated wall respectively,
V is the cavity volume andθav should be minimized.

4 Numerical analysis

The governing equations along with the boundary conditionsare solved numerically
by employing Galerkin weighted residual finite element techniques. The finite element
formulation and computational procedure are discussed detail in Appendix.

4.1 Grid independence test

Geometry studied in this paper is an obstructed vented cavity; therefore several grid
size sensitivity tests were conducted in this geometry to determine the sufficiency of the
mesh scheme and to ensure that the solutions are grid independent. This is obtained
when numerical results of the average Nusselt numberNu, average temperatureθav and
solution time become grid size independent, although we continue the refinement of the
mesh grid. Five different non-uniform grids with the following number of nodes and
elements were considered for the grid refinement tests:24545 nodes,3788 elements;
29321 nodes,4556 elements;37787 nodes,5900 elements;38163 nodes,5962 elements

222



Finite Element Analysis of Mixed Convection in a Rectangular Cavity

and48030 nodes,7516 elements as shown in Table 1. From these values,38163 nodes and
5962 elements can be chosen throughout the simulation to optimize the relation between
the accuracy required and the computing time.

Table 1. Grid sensitivity check atRe = 100, Ri = 1.0, K = 5.0, D = 0.2 and
Pr = 0.71

Nodes 24545 29321 37787 38163 48030
(elements) (3788) (4556) (5900) (5962) (7516)

Nu 4.167817 4.168185 4.168376 4.168394 4.168461
θav 0.042974 0.042973 0.042973 0.042973 0.042973

Time [s] 323.610 408.859 563.203 588.390 793.125

4.2 Code validation

The present code was extensively validated based on the problem of House et al. [13].
We present here some results obtained by our code in comparison with those reported in
House et al. [13] forRa = 0.0, 105 and two values ofK = 0.2 and5.0. The physical
problem studied by House et al. [13] was a vertical square enclosure with sides of length
L. The vertical walls were isothermal and differentially heated, where as the bottom and
top walls were adiabatic. A square heat conducting body withsides of length equal to
L/2 was placed at the center of the enclosure. For the same parameters used in House et
al. [13]; the average Nusselt number (at the hot wall) comparison is shown in Table 2. The
present results have an excellent agreement with the results obtained by House et al. [13].

Table 2. Nusselt number comparison forPr = 0.71

Nu

Ra K Present work House et al. [13] Error (%)
0 0.2 0.7071 0.7063 0.11
0 1.0 1.0000 1.0000 0.00
0 5.0 1.4142 1.4125 0.12

10
5 0.2 4.6237 4.6239 0.00

10
5 1.0 4.5037 4.5061 0.00

10
5 5.0 4.3190 4.3249 0.14

5 Results and discussion

Numerical results have been presented in order to determinethe effects of the presence of
dimensionless parameters in a rectangular cavity. The dimensionless governing parame-
ters that must be specified for the system are Reynolds number(Re), Richardson number
(Ri), Prandtl number (Pr) and the physical parameters in the system are the cylinder
diameter (D), solid fluid thermal conductivity ratio (K), location of inlet and outlet
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openings of the cavity, location of cylinder in the cavity and cavity aspect ratio (AR).
Since so many basic dimensionless parameters are required to characterize a system, a
comprehensive analysis of all combinations of these parameters is not practical. The
numerical results have been used to explain the effect of several parameters at a small
fraction of the possible situations by simplifying the configuration. The presentations
of the results have been started with the streamline and isotherm patterns in the cavity.
Representative distributions of average Nusselt number atthe heated wall and average
temperature of the fluid in the cavity have also been presented.

