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Abstract. The principle of multiple solutions of the Navier-Stokeslamergy equations
discussed in this paper is not directed at any particulablpros in fluid dynamics and
heat transfer, or at any specific applicatiof&ie non-uniqueness principle states that
the Reynolds number, above its critical value, is insufficie uniquely determine a flow
field for a given geometry, or for similar geometridsis a generic principle for all fluid
flows and its transportation properties, but is not well know compliments the current
popular bifurcation theories by the fact that multiple $i@os can exist on each stable
bifurcation branch.

Keywords: dynamic similarity, uncertainty and non-linear energynsfer of fluid
motion, resonance.

1 Introduction

Stokes [1] was the first to recognize that a single dimensgmparameteRe, uniquely
determines a flow field for a given geometry. Later work by Réga [2] on the onset of
turbulence in the flow through tubes led to this being ternhedRieynolds numbeSince
then, the concept oflynamic similarityhas been firmly established and has governed
the development of fluid dynamics for more than a century.example, a laminar fully-
developed tube flow is a function &fe only, and is independent of the upstream (or entry)
condition. Similarly, for an equilibrium turbulent tube Woor turbulent boundary layer,
the Reynolds number uniquely determines their mean flowsssatistical properties.
The upstream flow conditions can only affect the flow transiemich will be quickly
forgotten as they reach their equilibrium states. Thisésdbncept of uniqueness in fluid
dynamics that we have been taught, and is the rule, whichegutte progress in fluid
dynamics.

In this paper, we state a different fact, contrary to the eational wisdom, that
the Reynolds number above its critical valueinsufficientto determine a flow field
uniquely. The non-uniqueness of fluid flow means that flowsitbémnt wavenumbers
or frequencies can exist on each stafifarcationbranch. The upstream or ambient con-
ditions can persist and determine the final equilibrium wawveber or frequency whose
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accessible band is slightly narrower than the linear inktatoundary. Consequently,

the non-uniqueness principle differs from the recent papbifurcation theories. Some
experiments have revealed this fact, but we constantlytihean as isolated incidents due
to our firm belief in the principle of the dynamic similariffhis may be due to the lack of
a theory to put those experimental evidences together to #iat the Reynolds number
plus theenvironmentsletermine a flow field uniquely.

Since Coles [3] studied that Taylor-Couette flows have mldtsolutions for a fixed
Reynolds number, extensive studies have shown complexfiaatsres for Taylor-Couet-
te flows for various geometric configurations. Similar ph@eoa have been identified
for Benard instabilities induced by temperature gradigrglworface tension. These are
both closed flow systems. The observations consistentlgatelthat the initial condition
determines the final supercritical equilibrium state forigeg Reynolds number. In
general, it has been considered that the multiple solufionthese two types of closed
flows are special cases. The concept of dynamic similaritytéet for all other flows. We
will review this group of experiments first. The review is ited to the concept of non-
uniqueness without touching any detailed physics of the, fhimce the Taylor-Couette
flow is probably the most studied flow in the history of fluid dynics.

Even though the idea of coherent structure for large-sodbeitence has been around
for a long time [4, 5], flow visualization of turbulent mixirgyers by Brown and Roshko
[6] was the first convincing demonstration of its existentleir picture of the turbulent
mixing layer was the key to the gate of current research inufence. They collected
data on spreading rates for plane mixing layers and foundge lacatter about one
hundred percent in the measured values. Subsequent febearfound that the evolution
of mixing layers depends on the nature of the environmerdgaen which is facility
and location dependent. In our terminology, multiple dohs exist and depend on
the upstream conditions. Surprisingly, no communicatias éver existed between the
group who study turbulent mixing layers and those for Taylouette flows, even though
the members of the Cal Tech Group originated both experignedow, it is clear that
initial conditions determine the equilibrium state for as#gd flow system, and upstream
conditions determine that for an open flow system. This isacdent withchaosstudy.
One is a temporal problem and the other, a temporal and EpatibBlem. Only one
fundamental principle, nonlinear wave interaction, gagahe evolution of both systems.
We will review the aspect of non-unigueness of turbulentingayers and other relevant
flows.

The physics associated with the non-uniqueness in fluidmicsacan be described
by the Navier-Stokes equations and will not change due feréifit methods of solution.
We introduce a Fourier-eigenfunction spectral methodvwétw two reasons. First, for a
certain class of problems, the required CPU time for our weik only a small fraction
of that for a more powerful Fourier-Chebyshev spectral métlsecond, two equations of
historical importance, the Landau and Ginzburg-Landaaggus, are the limiting cases
of our formulation. In 1945, Landau intuitively proposee thonlinear form of the finite
amplitude equation for the instability disturbance. St{ifrand Watson [8] were the first
to rationally derive the Landau equation. The equation loasidated the development of
nonlinear instability of fluid dynamics for more than thiggars. Almost all modern
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instability theories are built upon the basis of the Landguation. Many important
progresses leading to the present understanding of fluidrdigs would be impossible
without the Landau equation. The simple fact that chaotiatems of fluid dynamics
were first found from the Ginzburg-Landau equation undeescds importance. In the
following, we will show that the nonlinear terms in both etjaas are self-interaction of
the dominant wave. Neither equation considers the possdiénear interaction among
all waves.

