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Abstract. The principle of multiple solutions of the Navier-Stokes and energy equations
discussed in this paper is not directed at any particular problems in fluid dynamics and
heat transfer, or at any specific applications.The non-uniqueness principle states that
the Reynolds number, above its critical value, is insufficient to uniquely determine a flow
field for a given geometry, or for similar geometries.It is a generic principle for all fluid
flows and its transportation properties, but is not well known. It compliments the current
popular bifurcation theories by the fact that multiple solutions can exist on each stable
bifurcation branch.

Keywords: dynamic similarity, uncertainty and non-linear energy transfer of fluid
motion, resonance.

1 Introduction

Stokes [1] was the first to recognize that a single dimensionless parameter,Re, uniquely
determines a flow field for a given geometry. Later work by Reynolds [2] on the onset of
turbulence in the flow through tubes led to this being termed theReynolds number. Since
then, the concept ofdynamic similarityhas been firmly established and has governed
the development of fluid dynamics for more than a century. Forexample, a laminar fully-
developed tube flow is a function ofRe only, and is independent of the upstream (or entry)
condition. Similarly, for an equilibrium turbulent tube flow or turbulent boundary layer,
the Reynolds number uniquely determines their mean flows andstatistical properties.
The upstream flow conditions can only affect the flow transient, which will be quickly
forgotten as they reach their equilibrium states. This is the concept of uniqueness in fluid
dynamics that we have been taught, and is the rule, which guides the progress in fluid
dynamics.

In this paper, we state a different fact, contrary to the conventional wisdom, that
the Reynolds number above its critical value isinsufficientto determine a flow field
uniquely. The non-uniqueness of fluid flow means that flows of different wavenumbers
or frequencies can exist on each stablebifurcationbranch. The upstream or ambient con-
ditions can persist and determine the final equilibrium wavenumber or frequency whose
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accessible band is slightly narrower than the linear instability boundary. Consequently,
the non-uniqueness principle differs from the recent popular bifurcation theories. Some
experiments have revealed this fact, but we constantly treat them as isolated incidents due
to our firm belief in the principle of the dynamic similarity.This may be due to the lack of
a theory to put those experimental evidences together to show that the Reynolds number
plus theenvironmentsdetermine a flow field uniquely.

Since Coles [3] studied that Taylor-Couette flows have multiple solutions for a fixed
Reynolds number, extensive studies have shown complex flow structures for Taylor-Couet-
te flows for various geometric configurations. Similar phenomena have been identified
for Benard instabilities induced by temperature gradient or surface tension. These are
both closed flow systems. The observations consistently indicate that the initial condition
determines the final supercritical equilibrium state for a given Reynolds number. In
general, it has been considered that the multiple solutionsfor these two types of closed
flows are special cases. The concept of dynamic similarity isintact for all other flows. We
will review this group of experiments first. The review is limited to the concept of non-
uniqueness without touching any detailed physics of the flow, since the Taylor-Couette
flow is probably the most studied flow in the history of fluid dynamics.

Even though the idea of coherent structure for large-scale turbulence has been around
for a long time [4,5], flow visualization of turbulent mixinglayers by Brown and Roshko
[6] was the first convincing demonstration of its existence.Their picture of the turbulent
mixing layer was the key to the gate of current research in turbulence. They collected
data on spreading rates for plane mixing layers and found a large scatter about one
hundred percent in the measured values. Subsequent research has found that the evolution
of mixing layers depends on the nature of the environmental noise, which is facility
and location dependent. In our terminology, multiple solutions exist and depend on
the upstream conditions. Surprisingly, no communication has ever existed between the
group who study turbulent mixing layers and those for Taylor-Couette flows, even though
the members of the Cal Tech Group originated both experiments. Now, it is clear that
initial conditions determine the equilibrium state for a closed flow system, and upstream
conditions determine that for an open flow system. This is coincident withchaosstudy.
One is a temporal problem and the other, a temporal and spatial problem. Only one
fundamental principle, nonlinear wave interaction, governs the evolution of both systems.
We will review the aspect of non-uniqueness of turbulent mixing layers and other relevant
flows.

The physics associated with the non-uniqueness in fluid dynamics can be described
by the Navier-Stokes equations and will not change due to different methods of solution.
We introduce a Fourier-eigenfunction spectral method below for two reasons. First, for a
certain class of problems, the required CPU time for our method is only a small fraction
of that for a more powerful Fourier-Chebyshev spectral method. Second, two equations of
historical importance, the Landau and Ginzburg-Landau equations, are the limiting cases
of our formulation. In 1945, Landau intuitively proposed the nonlinear form of the finite
amplitude equation for the instability disturbance. Stuart [7] and Watson [8] were the first
to rationally derive the Landau equation. The equation has dominated the development of
nonlinear instability of fluid dynamics for more than thirtyyears. Almost all modern
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instability theories are built upon the basis of the Landau equation. Many important
progresses leading to the present understanding of fluid dynamics would be impossible
without the Landau equation. The simple fact that chaotic solutions of fluid dynamics
were first found from the Ginzburg-Landau equation underscores its importance. In the
following, we will show that the nonlinear terms in both equations are self-interaction of
the dominant wave. Neither equation considers the possiblenonlinear interaction among
all waves.