5.1 Effect of inlet and outlet positions

Four different cavity configurations have been investigated for the mixed convection prob-
lem in order to compare the behavior of convective heat transfer for different relative
inlet and outlet locations. The streamlines correspondingto the four different inlet and
outlet positions namely BB, BT, TB and TT withAR = 1.0, Re = 100, Ri = 1.0,
Pr = 0.71, Lx = Ly = 0.5, D = 0.2 andK = 5.0 have been shown in Figs. 2a(i)–(iv).
It has been observed that a large counter-clockwise (CCW) recirculation cell is formed
above the main fluid stream for the BB (injection at the bottomof the left insulated wall
and exit from the bottom of the heated wall) configuration andit occupies the maximum
space of the cavity. This is because the fresh fluid entering the cavity travels the shortest
possible distance before leaving the cavity and cannot comeinto intimate mixing with
the hotter fluids. As the outlet port moved along the heated wall at the top corner and
keeping the inlet position unchanged, i.e. for BT configuration the CCW recirculation
cell reduces in size and is divided into two relatively smallvortices, which are located
at the left top corner in the cavity. However, for the TB configuration the flow changes
its pattern from two recirculation vortices to a single vortex and shifted from left top
corner to the right top corner in the cavity. On the other hand, a clock-wise (CW) small
eddy is developed near the left insulated wall starting fromjust below the inlet position
whereas the external flow increases its passage region and finally occupies almost the
cavity for the TT configuration, which is due to the entering fresh fluids come into
intimate mixing with the hotter fluids in the cavity. The contours of the dimensionless
temperature (θ) corresponding to the above mentioned four cases withAR = 1.0, Re =
100, Ri = 1.0, Pr = 0.71, Lx = Ly = 0.5, D = 0.2 and K = 5.0 have been
presented in Figs. 2b(i)–(iv). The value ofθ on the heated wall is1, whereas the value
of θ of the fluid entering the cavity is zero and the contour valuesare incremented by
0.05. From the isotherms shown in Figs. 2b(i)–(iv), it is noticedthat the isothermal lines
are more uniformly distributed in the cavity for the BB and TBconfigurations. On the
other hand, it has been observed that for TB configuration thehigh temperature region
is more concentrated near the hot wall and the distribution of the isothermal lines is
non-uniform in the cavity. It has also been observed that theisothermal lines are more
vertically concentrated around the heat source for the TT configuration, which is similar
to conduction-like distribution. It is also seen that the thermal boundary layer near the
heated wall in the cavity is developed for BT and TT configurations, where as the thermal
boundary layer in the cavity is absent for the BB and TB configurations.
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(a) (b)

Fig. 2. (a) Streamlines and (b) isotherms (i) BB, (ii) BT, (iii) TB and (iv) TT
configurations whileAR = 1.0, Re = 100, Ri = 1.0, K = 5.0, Pr = 0.71,

Lx = Ly = 0.5 andD = 0.2.
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The average Nusselt number (Nu) at the hot wall and the bulk average temperature
(θav) in the cavity have been compared in Fig. 3 for the above four configurations. From
this figure it is clear that theNu is highest for BT configuration. The reason for this is the
fresh fluid entering in the bottom of the left wall and travelscomparatively long distance
and taking heat away from the hot wall before exit the cavity.It can also be seen that the
average temperature of the fluid in the cavity is the lowest for the BT configuration in the
forced convection dominated region and for the TT configuration in the free convection
dominated region.

Fig. 3. Effect of inlet and outlet position on average Nusselt number and average
temperature whileAR = 1.0, Re = 100, Pr = 0.71, D = 0.2, Lx = Ly = 0.5

andK = 5.0.

5.2 Effect of the cylinder diameter

The effects of the heat conducting cylinder on the flow and thermal fields for the BT
configuration atAR = 1.0, Re = 100, Ri = 1.0, Pr = 0.71, Lx = Ly = 0.5 and
K = 5.0 have been presented in Fig. 4. As compared to Fig. 4a(i), the solid cylinder
in the cavity reduces the strength of the recirculation cellinduced by the heat source.
In Fig. 4a(ii), which is for cylinder of diameterD = 0.1, only small differences in the
streamlines have been observed when compared with Fig. 4a(i). This is the evidence
of no significance influence of a small size solid cylinder on the convective flow of
the cavity. On the other hand, as the size of the cylinder increases, the space available
for the buoyancy-induced recirculating flow decreases. From the isotherms shown in
Figs. 4(i)–(iv), it has been observed that the high-temperature zone is confined to a region
close to the hot surface for all cases and the lines are uniformly distributed in the cavity.
The last line from the heated wall is the line withθ1 = 0.05 for all the cases presented in
this figure. A closer examination shows that the area betweenthe heated wall and the line
θ1 = 0.05 slightly increase with the increase of the cylinder diameter (D).

Further, in order to evaluate how the presence of the cylinder affects the heat transfer
rate along the hot wall, average Nusselt number (Nu) has been plotted as a function of
Richardson number (Ri) for four different cylinder diameters (D = 0, D = 0.1, D = 0.2
andD = 0.4) shown in Fig. 5.
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ba
(a) (b)

Fig. 4. (a) Streamlines and (b) isotherms for the BT configuration at (i) D = 0,
(ii) D = 0.1, (iii) D = 0.2 and (iv)D = 0.4 while AR = 1.0, Re = 100, Ri = 1.0,