Some researchers have included more than one amplitudéaguneorder to study
the nonlinear interaction among a “few” waves. Unfortuhathe number of interacting
waves considered was too low to reveal the importance ofdheumiqueness principle in
fluid dynamics. Itis worth emphasizing again that the pphedf multiple solutions is an
important consequence of non-linear interactions anahgarticipating waves; this si-
tuation has not been extensively studied and disseminated@the research community
so far.

The nonlinear interactions among Taylor vortices withatiént wavenumbers were
studied by Yao and Ghosh Moulic using a weakly nonlinear th¢®] and nonlinear
theory [10]. They represented the disturbance by a Fountegral and derived an integro-
differential equation for the evolution of the amplitudendity function of a continuous
spectrum. Their formulation allows nonlinear energy tfansmong all participating
waves and remedies the shortcomings of equations of theduaBtliart type. Numerical
integrations of this integro-differential equation indie that the equilibrium state of the
flow depends on the wavenumber and amplitude of the initstluddance as observed
experimentally and cannot be determined uniquely on eaaiblestifurcation branch
without knowing its history. The accessible wavenumbethehonlinear stable range lie
within the linear unstable range minus a small band, which treditionally considered
as the range of the side-band instability. Our numericalltesimply indicate that waves
in this small band lose more energy than their gaining; floeee waves within this small
band decay and excite their harmonics. It is the consequeinitgly non-linear wave
interactions, and is not due gdeband instabilityas speculated by weakly-non-linear
theories. This agrees with Snyder’s observation [1The trend of energy transfer is
determined by the stability characteristics of the mean.flow

The analysis of mixed convection in a vertical annulus usimgnlinear theory with
continuous spectrum (Yao and Ghosh Moulic [10, 12]) yielgsitlentical conclusion as
that from the study of Taylor-Couette flows. They treateddpatial problem as a tempo-
ral problem. This is possible by following a control masstegs Plots of the evolution
of the kinetic-energy spectra for the two problems are idahin shape and differ only in
amplitudes and ranges of wavenumbers. A typical plot of ttedugion of kinetic energy
is shown in Fig. 1. This indicates that the evolution of egesgectra provideaniversal
andfundamentainformation for flows. The selection of the equilibrium wavenber is
a result of nonlinear wave interactions.

It is worth noting that classical studies of fluid mechaniagénhfrequently relied on
flow visualization, the results of which are typically diféat for different flows. The
eigenfunctions, which are associated with the stabilitgrahteristics of a mean flow,
are also different for different flows. These visual effegte not fundamental results;
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consequently, they can complicate studies of fluid meclsamicl cause researchers to

overlook the existence of multiple solutions, an importsyect of fluid mechanics. On

the other hand, the principles of non-linear energy intéwaof participating waves are

universal and fundamental, and are shared by all flows.s€lextionprinciples deduced

from numerical results are listed below:

1. When the initial disturbance consists of a single domineave within the nonli-

near stable region, the initial wave remains dominant infited equilibrium state.
Consequently, for a slowly starting flow, the critical wasdikely to be dominant.

2. When the initial condition consists of two waves with n&mplitudes in the non-
linear stable region, the final dominant wave is the one withHigher initial am-
plitude. If the two waves have the same initial finite amplguthe dominant wave
seems to be the one closer to the critical wave. On the othad, hfithe initial
amplitudes are very small, the faster growing wave becoropshnt.

3. When the initial disturbance has a uniform broadbandtspec the final dominant
wave is the fastest linearly growing wave, if the initial diyge is small. On the
other hand, if the uniform noise level is not small, the catiwave is the dominant
equilibrium one.

4. Any initial disturbance outside the accessible freqyeange will excite its Sub-
harmonics or super-harmonics whichever are inside thesaitite frequency range.
The accessible frequency range is the linear stabilityeanimus a small band.

Similar principles for non-linear energy transfer has &leen found in other simple non-
linear partial differential equations (Yao, [13]), and argrent research topics in chaos.
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Fig. 1. Evolution of kinetic energy of the dominant wave wiitle initial disturbance at
K =0.25.