Some researchers have included more than one amplitude equation in order to study
the nonlinear interaction among a “few” waves. Unfortunately, the number of interacting
waves considered was too low to reveal the importance of the non-uniqueness principle in
fluid dynamics. It is worth emphasizing again that the principle of multiple solutions is an
important consequence of non-linear interactions amongall participating waves; this si-
tuation has not been extensively studied and disseminated among the research community
so far.

The nonlinear interactions among Taylor vortices with different wavenumbers were
studied by Yao and Ghosh Moulic using a weakly nonlinear theory [9] and nonlinear
theory [10]. They represented the disturbance by a Fourier integral and derived an integro-
differential equation for the evolution of the amplitude density function of a continuous
spectrum. Their formulation allows nonlinear energy transfer among all participating
waves and remedies the shortcomings of equations of the Landau-Stuart type. Numerical
integrations of this integro-differential equation indicate that the equilibrium state of the
flow depends on the wavenumber and amplitude of the initial disturbance as observed
experimentally and cannot be determined uniquely on each stable bifurcation branch
without knowing its history. The accessible wavenumbers ofthe nonlinear stable range lie
within the linear unstable range minus a small band, which was traditionally considered
as the range of the side-band instability. Our numerical results simply indicate that waves
in this small band lose more energy than their gaining; therefore, waves within this small
band decay and excite their harmonics. It is the consequenceof fully non-linear wave
interactions, and is not due tosideband instabilityas speculated by weakly-non-linear
theories. This agrees with Snyder’s observation [11].The trend of energy transfer is
determined by the stability characteristics of the mean flow.

The analysis of mixed convection in a vertical annulus usinga nonlinear theory with
continuous spectrum (Yao and Ghosh Moulic [10, 12]) yields the identical conclusion as
that from the study of Taylor-Couette flows. They treated thespatial problem as a tempo-
ral problem. This is possible by following a control mass system. Plots of the evolution
of the kinetic-energy spectra for the two problems are identical in shape and differ only in
amplitudes and ranges of wavenumbers. A typical plot of the evolution of kinetic energy
is shown in Fig. 1. This indicates that the evolution of energy spectra providesuniversal
andfundamentalinformation for flows. The selection of the equilibrium wavenumber is
a result of nonlinear wave interactions.

It is worth noting that classical studies of fluid mechanics have frequently relied on
flow visualization, the results of which are typically different for different flows. The
eigenfunctions, which are associated with the stability characteristics of a mean flow,
are also different for different flows. These visual effectsare not fundamental results;
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consequently, they can complicate studies of fluid mechanics and cause researchers to
overlook the existence of multiple solutions, an importantaspect of fluid mechanics. On
the other hand, the principles of non-linear energy interaction of participating waves are
universal and fundamental, and are shared by all flows. Theselectionprinciples deduced
from numerical results are listed below:

1. When the initial disturbance consists of a single dominant wave within the nonli-
near stable region, the initial wave remains dominant in thefinal equilibrium state.
Consequently, for a slowly starting flow, the critical wave is likely to be dominant.

2. When the initial condition consists of two waves with finite amplitudes in the non-
linear stable region, the final dominant wave is the one with the higher initial am-
plitude. If the two waves have the same initial finite amplitude, the dominant wave
seems to be the one closer to the critical wave. On the other hand, if the initial
amplitudes are very small, the faster growing wave becomes dominant.

3. When the initial disturbance has a uniform broadband spectrum, the final dominant
wave is the fastest linearly growing wave, if the initial amplitude is small. On the
other hand, if the uniform noise level is not small, the critical wave is the dominant
equilibrium one.

4. Any initial disturbance outside the accessible frequency range will excite its Sub-
harmonics or super-harmonics whichever are inside the accessible frequency range.
The accessible frequency range is the linear stability range minus a small band.

Similar principles for non-linear energy transfer has alsobeen found in other simple non-
linear partial differential equations (Yao, [13]), and arecurrent research topics in chaos.
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Fig. 1. Evolution of kinetic energy of the dominant wave withthe initial disturbance at
K = 0.25.