K = 5.0, Lx = Ly = 0.5 andPr = 0.71.
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It has been observed thatNu is the highest for the large cylinder diameter (D = 0.4)
atRi ≤ 6.0 and beyond this values ofRi the cylinder diameter has insignificant effect on
the average Nusselt number at the hot wall. The effect of cylinder diameter on average
temperature of the fluid in the cavity is also shown in Fig. 5. From this figure it has been
seen that cylinder diameter has little effect on the averagetemperature (θav) of the fluid
in the cavity. A closer examination of Fig. 5 has revealed that the values ofθav decreases
atRi ≤ 0.5 and beyond this value ofRi, θav increases sharply with increasingRi for all
values ofD. On the other hand,θav is the lowest forD = 0.2 at Ri ≤ 2.0 and beyond
this value ofRi, θav is the lowest forD = 10.0.

Fig. 5. Effect of cylinder diameter on average Nusselt number and average temperature
for the BT configuration whileAR = 1.0, Re = 100, Pr = 0.71, Lx = Ly = 0.5

andK = 5.0.

5.3 Effect of thermal conductivity ratio

The effect of the thermal conductivity ratio of the solid andfluid has also been computed
numerically and have shown in Figs. 6 for the BT configurationatAR = 1.0, Re = 100,
Ri = 1.0, Pr = 0.71, D = 0.2 and Lx = Ly = 0.5. It has been found that the
different heat transfer properties of the cylinder have small effect on the heat transfer
in the cavity. The streamlines for these cases appear to be almost identical as shown
in the Fig. 6a(i)–(iv). This is because thermal conductivity ratio has no influence on
the velocity distribution. The effect of thermal conductivity ratio on the isotherms has
been presented in the Figs. 6b(i)–(iv). From these figures ithas been seen easily that
a concentrated thermal boundary layer near the heated surface has developed for all the
cases and the isothermal lines moves away from the centre of the heat conducting cylinder
with increasing values of the thermal conductivity ratio.

Average Nusselt number at the hot wall and average temperature of the fluid in
the cavity as a function of Richardson number have been shownin Fig. 7 for the BT
configuration atAR = 1.0, Re = 100, Pr = 0.71, Lx = Ly = 0.5, D = 0.4 and
K = 0.2, 1.0, 5.0 and10.0. The average Nusselt number at the heated surface is found to
be the highest for a relatively low thermal conductivity ratio K = 0.2, which is due to the
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ba(a) (b)

Fig. 6. (a) Streamlines and (b) isotherms for the BT configuration at (i) K = 0.2,
(ii) K = 1.0, (iii) K = 5.0 and (iv) K = 10.0, while AR = 1.0, Re = 100,

Ri = 1.0, Pr = 0.71, Lx = Ly = 0.5 andD = 0.2.
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cylinder with low thermal conductivity acts as an insulatorand prevents heat transfer
between the hot and cold fluid streams. Hence the heat transfer in this case is mainly by
mixed convection. The average temperature of the fluid in thecavity decreases for all the
cases in the forced convection dominated region and are increases sharply with increasing
Ri in the free convection dominated region. On the other hand, the values ofθav is found
to be the lowest forK = 0.2 at Ri ≤ 2.0 and beyond this value ofRi, θav is the lowest
for K = 10.0.

Fig. 7. Effect of thermal conductivity ratio on average Nusselt number and average
temperature for the BT configuration whileAR = 1.0, Re = 100, Pr = 0.71,

Lx = Ly = 0.5 andD = 0.4.

5.4 Effect of Reynolds number

The effects of the parameterRe on the flow and thermal fields for the BT configuration
at AR = 1.0, Ri = 1.0, D = 0.2, Pr = 0.71, Lx = Ly = 0.5 andK = 5.0 have
been presented in the Fig. 8. From the Fig. 8a(i) it is found that the open lines of the
external flow occupy almost the whole cavity and becomes symmetric about the diagonal
from the inlet to the exit forRe = 50. Because, of the small value ofRe the thermal
transport effect by the external cold air is small. At higherRe = 100, the pattern of
the streamlines become asymmetric shapes about the line from the inlet to the exit. The
circulation of the flow shows two rotating vortices near the left top corner of the cavity
as shown in Fig. 8a(ii). As the Reynolds number increases up to 150, the role of forced
convection in the cavity become more significant, and consequently the circulation in the
flow become large with two inner vortices as presented in Fig.8a(iii). Further increases
of the Reynolds number (i.e.Re = 200), increases the strength of the recirculation cell,
which occupies much portion in the cavity and the two inner vortices become small in size
as shown in Fig. 8a(iv). The corresponding temperature distributions have also been seen
in Figs. 8b(i)–(iv). From these figures it has been observed that increase inRe reduces the
thermal boundary layer thickness near the heated surface and it is possible, since at larger
value ofRe, the effect of gravitational force become negligible and the flow is governed
by the forced convection. The average Nusselt numbers at theheat source and the average
temperature in the cavity have been plotted as a function of Richardson number for a
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ba
(a) (b)