2 Experiments for closed flows

Taylor [14] demonstrated theoretically and experimentiddat circular Couette flow be-
comes unstable when the speed of the inner cylinder is isettlaeyond a certain critical
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value. His experiments showed that the instability leada tew steady axisymmetric
secondary flow in the form of regularly spaced vortices inak&l direction. The do-
cumentation thafRe is insufficient to uniquely determine a flow field in Taylor de
cylinder experiment went back a half century ago. Pai [18kddhat the flow in his
apparatus consists of either 4 or 6 Taylor vortices dependinthe past history. Using
hot-wire anemometry Pai showed that the velocity field diffeor two possible cases.
Even though he worked at very largeée and his work is primarily qualitative, it is
the first experiment to show thdte does not determine turbulence uniquely. Hagerty
[16] observed that the wavelength can increase or decrgaaddzrtor of nearly two if
the length of the fluid column changes. The aspect ratios tf Bai's and Hagerty’s
apparatus are very small that end effects dominates thigesu

Coles [3] observed that the axisymmetric Taylor-vortex flmeomes unstable as the
angular speed of the inner cylinder is increased furtherobe a second critical value.
This instability results in a wavy-vortex flow, with azimatly propagating waves super-
posed on the Taylor vortices. Coles found that the spatiatttre of the wavy-vortex
flow, characterized by the axial and azimuthal wavenumberspt a unique function
of the Reynolds number and boundary conditions. Differentildrium states could
be achieved at the same Reynolds number by approaching #ieRiynolds number
with different acceleration rates, and by rotating and thepping the outer cylinder.
Coles recognized that time-dependent amplitude equatibhandau-Stuart type fail to
predict and explain the non-uniqueness of Taylor-Couettesfland stated, “In view of
the important advances in nonlinear technique which aréadoed in this analytical work
by Stuart, Davey, Segel, and others, it is disappointinggheh analyses do not serve the
present need; but this is unfortunately the case.”

The non-uniqueness of the equilibrium state observed bg<]8] was subsequently
observed in time-independent Taylor-vortex flow by Snyddj[Burkhalter and Kosch-
mieder [17] and Benjamin [18]. Snyder [11] found that, whitee wavelength at the
onset of instability was unique, Taylor vortex flows withfdient wavenumbers could be
obtained at the same value of the Reynolds number by vargmgnitial conditions. He
observed that there wasband of accessible wavenumhesmaller than the band that
can grow according to linear instability theory. The regimtween the linear instability
boundary and the band of the accessible wavenumbers is rmawnkas sideband instabil-
ity. Burkhalter and Koschmieder [17] found that the rangaxaél wavelengths for stable
Taylor-vortex flow is quite large. Benjamin [18] observeffatient spatial states even in
an annulus so short that only three or four vortices coulddmmmodated. Fenster-
macher, Swinney and Gollub [19] studied the transition tbulence in Taylor-Couette
flow using laser-Doppler anemometry. They also found thatdifferent spatial states
had different spectra and transition Reynolds humberssupmably, these different final
states at the same value of the Reynolds number are functidhs initial conditions.

Multiple solutions of complex structures have also beemtbfor Benard instabili-
ties (Chen and Whitehead [20], Koschmieder [21]).
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3 Experiments for open flows

Before we review turbulent flows, we would like to discuss apeximent of a laminar
flow in curved channels. Mees [22] periodically modulatee flow rate by very low
rms amplitudes of only a small fraction of one percent of treamflow rate. He tried a
wide range of forcing frequencies and found the accessipldilerium frequencies are
bounded in a finite range. This agrees with the non-uniqusgprésciple of Coles’ obser-
vation for Taylor-Couette flows and of the analytical sauatfor mixed convection. Mees
showed that any initial disturbance outside the accesBibtpiency range will excite its
sub-harmonics or super-harmonics whichever are insida¢bessible frequency range.
This is the fourth selection rule. A plot of the averaged ggdrequency spectra looks
very much like Fig. 1. The flow visualization for curved-ddicws differs, of course,
completely from those for Taylor-Couette flows or mixed ogetion in a vertical annulus.
This is because their flow patterns depend on their partistadility eigenfunctions.

Ho and Huang [23] forced a two-dimensional mixing layer bydulating the inlet
flow rates of two upstream chambers at rms amplitudes rarfiging0.02 percent to 0.09
percent of the mean speed. The perturbation is homogenemssahe span of the mixing
layer. The Reynolds numbers in the downstream test regegoim lihe range 100-1000.
The response frequency measured near the trailing edge spttiting plate shows that
the accessible frequencies are bounded in a finite rangahsierig. 2). The forcing
frequency, lower than the accessible range, excites i&rsigrmonics. This provides the
initial condition for the mixing layer.