2 Experiments for closed flows

Taylor [14] demonstrated theoretically and experimentally that circular Couette flow be-
comes unstable when the speed of the inner cylinder is increased beyond a certain critical
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value. His experiments showed that the instability leads toa new steady axisymmetric
secondary flow in the form of regularly spaced vortices in theaxial direction. The do-
cumentation thatRe is insufficient to uniquely determine a flow field in Taylor double
cylinder experiment went back a half century ago. Pai [15] noted that the flow in his
apparatus consists of either 4 or 6 Taylor vortices depending on the past history. Using
hot-wire anemometry Pai showed that the velocity field differs for two possible cases.
Even though he worked at very largeRe and his work is primarily qualitative, it is
the first experiment to show thatRe does not determine turbulence uniquely. Hagerty
[16] observed that the wavelength can increase or decrease by a factor of nearly two if
the length of the fluid column changes. The aspect ratios of both Pai’s and Hagerty’s
apparatus are very small that end effects dominates the results.

Coles [3] observed that the axisymmetric Taylor-vortex flowbecomes unstable as the
angular speed of the inner cylinder is increased further, beyond a second critical value.
This instability results in a wavy-vortex flow, with azimuthally propagating waves super-
posed on the Taylor vortices. Coles found that the spatial structure of the wavy-vortex
flow, characterized by the axial and azimuthal wavenumbers,is not a unique function
of the Reynolds number and boundary conditions. Different equilibrium states could
be achieved at the same Reynolds number by approaching the final Reynolds number
with different acceleration rates, and by rotating and thenstopping the outer cylinder.
Coles recognized that time-dependent amplitude equationsof Landau-Stuart type fail to
predict and explain the non-uniqueness of Taylor-Couette flows and stated, “In view of
the important advances in nonlinear technique which are contained in this analytical work
by Stuart, Davey, Segel, and others, it is disappointing that such analyses do not serve the
present need; but this is unfortunately the case.”

The non-uniqueness of the equilibrium state observed by Coles [3] was subsequently
observed in time-independent Taylor-vortex flow by Snyder [11], Burkhalter and Kosch-
mieder [17] and Benjamin [18]. Snyder [11] found that, whilethe wavelength at the
onset of instability was unique, Taylor vortex flows with different wavenumbers could be
obtained at the same value of the Reynolds number by varying the initial conditions. He
observed that there wasa band of accessible wavenumbers, smaller than the band that
can grow according to linear instability theory. The regionbetween the linear instability
boundary and the band of the accessible wavenumbers is now known as sideband instabil-
ity. Burkhalter and Koschmieder [17] found that the range ofaxial wavelengths for stable
Taylor-vortex flow is quite large. Benjamin [18] observed different spatial states even in
an annulus so short that only three or four vortices could be accommodated. Fenster-
macher, Swinney and Gollub [19] studied the transition to turbulence in Taylor-Couette
flow using laser-Doppler anemometry. They also found that the different spatial states
had different spectra and transition Reynolds numbers. Presumably, these different final
states at the same value of the Reynolds number are functionsof the initial conditions.

Multiple solutions of complex structures have also been found for Benard instabili-
ties (Chen and Whitehead [20], Koschmieder [21]).
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3 Experiments for open flows

Before we review turbulent flows, we would like to discuss an experiment of a laminar
flow in curved channels. Mees [22] periodically modulated the flow rate by very low
rms amplitudes of only a small fraction of one percent of the mean flow rate. He tried a
wide range of forcing frequencies and found the accessible equilibrium frequencies are
bounded in a finite range. This agrees with the non-uniqueness principle of Coles’ obser-
vation for Taylor-Couette flows and of the analytical solution for mixed convection. Mees
showed that any initial disturbance outside the accessiblefrequency range will excite its
sub-harmonics or super-harmonics whichever are inside theaccessible frequency range.
This is the fourth selection rule. A plot of the averaged energy frequency spectra looks
very much like Fig. 1. The flow visualization for curved-ductflows differs, of course,
completely from those for Taylor-Couette flows or mixed convection in a vertical annulus.
This is because their flow patterns depend on their particular stability eigenfunctions.

Ho and Huang [23] forced a two-dimensional mixing layer by modulating the inlet
flow rates of two upstream chambers at rms amplitudes rangingfrom 0.02 percent to 0.09
percent of the mean speed. The perturbation is homogeneous across the span of the mixing
layer. The Reynolds numbers in the downstream test region lie in the range 100–1000.
The response frequency measured near the trailing edge of the splitting plate shows that
the accessible frequencies are bounded in a finite range (seetheir Fig. 2). The forcing
frequency, lower than the accessible range, excites its super-harmonics. This provides the
initial condition for the mixing layer.

One common argument concerning the turbulent mixing layer is that the large-scale
structure is instability, may be a transient turbulence, and is not equilibrium turbulence.
One important contribution by Ho and Huang, which has not been widely appreciated,
is their measurement of the turbulent boundary layers on thesplitting flat plate. Flow
transition on a flat plate occurs usually fast as does its reaching the equilibrium state.
Their Fig. 2 clearly indicates that the frequency of the energy-containing eddy of a tur-
bulent boundary layer on a flat plate depends on the upstream conditions and can be any
frequency within the accessible frequency band. This is hard evidence leading to the
conclusion that turbulent shear flows have multiple solutions.