Fig. 8. (a) Streamlines and (b) isotherms for the BT configuration at (i) Re = 50,
(ii) Re = 100, (iii) Re = 150 and (iv) Re = 200 while AR = 1.0, Ri = 1.0,

K = 5.0, D = 0.2, Lx = Ly = 0.5 andPr = 0.71.
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particular Reynolds numbers (shown in Fig. 9). From this figure it has been observed that
for a fixed values ofRi, the average Nusselt number at the hot wall is the highest and
average temperature of the fluid in the cavity is the lowest for large values ofRe = 200.
This is due to more heat has been carried away from the heat source and dissipated through
the out flow opening for the large values ofRe.

Fig. 9. Effect of Reynolds number on average Nusselt number and average temperature
for the BT configuration whileAR = 1.0, Pr = 0.71, D = 0.2, Lx = Ly = 0.5 and

K = 5.0.

5.5 Effect of Richardson number

Fig. 10 has been indicated the dynamic and thermal field for the BT configuration at
AR = 1.0, Re = 100, D = 0.2, Lx = Ly = 0.5, K = 5.0 and differentRi in terms
of the streamlines and isotherms. The streamlines shown in Fig. 10a(i)–(iv) describe
the interaction of forced and natural convection under various convection regimes. For
Ri = 0.0, the major incoming flow is symmetric about the diagonal joining from the
inlet to the exit port and a small vortex is developed near theleft insulated wall starting
from just above the inlet port, due to the domination of forced convection as shown in
Fig. 10a(i). AtRi = 2.5, the size of the vortex is increased dramatically and changes
its pattern from a uni-cellular vortex to a bi-cellular vortices, which occupies much of
the cavity as shown in Fig. 10a(ii). This is because the buoyancy force dominates the
forced flow in the cavity. AsRi increases to5.0, the bi-cellular vortices merge into a
single vortex and become slightly large as presented in Fig.10a(iii). Further increase of
Ri at 10.0, the patterns of the streamlines are about the same as those for Ri = 5.0,
but, a careful observation indicates that the inner vortex become larger slightly in size
and stronger in strength compared this with the upper one, because the effect of free
convection on heat transfer and flow increases with increasingRi. From Figs. 10b(i)–(iv)
it has been seen that the isothermal lines are nearly parallel to the vertical heated wall
for Ri = 0.0, this indicating a dominant heat conduction mechanism. Forthe largerRi
(Ri = 2.5, 5.0, 10.0) the high temperature region become more concentrated and thin
near the hot wall, and the other isothermal lines uniformly distributed in the remaining
parts of the cavity.
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ba
(a) (b)

Fig. 10. (a) Streamlines and (b) isotherms for the BT configuration at (i)Ri = 0.0,
Ri = 2.5, (iii) Ri = 5.0 and (iv)Ri = 10.0, while AR = 1.0, Re = 100, K = 5.0,

D = 0.2, Lx = Ly = 0.5 andPr = 0.71.
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5.6 Effect of Prandtl number

The influence of Prandtl number on streamlines as well as isotherms for the BT configu-
ration atAR = 1.0, Re = 100, Ri = 1.0, D = 0.2, Lx = Ly = 0.5 andK = 5.0 has
been demonstrated in Fig. 11. The flow with small Prandtl number (Pr = 0.71) has been
affected by the buoyancy force, thus creating a CCW recirculation region near the left
top corner in the cavity as shown in Fig. 11a(i). This recirculation region decreases with
increasing Prandtl numbers as shown in Figs. 11a(ii)–(iv).The isotherms illustrate the
temperature field in the separated flow region has been shown in Fig. 11b(i)–(iv). The last
line from the heated wall is the line withθ1 = 0.05 for all the Prandtl numbers presented
in this figure. The most significant information in these plots is the shifting of theθ1

line for the different Prandtl numbers. For the case ofPr = 0.71 this line moves under
the cylinder placed at the center in the cavity. With increasing Prandtl numbers, that line
moves towards the heated wall. The area enclosed between theθ1 line and the heated
wall can be considered as the thermally influenced region of the fluid by the heated wall.
The large region that is associated with a smaller Prandtl number indicates the relatively
strong thermal conduction component in these fluids.