One common argument concerning the turbulent mixing lagyérat the large-scale
structure is instability, may be a transient turbulencel i@mot equilibrium turbulence.
One important contribution by Ho and Huang, which has nonbaiglely appreciated,
is their measurement of the turbulent boundary layers orspiiging flat plate. Flow
transition on a flat plate occurs usually fast as does itshiegahe equilibrium state.
Their Fig. 2 clearly indicates that the frequency of the ggezontaining eddy of a tur-
bulent boundary layer on a flat plate depends on the upstreaditmns and can be any
frequency within the accessible frequency band. This igl eaidence leading to the
conclusion that turbulent shear flows have multiple sohgio

The characteristics of the mixing layer differ from thosettod boundary layer on
the splitting plate. The mixing layer is unstable to a longy&eodulation. Its accessible
frequency range is lower than that for a boundary layer o plConsequently, the mea-
sured original frequency immediately downstream of thitapd plate falls outside of the
accessible frequency range of the mixing layer. Theretbeeamplitude of the original
response spectrum declines and excites its Sub-harmaitiis) increase downstream as
the flow approaches its equilibrium state. A plot of amplifica of the energy content
(see Figs. 15, 16, 18 and 19 of Ho and Huang [23]) looks verylairto the evolution
of kinetic energy shown in Fig. 1. The shifting of accessiidégjuency ranges causes the
merging of several vortices simultaneously. They showatltthe merging of vortices is
the mechanism for increasing the spreading rate of the nixiyer.

In terms of nonlinear theory, the merging of vortices is dnivby sub-harmonic
resonance. An examination of their data clearly shows thaitrihg” of vortices follows
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exactly the same selection rules outlined above for noafimeéave interactions. Thus,
"pairing” is determined by the stability characteristiétlee mean flow and not by vortex
dynamics.

Similar experiments intended to study the dynamic procéasbulent mixing lay-
ers have been conducted with a mechanical flap at the traitigg (Oster and Wygnanski
[24]; Weisbrot and Wygnanski [25]). They found that the 8atibns of the flap have no
significant effect on the initial velocity distribution non the total turbulent energy near
the trailing of the splitting plate. Nevertheless, the &gtoscillations caused remarkable
differences in the mixing layer downstream. Oster and Wygkafound that, in the
absent of forcing, the energy spectrum is at 230 hz which islahs&rmonic of the
shedding frequency near the trailing edge of the flap (sde R 2). With increasing
amplitude of the surging, the energy content at the forciregdency (60 hz) increases
markedly. This follows exactly the second selection ruldined above. The frequency
spectra (their Figs. 32 and 34) show that the modulation efamplitude of the mean
flow is of the same order as the amplitude of the dominant waves agrees with our
nonlinear analyses of Taylor-Couette flow or mixed conwecti

Weisbrot and Wygnanski noted that fluctuations, locked iagghwith the distur-
bance frequency, are responsible for the initial growthhef mixing layer. It has been
demonstrated by the nonlinear theory that an equilibricatestan only be achieved if
the disturbance waves are locked in phase. Their data staathénwave associated with
the forcing frequency persists very far downstream andthiiespectra of the broadband
fluctuations associated with small-scale turbulence démenthe large-scale structure
(see their Figs. 9-14). Similar phenomena have been olisgriwo-dimensional, small-
deficit, turbulent wakes (Wygnanski, Champagne and Maf28]). This shows that the
memory of initial conditions can persist far downstreanoitite final period of decay
after the large-scale structure has disappeared. Thistéffeommonly referred to as
historyeffect of turbulence. The accessible range of equilibritagdiencies of the large-
scale structure is determined by the nonlinear energy feaiasid differs for different
mean flows. This turbulent history effect is selective. Bessaeach experimental facility
has its own characteristic free-stream disturbances, thesvgenerated in a particular
facility may be unique to that facility only. Furthermorégtcharacteristic free-stream
disturbance may change for different locations and foredéfit seasons. The history
effect of turbulence found in laboratories is exactly th@+tmiqueness in Coles’ sense.
Since the ambient conditions for a real flow are not a coratbtdl design factor, a non-
unique solution introduces uncertainty to real flows.

4 Nonlinear theory

4.1 Fourier-eigenfunction spectral formulation

A fully-developed mean flow in cylindrical polar coordinats used as an example to
illustrate the nonlinear theory. This limitation of fulyeveloped mean flows can be
removed with a substantial increase in the required contipnt time. The formula-
tion is for a temporal flow development, but can be easily eoied to a spatial flow
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development.