The characteristics of the mixing layer differ from those ofthe boundary layer on
the splitting plate. The mixing layer is unstable to a long wave modulation. Its accessible
frequency range is lower than that for a boundary layer on a plate. Consequently, the mea-
sured original frequency immediately downstream of the splitting plate falls outside of the
accessible frequency range of the mixing layer. Therefore,the amplitude of the original
response spectrum declines and excites its Sub-harmonics,which increase downstream as
the flow approaches its equilibrium state. A plot of amplification of the energy content
(see Figs. 15, 16, 18 and 19 of Ho and Huang [23]) looks very similar to the evolution
of kinetic energy shown in Fig. 1. The shifting of accessiblefrequency ranges causes the
merging of several vortices simultaneously. They showed that the merging of vortices is
the mechanism for increasing the spreading rate of the mixing layer.

In terms of nonlinear theory, the merging of vortices is driven by sub-harmonic
resonance. An examination of their data clearly shows that “pairing” of vortices follows
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exactly the same selection rules outlined above for nonlinear wave interactions. Thus,
”pairing” is determined by the stability characteristics of the mean flow and not by vortex
dynamics.

Similar experiments intended to study the dynamic process of turbulent mixing lay-
ers have been conducted with a mechanical flap at the trailingedge (Oster and Wygnanski
[24]; Weisbrot and Wygnanski [25]). They found that the oscillations of the flap have no
significant effect on the initial velocity distribution noron the total turbulent energy near
the trailing of the splitting plate. Nevertheless, the forced oscillations caused remarkable
differences in the mixing layer downstream. Oster and Wygnanski found that, in the
absent of forcing, the energy spectrum is at 230 hz which is a sub-harmonic of the
shedding frequency near the trailing edge of the flap (see their Fig. 2). With increasing
amplitude of the surging, the energy content at the forcing frequency (60 hz) increases
markedly. This follows exactly the second selection rule outlined above. The frequency
spectra (their Figs. 32 and 34) show that the modulation of the amplitude of the mean
flow is of the same order as the amplitude of the dominant wave.This agrees with our
nonlinear analyses of Taylor-Couette flow or mixed convection.

Weisbrot and Wygnanski noted that fluctuations, locked in phase with the distur-
bance frequency, are responsible for the initial growth of the mixing layer. It has been
demonstrated by the nonlinear theory that an equilibrium state can only be achieved if
the disturbance waves are locked in phase. Their data show that the wave associated with
the forcing frequency persists very far downstream and thatthe spectra of the broadband
fluctuations associated with small-scale turbulence depend on the large-scale structure
(see their Figs. 9–14). Similar phenomena have been observed in two-dimensional, small-
deficit, turbulent wakes (Wygnanski, Champagne and Marasli[26]). This shows that the
memory of initial conditions can persist far downstream into the final period of decay
after the large-scale structure has disappeared. This effect is commonly referred to as
historyeffect of turbulence. The accessible range of equilibrium frequencies of the large-
scale structure is determined by the nonlinear energy transfer and differs for different
mean flows. This turbulent history effect is selective. Because each experimental facility
has its own characteristic free-stream disturbances, the waves generated in a particular
facility may be unique to that facility only. Furthermore, the characteristic free-stream
disturbance may change for different locations and for different seasons. The history
effect of turbulence found in laboratories is exactly the non-uniqueness in Coles’ sense.
Since the ambient conditions for a real flow are not a controllable design factor, a non-
unique solution introduces uncertainty to real flows.

4 Nonlinear theory

4.1 Fourier-eigenfunction spectral formulation

A fully-developed mean flow in cylindrical polar coordinates is used as an example to
illustrate the nonlinear theory. This limitation of fully-developed mean flows can be
removed with a substantial increase in the required computational time. The formula-
tion is for a temporal flow development, but can be easily converted to a spatial flow
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development.
The velocity components, (u, v, w) and temperature, , are decomposed into mean

values plus disturbances. It is not necessary that the magnitude of the disturbances is
smaller than that of the mean values. They are

u = (u, v, w, θ) =
(
u′, v′, W0(r) + w′, Θ0(r) + θ′

)
, (1)

whereW0 and Θ0 are the mean axial velocity and temperature. The disturbance is
expressed as

u(r, t) = U(r) +

∞∫

−∞

∞∑

n=−∞

∞∑

m=1

Am(k, n, t)ũm(k, n, r)ei(kz+nφ) dk, (2)

whereAm is the amplitude density function, and̃um’s are the linear stability eigenfunc-
tions. Substituting (2) into the Navier-Stokes equations and projecting along the direction
of the adjoint eigenfunctions result in