The variation of average Nusselt number (Nu) at the heated wall and average temper-
ature of the fluid in the cavity along with Richardson number for different Prandtl numbers
has been presented in Fig. 13. From this figure it is clearly seen that for a particular values
of Ri the average Nusselt number is the highest and average temperature is the lowest for
the large Prandtl numberPr = 7.1. This is because, the fluid with the highest Prandtl
number is capable to carried more heat away from the heat source and dissipated through
the out flow opening in the cavity.

5.7 Effect of cylinder locations

The effect of the cylinder location on the thermal transporthas great importance and has
been shown in Figs. 12 and 14. Streamlines and isothermal lines for various cylinder
locations have been shown in Fig. 12 forAR = 1.0, Re=100, Ri=1.0, D =0.2, Pr =
0.71 andK =5.0. As the cylinder moves closer to the left insulated wall along the mid-
horizontal plane and closer to the top insulated wall along the mid-vertical plane, a large
circulation cell with inner vortex has confined at the left top portion in the cavity as shown
in Figs. 12a(i) and 12a(iv) respectively, and concentratedthermal layer has developed
around the heat source as shown in Figs. 12b(i) and 12b(iv) respectively. Further, if the
cylinder moves near the heat source along the mid-horizontal plane, the recirculating cell
reduces as shown in Fig. 12a(ii) and concentrated isothermsbecome vertical at the heat
source. However, the size of the recirculating cell reducesdramatically if the solid body
is located lower in the cavity as shown in Fig. 12a(iii) and the isothermal lines are more
vertically concentrated around the heat source as exposed in Fig. 12b(iii), which is similar
to conduction-like mechanism.

The average Nusselt numbers at the heated surface and the average temperatures in
the cavity are plotted against Richardson numbers for four different cylinder locations
have been shown in Fig. 14. From this figure it is seen that theNu is the highest when the
cylinder moves closer to the left insulated wall along the mid-horizontal plane and closer
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b(a) (b)

Fig. 11. (a) Streamlines and (b) isotherms for the BT configuration at (i)Pr = 0.71,
(ii) Pr = 1.0, (iii) Pr = 3.0 and (iv) Pr = 7.1, while AR = 1.0, Re = 100,

Ri = 1.0, K = 5.0, Lx = Ly = 0.5 andD = 0.2.
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a(a) (b)

Fig. 12. (a) Streamlines and (b) isotherms for the BT configuration at (i)Lx = 0.25,
Ly = 0.5, (ii) Lx = 0.75, Ly = 0.5, (iii) Lx = 0.5, Ly = 0.25 and (iv)Lx = 0.5,
Ly = 0.75, while AR = 1.0, Re = 100, Ri = 1.0, K = 5.0, D = 0.2 and

Pr = 0.71.
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to the top insulated wall along the mid-vertical plane up toRi = 4.0, beyond this the
value ofRi, Nu is the highest when the cylinder moves near the heat source along the
mid-horizontal plane. The average temperature of the fluid in the cavity is the lowest
when the cylinder moves closer to the left insulated wall along the mid-horizontal plane
and closer to the top insulated wall along the mid-vertical plane forRi ≤ 0.5, beyond this
value ofRi, Nu is the lowest when the cylinder moves closer to the bottom insulated wall
along the mid-vertical plane asRi increases.

Fig. 13. Effect of Prandtl number on average Nusselt number and average temperature
for the BT configuration whileAR = 1.0, Re = 100, D = 0.2, Lx = Ly = 0.5 and

K =5.0.

Fig. 14. Effect of cylinder locations on average Nusselt number and average temperature
for the BT configuration whileAR=1.0, Re=100, Pr=0.71, D=0.2 andK =5.0.

5.8 Effect of cavity aspect ratio

The results presented in the preceding are for a square cavity for which the aspect ratio
AR is 1. In order to investigate the convective heat transfer behavior at other aspect
ratios, computations have also been done for the BT configuration at three additional
aspect ratios of0.5, 1.5 and 2.0, while keepingRe = 100, Ri = 1.0, Pr = 0.71,
K = 5.0, Lx = Ly = 0.5 andD = 0.2. The flow patterns and temperature fields for
AR = 0.5, 1.0, 1.5, and2.0 have been compared in Figs. 15, 16.
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Fig. 15. Streamlines for the BT configuration at (i)AR = 0.5, (ii) AR = 1.0,
(iii) AR = 1.5 and (iv) AR = 2.0, while Re = 100, K = 5.0, Ri = 1.0,

Lx = Ly = 0.5, D = 0.2 andPr = 0.71.