The velocity components, (u, v, w) and temperature, , aremposed into mean
values plus disturbances. It is not necessary that the matmof the disturbances is
smaller than that of the mean values. They are

u = (u,v,w,0) = (u,v", Wo(r) + w',00(r) + ¢'), Q)

where W, and ©, are the mean axial velocity and temperature. The distubasc
expressed as

u(r,t) =U(r) + / Z Z A (kyn t)am, (k,n, r)ei(kz+”¢) dk, (2)
oo M=—00om=1

whereA,, is the amplitude density function, amgl,’s are the linear stability eigenfunc-

tions. Substituting (2) into the Navier-Stokes equatiamgrojecting along the direction

of the adjoint eigenfunctions result in

8Am ' ) [eS) )
5 T Wndn = S>> Ikn,moma,ma,na,t), 3
mi=1mo=1n1=—00
where
[eS)
I = /b(k17k_klanlan_n17m1)m27m)A7n1(k1)n1)t)

X Amg(k_ khn_’fh,t)dkl,

and theb’s are constants of wave interactions. The linear terms efNavier-Stokes
equations represent the mean-flow convection of the diastwds, the distortion of the
disturbances by the mean-flow stresses and the body forwgslifusion. In the gener-
alized coordinates of eigenfunctions, they are reducedstogie term, which determines
the growth or decay of the wave due to linear energy transfer.a fixed wavenumber,
w!, is more negative for larger m. This indicates that eigentions for larger m have
more dissipation capacity, or it can be interrelated as dlemeddy. But, this eddy
is not in a spherical shape and is elongated. This introdanetropy into the flow
structure. For laminar flows, the feedback of small-scaléane to large-scale structures
is negligible. For turbulent flows, the magnitude of smakis motions may not be much
smaller than that of large-scale structures. Their strestare determined by the stability
characteristics of the mean flow.

The eigenfunction expansion (2) has reduced the continmigmentum, and en-
ergy equations to the system of integro-differential eiguet for the amplitude density
functions without any approximations. Thus, the solutibeguations (3) represents an
exact solution of the Navier-Stokes equations. It is wordimping out that one of the
major difficulties in the numerical solution of the incompsiéle Navier-Stokes system
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is the simultaneous enforcement of the no-slip boundarglitions and the incompres-
sibility constraint. Since the basis functions used in tkpamsion (2) are solutions of
the linearized Navier-Stokes equations, they individuahtisfy the incompressibility

constraint as well as the boundary conditions. This is exeit to project the com-

putational domain to a sub-domain where the expansion (@naatically satisfies the

boundary conditions and the continuity equation. Thus,thmerical solution of the

system of equations (3) is much simpler than the numeridatieo of the Navier-Stokes

equations. It may also be noted that straightforward eviainaf the convolution product

representing the nonlinear terms in equation (3) is inefficif the number of terms in

the truncated eigenfunction expansion used in the numesadation is large. However,

pseudo-spectral evaluation of the convolution productroake the numerical solution
of the equations (3) a viable efficient alternative to the atioal solution of the Navier-

Stokes equations. A preliminary study shows that the redu@PU time can be as little
as one sixth of that needed to solve the Navier-Stokes emsalty a Fourier-Chebyshev
collocation spectral method.

4.2 Weakly nonlinear theory

In the following, we will show that classical weakly nonlareinstability theories are
special limiting cases of (3). The weakly nonlinear develept of the disturbances may
be studied by expanding the Fourier amplitudes in a pertimpgeries. The maximum
amplification rate predicted by linear instability theosyuised as the expansion parame-
tere. The amplification rate predicted by linear theory for theth eigenmode of the
wave with axial wavenumbeér and azimuthal wavenumbermay be expressed in terms
of e asw), (k,n) = can(k,n) wherew’ is the (real) frequency. This makes,(k,n) a
constant of order one. The amplitude density function issexied in a perturbation series
as

g(k‘, n, t) = €Am71(k, n, t, Tl, TQ) —+ €2Am_’2(k‘, n, t, Tl, TQ) —+ ... y (4)

whereT; = et andT, = £t are slow time scales. Substitution of the expansion (4) into
equation (3) results in a set of equations

0Am 1

5T = amAm1 + Z Zf;;g(k,n,m,ml,mg,nl,T)

mi1,m2 N1

+ Z Z I3 (k,m,m, my, ma, ma, ma, ny, na, T), ®)

mi1,M2 nq,ny
msa,mq

whereT; = et and

E = / [b —+ €~]Am171(k‘1, ni, T)Amzyl(k — k‘l, n—ni, T)ei93’“’t8(ﬂgw) dkl (6)

—00
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and

Iy = //EEA'rrbl,l(k17n17T)A7rz3,1(k27n27T)

X Apa1(k— ki — ka,n —ng —ng, T)e® 4wt (Qyy, ) dky dks. 7
Equations (6) and (7) are resonant triads and quartets.eBemance conditions are
Q3w = wh (k,n) —wl (ki,n1) —wh (k—ki,n—ny) =0, (8)
and
Qi = wE (k,n) — wﬁl (k1,n1) — wf;z (k2,mn2)
—wﬁ3(k—k1—k2,n—n1—n2):0, (9)
respectively.