∂Am

∂t
+ iwmAm =

∞∑

m1=1

∞∑

m2=1

∞∑

n1=−∞

I(k, n, m, m1, m2, n1, t), (3)

where

I =

∞∫

−∞

b (k1, k − k1, n1, n − n1, m1, m2, m)Am1
(k1, n1, t)

× Am2
(k − k1, n − n1, t) dk1,

and theb’s are constants of wave interactions. The linear terms of the Navier-Stokes
equations represent the mean-flow convection of the disturbances, the distortion of the
disturbances by the mean-flow stresses and the body forces, and diffusion. In the gener-
alized coordinates of eigenfunctions, they are reduced to asingle term, which determines
the growth or decay of the wave due to linear energy transfer.For a fixed wavenumber,
wi

m is more negative for larger m. This indicates that eigenfunctions for larger m have
more dissipation capacity, or it can be interrelated as a smaller eddy. But, this eddy
is not in a spherical shape and is elongated. This introducesanisotropy into the flow
structure. For laminar flows, the feedback of small-scale motions to large-scale structures
is negligible. For turbulent flows, the magnitude of small-scale motions may not be much
smaller than that of large-scale structures. Their structures are determined by the stability
characteristics of the mean flow.

The eigenfunction expansion (2) has reduced the continuity, momentum, and en-
ergy equations to the system of integro-differential equations for the amplitude density
functions without any approximations. Thus, the solution of equations (3) represents an
exact solution of the Navier-Stokes equations. It is worth pointing out that one of the
major difficulties in the numerical solution of the incompressible Navier-Stokes system
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is the simultaneous enforcement of the no-slip boundary conditions and the incompres-
sibility constraint. Since the basis functions used in the expansion (2) are solutions of
the linearized Navier-Stokes equations, they individually satisfy the incompressibility
constraint as well as the boundary conditions. This is equivalent to project the com-
putational domain to a sub-domain where the expansion (2) automatically satisfies the
boundary conditions and the continuity equation. Thus, thenumerical solution of the
system of equations (3) is much simpler than the numerical solution of the Navier-Stokes
equations. It may also be noted that straightforward evaluation of the convolution product
representing the nonlinear terms in equation (3) is inefficient if the number of terms in
the truncated eigenfunction expansion used in the numerical solution is large. However,
pseudo-spectral evaluation of the convolution product canmake the numerical solution
of the equations (3) a viable efficient alternative to the numerical solution of the Navier-
Stokes equations. A preliminary study shows that the required CPU time can be as little
as one sixth of that needed to solve the Navier-Stokes equations by a Fourier-Chebyshev
collocation spectral method.

4.2 Weakly nonlinear theory

In the following, we will show that classical weakly nonlinear instability theories are
special limiting cases of (3). The weakly nonlinear development of the disturbances may
be studied by expanding the Fourier amplitudes in a perturbation series. The maximum
amplification rate predicted by linear instability theory is used as the expansion parame-
ter ε. The amplification rate predicted by linear theory for them-th eigenmode of the
wave with axial wavenumberk and azimuthal wavenumbern may be expressed in terms
of ε asw1

m(k, n) = εam(k, n) wherewR
m is the (real) frequency. This makesam(k, n) a

constant of order one. The amplitude density function is expanded in a perturbation series
as

Ã(k, n, t) = εAm,1(k, n, t, T1, T2) + ε2Am,2(k, n, t, T1, T2) + . . . , (4)

whereT1 = εt andT2 = ε2t are slow time scales. Substitution of the expansion (4) into
equation (3) results in a set of equations

∂Am,1

∂T
= amAm,1 +

∑

m1,m2

∑

n1

ĨS
3 (k, n, m, m1, m2, n1, T )

+
∑

m1,m2

m3,m4

∑

n1,n2

ĨS
4 (k, n, m, m1, m2, m3, m4, n1, n2, T ), (5)

whereT1 = εt and

Ĩ3 =

∞∫

−∞

[b + εb̃]Am1,1(k1, n1, T )Am2,1(k − k1, n − n1, T )eiΩ3wt∂(Ω3w) dk1 (6)
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and

Ĩ4 =

∫

−∞

∞∫
εc̃Am1,1(k1, n1, T )Am3,1(k2, n2, T )

× Am4,1(k − k1 − k2, n − n1 − n2, T )eiΩ4wt∂(Ω4w) dk1dk2. (7)

Equations (6) and (7) are resonant triads and quartets. The resonance conditions are

Ω3w = wR
m(k, n) − wR

m1
(k1, n1) − wR

m2
(k − k1, n − n1) = 0, (8)

and

Ω4w = wR
m(k, n) − wR

m1
(k1, n1) − wR

m2
(k2, n2)

− wR
m3

(k − k1 − k2, n − n1 − n2) = 0, (9)

respectively.