238



Finite Element Analysis of Mixed Convection in a Rectangular Cavity

Fig. 16. Isotherms for the BT configuration at (i)AR = 0.5, (ii) AR = 1.0,
(iii) AR = 1.5 and (iv)AR = 2.0, while Re = 100, K = 5.0, Ri = 1.0, D = 0.2,

Lx = Ly = 0.5 andPr = 0.71.
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From Figs. 15(i)–(iv), it has been seen that forAR = 0.5 a small recirculation cell
has developed just above the inlet position. This recirculation cell gradually increases
with the increase of the value ofAR, due to increasing the available space for the fluid
in the cavity. On the other hand, another recirculation cellof the same size has also been
located near the top surface forAR = 1.0 and it is reduces in size and the cell near the
let wall become increases in size forAR = 1.5 and2.0. Isotherms for these cases have
been shown in Figs. 16(i)–(iv). It has been seen from these figures that the isothermal
lines are nonlinear and occupy most of the part of the cavity for the case ofAR = 0.5,
the isothermal lines becomes linear and concentrated near the hot wall in the cavity with
the increasing values ofAR, because of the distance between the hot wall and the inlet,
through which fresh cold fluid enter in the cavity.

The average Nusselt number (Nu) at the heat source and the average temperature of
the fluid in the cavity forAR = 0.5, 1.0, 1.5 and2.0 have been shown in Fig. 17. It has
been seen that for a particular value ofRi the average Nusselt number at the hot wall and
the average temperature of the fluid in the cavity decrease with increasing values ofAR.
This is because the increasing value ofAR increases the available space for the fluid in
the cavity.

Fig. 17. Effect of cavity aspect ratio on average Nusselt number and average
temperature for the BT configuration at whileRe = 100, Pr = 0.71, D = 0.2,

Lx = Ly = 0.5 andK = 5.0.

6 Conclusion

A finite element method for steady-state incompressible conjugate effect of mixed convec-
tion and conduction has been presented. The finite element equations have been derived
from the governing equations that consist of the conservation of mass, momentum and
energy equations. The derived finite element equations are nonlinear requiring an iterative
technique solver. The Newton-Raphson iteration method hasbeen applied to solve these
nonlinear equations for solutions of the nodal velocity components, temperatures and
pressures. The present study demonstrates the capability of the finite element formulation
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that can provide insight to steady-state incompressible conjugate effect of mixed convec-
tion and conduction problem.

The qualitative and quantitative understanding of the influences of conjugate con-
duction-convection heat exchange has also been presented in this study. Attention is
focused on identifying the optimum placement of inlet and outlet port for the best cooling
effectiveness and on the effects of the Reynolds number, Richardson number, Prandtl
number, cylinder diameter, solid-fluid thermal conductivity ratio, location of the cylinder
in the cavity and the aspect ratio of the cavity. The major results have been drawn as
follows:

• Cavity orientation has a great influence on the streamlines and isotherms distribu-
tions. Comparatively large buoyancy induced vortex is located for BB configuration
and relatively small buoyancy induced vortex is located forTT configuration. The
thermal influenced region is comparatively bulky for BB configuration and slim for
TT configuration. The average Nusselt number at the hot wall has been used to
compare the heat transfer rate among different configurations. Results show that the
configuration BT has the highest heat transfer rates, whereas configuration BB has
the lowest effective heat transfer rate.

• Diameter of cylinder affects strongly the streamline distribution in the cavity. As
a result, buoyancy-induced circulation cell reduces with increasing cylinder diame-
ter. Comparatively small effect on the isotherms is observed for different cylinder
diameter. The highest heat transfer is observed for the large cylinder diameterD =
0.4 at Ri ≤ 5.0, but after this the cylinder diameters have negligible effect on the
heat transfer.

• Material properties (K) have insignificant effect on the flow field and have significant
effect on the thermal fields. An unexpected result is found for the dependence of
thermal transport on the ratio (K) of the thermal conductivity of the solid cylinder
to that of the fluid. Negligibly small effect on the thermal phenomenon is observed
for small cylinder size. But for large cylinder size, the variation of average Nusselt
number at the hot wall is significantly influenced by the ratioK. Enhancement in the
heat transfer is observed for the lowest thermal conductivity ratio.

• The forced convection parameterRe has a significant effect on the flow and tem-
perature fields. Buoyancy-induced vortex in the streamlines increased and thermal
layer near the heated surface become thin and concentrated with increasing values of
Re. The average Nusselt numbers at the heated surface is alwaysthe highest and the
average temperature of the fluid in the cavity is the lowest for the large value ofRe.