4.3 Landau equation

The equation (5) for the evolution of the amplitude densitpdtion of a continuous
spectrum contains as a special case the equation desdtikirgolution of the amplitude
of a discrete monochromatic wave. The amplitude densitgtfan for a discrete wave
with axial wavenumbek, and azimuthal wavenumbeg may be expressed in the form

Am,l(ka n, t) = [A()(t)5(k - k())(sn,no + AS(t)5(k + k0>5nﬁno]5m,lv (10)

whered (k) represents the Dirac delta functiafy,; represents the Kronecker delta, and
the asterisk denotes complex conjugates. We have retaimgdhe least stable mode
(m = 1) in the leading-order amplitude density function exprdsseequation (10).
Substitution of (10) into (5) leads to

dA
d—to = apAo + (11|A0|2A07 (11)

whereay = wi(ko,no) is the amplification rate predicted by linear stability thetor
the least stable eigenmode of the wavenuntbgrn,) and

ayp = E(ko, —ko, ko, no, =10, no) + 5(*k0, ko, ko, =m0, no, no)
+ ¢ (ko, ko, —ko, no, no, —no) (12)

is the second Landau constant. Equation (11) is the Landaatieq describing the tem-
poral evolution of the amplitude of a discrete monochromative. For a monochromatic
wave, ho three waves can satisfy the resonance conditiersgtond Landau constant is
contributed by the self-interaction of the wave, which femesonance quartets. The non-
linear term in the Landau equation does not represent enegsfer with other waves.
The equation (5) for the evolution of the amplitude densitpdtion of a continuous
spectrum can also be reduced to a sefNobrdinary differential equations describing
the evolution of the amplitude a¥ discrete waves. Then, the set of equations includes
the weakly nonlinear energy transfer among all waves.
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4.4 Ginzburg-Landau equation

It is worth noting that although equation (5) describes tmgoral evolution of the
amplitude density function in wave space, the integral fdation does include spatial
variations of the disturbances through the Fourier infegaasform (2), and is not re-
stricted to periodic disturbances. In the special case dbwlg varying wave packet
with an azimuthal wavenumbey,, and a spectrum confined to a small neighborhood of
bandwidthé around the minimum critical wavenumbfer, equation (5) becomes

w'(r, ¢, z,t) = A(kc, no, z, t)ws (kc, no, T)ei[k“ZJr"W*wF(k“’”“)t] + c.c., (13)

where

kots
A(ke,no, 2, )= / Ay (k,no, t)ei(k_kC)ZH[wF(k“’nO)_wf(k’nO)]t dk
ko
&/e

_ 6/ Al(kc+5K7 no’t)eiaKz—&-i[wf(kc,ng)—wf(kc-i-eK,ng)t] dK (14)
—d/e

is the slowly-varying envelope of the wave train, and denotes the complex conjugate.
As in equation (10), we have retained only the least stabldenfx = 1) in equa-
tion (14). In order to derive an equation for the envelopéefwave packet, we multiply
equation (5) byett—kegtilwi (ke.no)—wi(kmo)lts 5 and integrate with respect fo
from k. —d to k. + 0. We expand the linear amplification rates and frequenciaSaylor
series around = k..
2

a(k, TL()) = a(kc, n()> —+ % % (kc,n())(k — kc>2 —+ ... y

and (15)
R
wh(k,ng) = wR(kc, ng) + % (keymo)(k —ke) + ...

It may be noted that at the minimum critical wavenumbgrj—g(kc, n.) = 0. With (14)

and, in the limit as= — 0, it can be shown that equation (5) reduces to the equation
describing the evolution of a wave packet and is known asl@irgzLandau equation:

LA S SRty S (Y
P + Cg% = agA + 02@ +a1|A|7A, (16)
whereas = —%%(kc,no) =0 andc, = %(kc,no) = 0 is the group velocity. The

nonlinear term of (16) is similar to the one in the Landau ¢igmaand represents the self-
interaction of the carrying wave. Thus, the Ginzburg-Lanéaguation cannot be used for
nonlinear interaction of different waves.
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4.5 Indirect nonlinear wave interaction