4.3 Landau equation

The equation (5) for the evolution of the amplitude density function of a continuous
spectrum contains as a special case the equation describingthe evolution of the amplitude
of a discrete monochromatic wave. The amplitude density function for a discrete wave
with axial wavenumberk0 and azimuthal wavenumbern0 may be expressed in the form

Am,1(k, n, t) = [A0(t)δ(k − k0)δn,n0
+ A∗

0(t)δ(k + k0)δn,−n0
]δm,1, (10)

whereδ(k) represents the Dirac delta function,δi,j represents the Kronecker delta, and
the asterisk denotes complex conjugates. We have retained only the least stable mode
(m = 1) in the leading-order amplitude density function expressed in equation (10).
Substitution of (10) into (5) leads to

dA0

dt
= a0A0 + a1|A0|

2A0, (11)

wherea0 = wI
1(k0, n0) is the amplification rate predicted by linear stability theory for

the least stable eigenmode of the wavenumber(k0, n0) and

a1 = ĉ (k0,−k0, k0, n0,−n0, n0) + ĉ (−k0, k0, k0,−n0, n0, n0)

+ ĉ (k0, k0,−k0, n0, n0,−n0) (12)

is the second Landau constant. Equation (11) is the Landau equation describing the tem-
poral evolution of the amplitude of a discrete monochromatic wave. For a monochromatic
wave, no three waves can satisfy the resonance condition; the second Landau constant is
contributed by the self-interaction of the wave, which forms resonance quartets. The non-
linear term in the Landau equation does not represent energytransfer with other waves.
The equation (5) for the evolution of the amplitude density function of a continuous
spectrum can also be reduced to a set ofN ordinary differential equations describing
the evolution of the amplitude ofN discrete waves. Then, the set of equations includes
the weakly nonlinear energy transfer among all waves.
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4.4 Ginzburg-Landau equation

It is worth noting that although equation (5) describes the temporal evolution of the
amplitude density function in wave space, the integral formulation does include spatial
variations of the disturbances through the Fourier integral transform (2), and is not re-
stricted to periodic disturbances. In the special case of a slowly varying wave packet
with an azimuthal wavenumbern0, and a spectrum confined to a small neighborhood of
bandwidthδ around the minimum critical wavenumberkc, equation (5) becomes

w′(r, φ, z, t) = Ã(kc, n0, z, t)w̃1(kc, n0, r)e
i[kcz+n0φ−wR

1
(kc,n0)t] + c.c., (13)

where

Ã(kc, n0, z, t)=

kc+δ∫

kc−δ

A1(k, n0, t)e
i(k−kc)z+i[wR

1
(kc,n0)−wR

1
(k,n0)]t dk

= ε

δ/ε∫

−δ/ε

A1(kc+εK, n0, t)e
iεKz+i[wR

1
(kc,n0)−wR

1
(kc+εK,n0)t] dK (14)

is the slowly-varying envelope of the wave train, andc.c. denotes the complex conjugate.
As in equation (10), we have retained only the least stable mode (m = 1) in equa-
tion (14). In order to derive an equation for the envelope of the wave packet, we multiply
equation (5) byeib−kcg+i[wR

1
(kc,n0)−wR

1
(k,n0)]tδn,n0

δm,1 and integrate with respect tok
from kc−δ to kc +δ. We expand the linear amplification rates and frequencies ina Taylor
series aroundk = kc:

a(k, n0) = a(kc, n0) +
1

2

d2a

dk2
(kc, n0)(k − kc)

2 + . . . ,

and (15)

wR(k, n0) = wR(kc, n0) +
dwR

dk
(kc, n0)(k − kc) + . . . .

It may be noted that at the minimum critical wavenumberkc, da
dk (kc, nc) = 0. With (14)

and, in the limit asε → 0, it can be shown that equation (5) reduces to the equation
describing the evolution of a wave packet and is known as Ginzburg-Landau equation:

(
∂

∂t
+ cg

∂

∂z

)
Ã = a0Ã + a2

∂2

∂z2
Ã + a1|Ã|2Ã, (16)

wherea2 = − 1
2

d2a
dk2 (kc, n0) = 0 andcg = dwR

dk (kc, n0) = 0 is the group velocity. The
nonlinear term of (16) is similar to the one in the Landau equation and represents the self-
interaction of the carrying wave. Thus, the Ginzburg-Landau equation cannot be used for
nonlinear interaction of different waves.
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4.5 Indirect nonlinear wave interaction

Both the numerical results and experimental data indicate that energy is drawn out from
the mean flow to support the disturbance wave and its harmonics. The modulation of the
amplitude of a mean-flow is as large as that of the dominant wave. If there is no energy
transfer to waves other than the selected disturbance wave,a set of simpler amplitude
equations can be derived to replace equation (5) of a continuous spectrum. Rigorously, the
expansion should include the amplitude density functions for the mean flow, the dominant
disturbance wave and its harmonics. We assume that the harmonics are negligibly small
to simplify the algebra in order to demonstrate the concept clearly. Substitution of the
amplitude density function,