• Mixed convection parameterRi affects strongly on the flow and temperature fields.
The recirculation cell due to heat source in the streamlinesplot become large and the
concentrated thermal layer near the heated surface become thin with increasingRi.

• The influence of Prandtl number on streamlines and isothermsare remarkable for the
different values ofPr. Increasing the Prandtl number increase the average Nusselt
number at the hot wall and decrease the average temperature of the fluid in the cavity.
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• Locations of the cylinder have significant effect on the flow and thermal fields. The
value of average Nusselt number (Nu) at the hot wall and the average temperature
of the fluid in the cavity vary non-monotonically with the cylinder location in the
cavity.

• The cavity aspect ratio has significant effect on the flow and temperature fields. The
buoyancy induced recirculation cell increase and the heat transfer become conduc-
tion dominated with increasing the cavity aspect ratio. Theaverage Nusselt number
at the hot wall is always the highest forAR = 0.5 and the average temperature of
the fluid in the cavity is the lowest forAR = 2.0.
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Appendix

Finite element formulation

To derive the finite element equations, the method of weighted residuals (Zienkiewicz [14])
is applied to the equations (1)–(5) as

∫

A

Nα

(

∂U

∂X
+

∂U

∂Y

)

dA = 0, (A.1)

∫

A

Nα

(

U
∂U

∂X
+ V

∂U

∂Y

)

dA

= −

∫

A

Hλ

(

∂P
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)
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1

Re

∫
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Nα
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∂2U

∂X2
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∂2U

∂Y 2
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dA, (A.2)

∫

A

Nα
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U
∂V

∂X
+ V

∂V

∂Y
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dA

= −

∫

A

Hλ

(

∂P
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dA +
1

Re

∫

A

Nα

(

∂2V

∂X2
+

∂2V

∂Y 2

)

dA + Ri

∫

A

Nαθ dA, (A.3)

∫

A

Nα

(

U
∂θ

∂X
+ V

∂θ

∂Y

)

dA =
1

Re Pr

∫

A

Nα

(

∂2θ

∂X2
+

∂2θ

∂Y 2

)

dA, (A.4)

0 =

∫

A

Nα

(

∂2θ

∂X2
+

∂2θ

∂Y 2

)

dA, (A.5)
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whereA is the element area,Nα (α = 1, 2, . . . , 6) are the element interpolation functions
for the velocity components and the temperature, andHλ (λ = 1, 2, 3) are the element
interpolation functions for the pressure.

Gauss’s theorem is then applied to equations (A.2)–(A.5) togenerate the bound-
ary integral terms associated with the surface tractions and heat flux. Then equations
(A.2)–(A.5) becomes,

∫

A

Nα

(

U
∂U

∂X
+ V

∂U

∂Y

)

dA +

∫

A
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)
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+
1

Re
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∂U

∂Y
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NαSx dS0, (A.6)
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1
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dA −Ri

∫

A

Nαθ dA =

∫

S0

NαSy dS0, (A.7)

∫

A

Nα

(

U
∂θ

∂X
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∂θ
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dA
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1

Re Pr

∫

A

(

∂Nα

∂X

∂θ

∂X
+

∂Nα

∂Y

∂θ

∂Y

)

dA =

∫

Sw

Nαq1w dSw, (A.8)

∫

A

(

∂Nα

∂X

∂θ

∂X
+

∂Nα

∂Y

∂θ

∂Y

)

dA =

∫

Sw

Nαq2w dSw. (A.9)

Here (A.6), (A.7) specifying surface tractions (Sx, Sy) along outflow boundaryS0 and
(A.8), (A.9) specifying velocity components and fluid temperature or heat flux (qw) that
flows into or out from domain along wall boundarySw.

The basic unknowns for the above differential equations arethe velocity components,
U, V , the temperature,θ, and the pressureP . The six node triangular element is used in
this work for the development of the finite element equations. All six nodes are associated
with velocities as well as temperature; only the corner nodes are associated with pressure.
This means that a lower order polynomial is chosen for pressure. The element assumes
quadratic interpolation for the velocity component and thetemperature distributions and
linear interpolation for the pressure distribution according to their highest derivative or-
ders in the differential equations (A.1) and (A.6)–(A.9) as

U(X, Y ) = NβUβ , (A.10)

V (X, Y ) = NβVβ , (A.11)

θ(X, Y ) = Nβθβ , (A.12)
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θs(X, Y ) = Nβθsβ , (A.13)

P (X, Y ) = HλPλ, (A.14)

whereβ = 1, 2, . . . , 6; λ = 1, 2, 3.
Substituting the element velocity component distributions, the temperature distri-

bution, and the pressure distribution from equations (A.10)–(A.14), the finite element
equations can be written in the form,