Both the numerical results and experimental data indi¢egeanergy is drawn out from
the mean flow to support the disturbance wave and its harrmomtee modulation of the

amplitude of a mean-flow is as large as that of the dominanewHuhere is no energy
transfer to waves other than the selected disturbance vaaset of simpler amplitude
equations can be derived to replace equation (5) of a camimspectrum. Rigorously, the
expansion should include the amplitude density functiongife mean flow, the dominant
disturbance wave and its harmonics. We assume that the harsrere negligibly small

to simplify the algebra in order to demonstrate the conclgatrly. Substitution of the

amplitude density function,

A(k,t) = [A()5(k) + A85(k)] + [Ako5(k — ko) + Aj, 6(k + k())}a (17)
into equation (5) results in

dAp,

T a(ko) Ak, + [as1 Ao Aky] + [aa1] Ak, |* + asa|Ao[*] Agy, (18)
and
d4o _ 2 2 2 2
- a(0)Ag [bs1|Ao|? + bsa| Ak, [?] + [bar| Ak, |* + baz|Ao|?] Ao, (19)

wherea;; andb;; are interacting constantsd, is the amplitude function for the de-
formation of the mean flow, and,, is for the disturbance wave. The terms inside of
the first square bracket on the right-hand side of (18) an{l ét® from a three-wave
resonance. The terms in the second square bracket are from-wéve resonance. The
terms multiplied byus; andays represent the nonlinear energy transfer between the mean
flow and the disturbance wave, and are not included in the &madd Ginzburg-Landau
equations. The terms representitgirect wave interaction and have been overlooked by
most weakly nonlinear theories. Any waves, which do nosfathe resonance condition,
can still interact indirectly by interaction with the meaovil This fact has been verified
by the numerical solution of (3). The term multiplieddy represents the self-interaction
of the disturbance wave and is the only nonlinear term in taadau and Ginzburg-
Landau equations. It is clear that only linear energy trangfith the mean flow, the
terms multiplied by the growth rate, is considered in the Landau and Ginzburg-Landau
equations. Equations similar to (18) and (19) have beervelkifior the interaction of
two disturbance waves, but none of them have consideredditiced| equation for the
deformation of the mean flow. They have ignored the fact tamntean flow acts like a
medium to provide energy to sustain the disturbances andessthat the deformation of
the mean flow is of smaller order. Without the terms of nordirenergy transfer between
the mean flow and the disturbance wave, the energy is not gyagmeounted for.

The Fig. 6.23 of Mees [22] shows the importance of ihdirect mode, a direct
nonlinear energy transfer between the mean flow and all wavds indirect mode
is responsible for the rising of a broadband spectrum neaiirtlet. The broadband
spectrum decays and transfers energy to the dominant wal/ésaharmonics as they
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move downstream. The resonance conditions cannot alwagsebamong waves. This
agrees with our numerical solution of (3). The indirect miaslalso likely to be the
mechanism for flow transition to turbulence when the nowlirenergy transfer balances
with the linear dissipation.

4.6 Numerical examples

The numerical solution of equation (5) requires the evadumadf two integrals. The first

integral involves a quadratic nonlinearity, while the sativolves a cubic nonlinearity.
The solution of equation (3), on the other hand, requiresetr@uation of only one

integral involving a quadratic nonlinearity. For the sancewaacy the weakly nonlinear
theories require, at least, double the storage and CPU tiared direct solution of the
nonlinear formulation (3). Moreover, equation (3) is e@lént to the Navier-Stokes
equations. Thus, from a computational point of view, it isfprable to solve equations
(3) directly. Furthermore, formulation (3) can be simu#taasly solved effectively by

parallel machines.

For the Taylor-Couette problem for = r1/ro = 0.5 at Re = 88.1 slightly
above its critical statelze = 68.1, the range of wavenumbers permitted for supercritical
Taylor vortices according to linear theoryiss < k& < 5.6. The results indicate that
the equilibrium state depends on the initial condition asdat unique. The range of
equilibrium wavenumbers was found to be narrower than tlae g the neutral curve
from linear theory. Flows with wavenumbers outside thisgyerbut within the unstable
region of linear theory are found to be unstable and to ddmztyto excite another wave
inside the narrow band. The agreement of these results mgtEtkhaus and Benjamin-
Feir sideband instability is superficial as explained befofhe results also show that
linearly stable long and short waves can also excite a waigdrthis narrow band through
nonlinear wave interaction. The results suggest that thectsen of the equilibrium
wavenumber is due to a nonlinear energy transfer processhvid sensitive to initial
conditions.

In the following we will discuss the results of one case far thitial disturbance
atk; = 3. The solution of (3) agrees with the direct numerical solutdf the Navier-
Stokes equations by a Fourier-Chebyshev spectral methtmthp fourth decimal place.
This is not a surprise because both solutions are exactégorbblem. The equilibrium
results of (3) are included on Table 1. The equilibrium ammgi atk = 3 agrees with the
results of (5) and slightly differs from that of (11) due t@timdirect mode. On the other
hand, the largest modification of the mean flow is due to ttrel #igenfunctionn = 3.
This shows the insufficiency of the classical theories (1) @6) which only retain the
first eigenmodem = 1. The classical theories for monochromatic waves can only be
considered qualitatively acceptable even very close to¢heral stability curve.