A(k, t) =
[
A0δ(k) + A∗

0δ(k)
]
+

[
Ak0

δ(k − k0) + A∗

k0
δ(k + k0)

]
, (17)

into equation (5) results in

dAk0

dt
= a(k0)Ak0

+ [a31A0Ak0
] +

[
a41|Ak0

|2 + a42|A0|
2
]
Ak0

, (18)

and

dA0

dt
= a(0)A0

[
b31|A0|

2 + b32|Ak0
|2

]
+

[
b41|Ak0

|2 + b42|A0|
2
]
A0, (19)

whereaij and bij are interacting constants.A0 is the amplitude function for the de-
formation of the mean flow, andAk0

is for the disturbance wave. The terms inside of
the first square bracket on the right-hand side of (18) and (19) are from a three-wave
resonance. The terms in the second square bracket are from a four-wave resonance. The
terms multiplied bya31 anda42 represent the nonlinear energy transfer between the mean
flow and the disturbance wave, and are not included in the Landau and Ginzburg-Landau
equations. The terms represent theindirectwave interaction and have been overlooked by
most weakly nonlinear theories. Any waves, which do not satisfy the resonance condition,
can still interact indirectly by interaction with the mean flow. This fact has been verified
by the numerical solution of (3). The term multiplied bya41 represents the self-interaction
of the disturbance wave and is the only nonlinear term in the Landau and Ginzburg-
Landau equations. It is clear that only linear energy transfer with the mean flow, the
terms multiplied by the growth rate,a, is considered in the Landau and Ginzburg-Landau
equations. Equations similar to (18) and (19) have been derived for the interaction of
two disturbance waves, but none of them have considered an additional equation for the
deformation of the mean flow. They have ignored the fact that the mean flow acts like a
medium to provide energy to sustain the disturbances and assumed that the deformation of
the mean flow is of smaller order. Without the terms of nonlinear energy transfer between
the mean flow and the disturbance wave, the energy is not properly accounted for.

The Fig. 6.23 of Mees [22] shows the importance of theindirect mode, a direct
nonlinear energy transfer between the mean flow and all waves. The indirect mode
is responsible for the rising of a broadband spectrum near the inlet. The broadband
spectrum decays and transfers energy to the dominant wave and its harmonics as they
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move downstream. The resonance conditions cannot always bemet among waves. This
agrees with our numerical solution of (3). The indirect modeis also likely to be the
mechanism for flow transition to turbulence when the nonlinear energy transfer balances
with the linear dissipation.

4.6 Numerical examples

The numerical solution of equation (5) requires the evaluation of two integrals. The first
integral involves a quadratic nonlinearity, while the second involves a cubic nonlinearity.
The solution of equation (3), on the other hand, requires theevaluation of only one
integral involving a quadratic nonlinearity. For the same accuracy the weakly nonlinear
theories require, at least, double the storage and CPU time than a direct solution of the
nonlinear formulation (3). Moreover, equation (3) is equivalent to the Navier-Stokes
equations. Thus, from a computational point of view, it is preferable to solve equations
(3) directly. Furthermore, formulation (3) can be simultaneously solved effectively by
parallel machines.

For the Taylor-Couette problem forη = r1/r2 = 0.5 at Re = 88.1 slightly
above its critical state,Re = 68.1, the range of wavenumbers permitted for supercritical
Taylor vortices according to linear theory is1.6 ≤ k ≤ 5.6. The results indicate that
the equilibrium state depends on the initial condition and is not unique. The range of
equilibrium wavenumbers was found to be narrower than the span of the neutral curve
from linear theory. Flows with wavenumbers outside this range, but within the unstable
region of linear theory are found to be unstable and to decay,but to excite another wave
inside the narrow band. The agreement of these results with the Eckhaus and Benjamin-
Feir sideband instability is superficial as explained before. The results also show that
linearly stable long and short waves can also excite a wave inside this narrow band through
nonlinear wave interaction. The results suggest that the selection of the equilibrium
wavenumber is due to a nonlinear energy transfer process, which is sensitive to initial
conditions.

In the following we will discuss the results of one case for the initial disturbance
at ki = 3. The solution of (3) agrees with the direct numerical solution of the Navier-
Stokes equations by a Fourier-Chebyshev spectral method upto the fourth decimal place.
This is not a surprise because both solutions are exact for the problem. The equilibrium
results of (3) are included on Table 1. The equilibrium amplitude atk = 3 agrees with the
results of (5) and slightly differs from that of (11) due to the indirect mode. On the other
hand, the largest modification of the mean flow is due to the third eigenfunction,m = 3.
This shows the insufficiency of the classical theories (11) and (16) which only retain the
first eigenmode,m = 1. The classical theories for monochromatic waves can only be
considered qualitatively acceptable even very close to theneutral stability curve.