KαβxUβ + KαβyVβ = 0, (A.15)

KαβγxUβUγ + KαβγyVγUγ + MαµxPµ +
1

Re
(Sαβxx +Sαβyy)Uβ = QαU , (A.16)

KαβγxUβVγ + KαβγyVγVγ + MαµyPµ +
1

Re
(Sαβxx +Sαβyy)Vβ

− Ri Kαβθβ = QαV , (A.17)

KαβγxUβθγ + KαβγyVβθγ +
1

Re Pr
(Sαβxx + Sαβyy )θβ = Qαθ , (A.18)

(Sαβxx + Sαβyy )θβ = Qαθs , (A.19)

where the coefficients in element matrices are in the form of the integrals over the element
area and along the element edgesS0 andSw as,

Kαβx =

∫

A

NαNβ,x dA, (A.20a)

Kαβy =

∫

A

NαNβ,y dA, (A.20b)

Kαβγx =

∫

A

NαNβNγ,x dA, (A.20c)

Kαβγy =

∫

A

NαNβNγ,y dA, (A.20d)

Kαβ =

∫

A

NαNβ dA, (A.20e)

Sαβxx =

∫

A

Nα,xNβ,x dA, (A.20f)

Sαβyy =

∫

A

Nα,yNβ,y dA, (A.20g)

Mαµx =

∫

A

HαHµ,x dA, (A.20h)

Mαµy =

∫

A

NαHµ,y dA, (A.20i)
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QαU =

∫

S0

NαSx dS0, (A.20j)

QαV =

∫

S0

NαSy dS0, (A.20k)

Qαθ =

∫

Sw

Nαq1w dSw, (A.20l)

Qαθs =

∫

Sw

Nαq2w dSw, (A.20m)

These element matrices are evaluated in closed-form ready for numerical simulation.
Details of the derivation for these element matrices are omitted herein for brevity.

Computational procedure

The derived finite element equations, equations (A.15)–(A.19), are nonlinear. These
nonlinear algebraic equations are solved by applying the Newton-Raphson iteration tech-
nique by first writing the unbalanced values from the set of the finite element equa-
tions (A.15)–(A.19) as,

Fαp =KαβxUβ+KαβyVβ , (A.21a)

FαU =KαβγxUβUγ +KαβγyVβUγ +MαµxPµ+
1

Re
(Sαβxx +Sαβyy)Uβ

−QαU , (A.21b)

FαV =KαβγxUβVγ +KαβγyVγVγ +MαµyPµ+
1

Re
(Sαβxx +Sαβyy)Vβ

−Ri Kαβθβ−QαV , (A.21c)

Fαθ =KαβγxUβθγ +KαβγyVβθγ +
1

Re Pr
(Sαβxx +Sαβyy)θβ−Qαθ , (A.21d)

Fαθs =(Sαβxx +Sαβyy)θβ−Qαθs . (A.21e)

This leads to a set of algebraic equations with the incremental unknowns of the element
nodal velocity components, temperatures, and pressures inthe form,


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





KPU KPV 0 0 0
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, (A.22)

where

KUU = KαβγxUβ + KαβγyUγ + KαβγyVβ +
1

Re
(Sαβxx + Sαβyy),
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KV V = KαβγxUβ + KαβγyVγ + KαβγyVγ +
1

Re
(Sαβxx + Sαβyy),

Kθθ = KαβγxUβ + KαβγyVβ +
1

Re Pr
(Sαβxx + Sαβyy),

Kθsθs
= Sαβxx + Sαβyy ,

KUV = KαβγyUγ , KV U = KαβγxVγ , KθU = Kαβγxθγ ,

KθV = Kαβγyθγ , KPU = Kαβγx, KPV = Kαβγy ,

KUP = Kαµx , KV P = Kαµy , KV θ = −Ri Kαβ,

KUθ = KUθs
= KV θs

= KθP = Kθθs
= KPP = KPθ = KPθs

= 0,

KθsU = KθsV = Kθsθ = KθsP = 0.

The iteration process is terminated if the percentage of theoverall change compared to
the previous iteration is less than the specified value.

To solve the sets of the global nonlinear algebraic equations in the form of matrix,
the Newton-Raphson iteration technique has been adapted through PDE solver with MAT-
LAB interface. The convergence of solutions is assumed whenthe relative error for each
variable between consecutive iterations is recorded belowthe convergencecriterionε such
that |Ψm+1 − Ψm| ≤ 10−4, where n is number of iteration andΨ = U, V, θ.
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