New physics is indeed revealed by our computation. Eachrsugrenonic represents
a smaller vortex of less strength. The Taylor vortex is coseplof a sequence of vortices
whose axial wavelengths are integer fractions of the dontioae. Also, a Taylor vortex
is not a pure stationary wave, but with a small contributiamnf standing waves due to
the eigenmodes as highlighted on Table 2. The standing wawses a small oscillation
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of the amplitude of the Taylor vortices. In experiments, tleninant Taylor vortex
has been observed to fluctuate with respect to time. It iscdlffto visualize the fine
structures in a laboratory. This shows that our computatemm provide more detailed
flow structures than experimental measurements. This dsinates that the advantage
of the new formulation (3) is not only that it requires mucedeCPU time than other
numerical methods; it can also reveal more detailed flowctires.

Table 1. Taylor-Couette fok; = 3 and Re = 88.1, amplitudes of the different

eigenmodes
m k=0 k=3 k=6 k=9 k=12
1 0.364E—01 0.865E—01 0.177E—01 0.322E—-02 0.825E—-03
2 0.195E-11 0.871E-02 0.114E-02 0.107TE-03 0.198E-03
3 0.458E—-01 0.447E—-02 0.577E—02 0.834E—-03 0.343E-04
4 0.300E-11 0.449E-02 0.512E-02 0.586E—-03 0.557E—-04
5 0.127E-02 0.449E-02 0.512E-02 0.438E—-03 0.933E-04
6 0.107E—-11 0.532E-03 0.113E-02 0.278E—-03 0.753E—-04
7 0.141E-02 0.503E—-04 0.113£-02 0.278E—-03 0.753E—-04
Table 2. Frequencies of the different eigenmodes
m k=0 k=3 k=6 k=9 k=12
1 0216E£-13 0.303E—-09 0.606E—09 0.910E—-09 0.121E-08
2 0.216E—-13 0.303E—09 0.606E—09 0.910E—09 0.121E-08
3 0.216E-13 0.303E—-09 0.606E—09 0.910E—-09 0.121E-08
4 0.216E-13 0.920E4+00 —0.855E+400 0.910E-09 0.121E-08
5 0.216E—13 —0.920E+00 0.855E+00 0.910E—09 0.121E-08
6 0.216E-13 0.303E—-09 —0.108E+01 —0.108E+01  0.207E+01
7 0.216E—-13 0.303E—-09 0.108E+01 0.108E+01 —0.207E+01

The equilibrium states of mixed convection in a vertical @os forn = 0.375,
Re = 100, Ra = 200 and Pr = 0.6 are not unique either. The linear stability analysis
indicates that the basic flow is unstable to disturbancesimit narrow wavenumber band
betweer)).23 and1.13. The selection of the final equilibrium wave for mixed coniac
follows the same principles as those for Taylor-Couettéiees. The evolution of unstable
waves for the initial disturbandg = 0.25 is plotted in Fig. 1. The final dominant wave
is k = 0.5 due to the wave resonance, and not the sideband instaltilis/worthwhile
to note that the mean-flow distortion is much larger than theldaude of the dominant
wave. This shows that the assumption of the classical thgdor monochromatic wave
that the modification of the mean flow is a small-order effectot valid.

Another important implication that the equilibrium statetloe meanflow and the
wave components are not unique is that time-averaged tnbaean flows are not unique
for a given Reynolds number. Thus, the values of time-awetagybulent statistical quan-
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tities do not equal the ensemble average for stationarytemioe. From an application
point of view, only the time average has physical signifieanc

5 Conclusion

I hope | have clearly explained why and how non-uniqueneagisneric property for all
fluid flows. Reynolds number alone is insufficient to uniquedyermine a flow field and
its transport properties. Low-amplitude environmentatymdations can have profound
effects on the determination of the equilibrium state. FRarbfems near the onset of
instability, the required modification of the dynamic sianity ensured by the Reynolds
number could be small. But for a fixed Reynolds number praliyiabove its critical
value, the variation of engineering data, such as flow msitgt and Nusselt numbers,
can be substantial. In spite of the fact, it is clear thattivelved new physics of multiple
solutions is wave resonance; unfortunately, possibleasogflow variations and problem
dependent, are unknown.

Finally, note that the accurate numerical computation cftaisle flows, such as a
flow with the Reynolds number much larger than its criticdliea is not possible with
any discrete numerical methods: Any such computationalteare incorrect and simply
the consequence of truncation errors (Yao [13], Yao [27]p ¥ad Hughes [28, 29]).
This result rules out the possibility of using current nuitermethods to study flows
at Reynolds numbers much larger than their critical vallggfortunately, this includes
the major parameter range in which multiple solutions existlso reveals one of the
primary reasons why the study of multiple solutions is s€idift.
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