New physics is indeed revealed by our computation. Each super-harmonic represents
a smaller vortex of less strength. The Taylor vortex is composed of a sequence of vortices
whose axial wavelengths are integer fractions of the dominant one. Also, a Taylor vortex
is not a pure stationary wave, but with a small contribution from standing waves due to
the eigenmodes as highlighted on Table 2. The standing wave causes a small oscillation
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of the amplitude of the Taylor vortices. In experiments, thedominant Taylor vortex
has been observed to fluctuate with respect to time. It is difficult to visualize the fine
structures in a laboratory. This shows that our computationcan provide more detailed
flow structures than experimental measurements. This demonstrates that the advantage
of the new formulation (3) is not only that it requires much less CPU time than other
numerical methods; it can also reveal more detailed flow structures.

Table 1. Taylor-Couette forki = 3 and Re = 88.1, amplitudes of the different
eigenmodes

m k = 0 k = 3 k = 6 k = 9 k = 12

1 0.364E−01 0.865E−01 0.177E−01 0.322E−02 0.825E−03

2 0.195E−11 0.871E−02 0.114E−02 0.107E−03 0.198E−03

3 0.458E−01 0.447E−02 0.577E−02 0.834E−03 0.343E−04

4 0.300E−11 0.449E−02 0.512E−02 0.586E−03 0.557E−04

5 0.127E−02 0.449E−02 0.512E−02 0.438E−03 0.933E−04

6 0.107E−11 0.532E−03 0.113E−02 0.278E−03 0.753E−04

7 0.141E−02 0.503E−04 0.113E−02 0.278E−03 0.753E−04

Table 2. Frequencies of the different eigenmodes

m k = 0 k = 3 k = 6 k = 9 k = 12

1 0.216E−13 0.303E−09 0.606E−09 0.910E−09 0.121E−08

2 0.216E−13 0.303E−09 0.606E−09 0.910E−09 0.121E−08

3 0.216E−13 0.303E−09 0.606E−09 0.910E−09 0.121E−08

4 0.216E−13 0.920E+00 −0.855E+00 0.910E−09 0.121E−08

5 0.216E−13 −0.920E+00 0.855E+00 0.910E−09 0.121E−08

6 0.216E−13 0.303E−09 −0.108E+01 −0.108E+01 0.207E+01

7 0.216E−13 0.303E−09 0.108E+01 0.108E+01 −0.207E+01

The equilibrium states of mixed convection in a vertical annulus for η = 0.375,
Re = 100, Ra = 200 andPr = 0.6 are not unique either. The linear stability analysis
indicates that the basic flow is unstable to disturbances within a narrow wavenumber band
between0.23 and1.13. The selection of the final equilibrium wave for mixed convection
follows the same principles as those for Taylor-Couette vortices. The evolution of unstable
waves for the initial disturbanceki = 0.25 is plotted in Fig. 1. The final dominant wave
is k = 0.5 due to the wave resonance, and not the sideband instability.It is worthwhile
to note that the mean-flow distortion is much larger than the amplitude of the dominant
wave. This shows that the assumption of the classical theories for monochromatic wave
that the modification of the mean flow is a small-order effect is not valid.

Another important implication that the equilibrium state of the meanflow and the
wave components are not unique is that time-averaged turbulent mean flows are not unique
for a given Reynolds number. Thus, the values of time-averaged turbulent statistical quan-
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tities do not equal the ensemble average for stationary turbulence. From an application
point of view, only the time average has physical significance.

5 Conclusion

I hope I have clearly explained why and how non-uniqueness isa generic property for all
fluid flows. Reynolds number alone is insufficient to uniquelydetermine a flow field and
its transport properties. Low-amplitude environmental perturbations can have profound
effects on the determination of the equilibrium state. For problems near the onset of
instability, the required modification of the dynamic similarity ensured by the Reynolds
number could be small. But for a fixed Reynolds number practically above its critical
value, the variation of engineering data, such as flow resistance and Nusselt numbers,
can be substantial. In spite of the fact, it is clear that the involved new physics of multiple
solutions is wave resonance; unfortunately, possible ranges of flow variations and problem
dependent, are unknown.

Finally, note that the accurate numerical computation of unstable flows, such as a
flow with the Reynolds number much larger than its critical value, is not possible with
any discrete numerical methods: Any such computational results are incorrect and simply
the consequence of truncation errors (Yao [13], Yao [27], Yao and Hughes [28, 29]).
This result rules out the possibility of using current numerical methods to study flows
at Reynolds numbers much larger than their critical values.Unfortunately, this includes
the major parameter range in which multiple solutions exist. It also reveals one of the
primary reasons why the study of multiple solutions is so difficult.
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