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Abstract. The steady flow of an incompressible viscous fluid above aniiafrotating
disk in a porous medium is studied with heat transfer. Nuca¢rsolutions of the
nonlinear governing equations which govern the hydrodyosmand energy transfer are
obtained. The effect of the porosity of the medium on the sigfoand temperature
distributions is considered.
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1 Introduction

The pioneering study of fluid flow due to an infinite rotatingldivas carried by von
Karman in [1, 1921]. Von Karman gave a formulation of the peofband then introduced
his famous transformations which reduced the governintighaifferential equations to
ordinary differential equations. Cochran [2] obtainedrapotic solutions for the steady
hydrodynamic problem formulated by von Karman. Bentonif@ioved Cochran’s solu-
tions and solved the unsteady problem. The problem of haasfer from a rotating disk
maintained at a constant temperature was first considerbtillsaps and Pohlhausen [4]
for a variety of Prandtl numbers in the steady state. SpaamdvGregg [5] studied the
steady state heat transfer from a rotating disk maintained @nstant temperature to
fluids at any Prandtl number. The influence of an externaloumifmagnetic field on
the flow due to a rotating disk was studied [6-8]. The effecunifform suction or
injection through a rotating porous disk on the steady hggnamic or hydromagnetic
flow induced by the disk was investigated [9-11].

In the present work, the steady laminar flow of a viscous inm@ssible fluid due to
the uniform rotation of a disk of infinite extent in a porousdien is studied with heat
transfer. The flow in the porous media deals with the anaipsighich the differential
equation governing the fluid motion is based on the DarcyisvMdnich accounts for the
drag exerted by the porous medium [12-14]. The temperafuteedalisk is maintained
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at a constant value. The governing nonlinear differentjale¢ions are integrated numer-
ically using the finite difference approximations The effefcthe porosity of the medium
on the steady flow and heat transfer is presented and distusse

2 Basicequations

Let the disk lie in the plane = 0 and the space > 0 is equiped by a viscous
incompressible fluid. The motion is due to the rotation of @sulated disk of infinite
extent about an axis perpendicular to its plane with constagular speed through a

porous medium where the Darcy model is assumed [14]. Otkerthie fluid is at rest
under pressurg,,. The equations of steady motion are given by
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whereu, v, w are velocity components in the directions of increasing, > respectively,
P is denoting the pressurg,is the coefficient of viscosityy is the density of the fluid,
andK is the Darcy permeability [12—14]. We introduce von Karmamsformations [1],

u=rwF, v=rwG, w=+vwrH, z=+\/v/w(, P—pe=—prwPh,

where( is a non-dimensional distance measured along the axisaifootF’, G, H andP
are non-dimensional functions ¢fandv is the kinematic viscosity of the fluid, = 1/ p.
With these definitions, equations (1)—(4) take the form

CL_IZ+2F:0, ()
%_H%—FQ-i—GQ—MF:O, (6)
‘fg _Hi—f —2FG — MG =0, (7)
%_H%+%§—MH=O, C)

M = v/Kuw is the porosity parameter. The boundary conditions for teaity problem
are given by

(=0, F=0, G=1, H=0, (9a)
(—o, F—0, G—0, P—0, (9b)
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Equation (9a) indicates the no-slip condition of viscous/fapplied at the surface of the
disk. Far from the surface of the disk, all fluid velocitiesshuanish aside the induced
axial component as indicated in equation (9b). The aboveesysf equations (5)—(7)
with the prescribed boundary conditions given by equati®sare sufficient to solve
for the three components of the flow velocity. Equation (8) ba used to solve for the
pressure distribution if required.

Due to the difference in temperature between the wall andathkient fluid, heat
transfer takes place. The energy equation without thepdiish terms takes the form
[4,5];

oT oT o*T 0T 10T

whereT is the temperature of the fluid,, is the specific heat at constant pressure of
the fluid, andk is the thermal conductivity of the fluid. The boundary coiutis for
the energy problem are that, by continuity consideratitims,temperature equals,

at the surface of the disk. At large distances from the diskends toT,, whereT,,

is the temperature of the ambient fluid. In terms of the nonedtisional variablé =

(T — Tw)/(Tw — Two) and using von Karman transformations, equation (10) takes t
form;

1 d2%0
140, de

Pr d¢? d¢
wherePr is the Prandtl numbe®r = c,uy/k. The boundary conditions in terms 6f
are expressed as

0(0) =1, 6(c0) = 0. (12)

=0, (11)

The system of non-linear ordinary differential equatioBs-(7) and (11) is solved
under the conditions given by equations (9) and (12) for ihee components of the flow
velocity and temperature distribution, using the Cranké¥son method [15]. The result-
ing system of difference equations has to be solved in thenifefidomain
0 < ¢ < oo. A finite domain in the¢-direction can be used instead withchosen
large enough to ensure that the solutions are not affectethpgsing the asymptotic
conditions at a finite distance. The independence of thdtseBom the length of the
finite domain and the grid density was ensured and succlsshdcked by various trial
and error numerical experimentations. Computations arédsout for(,, = 12.

3 Resultsand discussion

Figs. 1-4 present the variation of the profiles of the vejocamponents~, F', and H
and the temperatur® respectively, for various values of the porosity paraméfeand
for Pr = 0.7. Figs. 1-3 indicate the restraining effect of the porosftthe medium on
the flow velocity in the three directions. Increasing thegsity parametei/ decreases
G, F, andH and the thickness of the boundary layer.
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Fig. 1. Effect of the porosity paramet&f on the profile ofG.
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Fig. 2. Effect of the porosity parametéf on the profile ofF".
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Fig. 3. Effect of the porosity paramet&f on the profile ofH.
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Fig. 4. Effect of the porosity parametéf on the profile 0.

Fig. 4 presents the influence of the porosity paraméfein increasing the tempe-
ratured as a result of the effect of the porosity in preventing thedflai near-ambient
temperature from reaching the surface of the disk. ConselyuacreasingV/ increases
the temperature as well as the thermal boundary layer tegknThe absence of fluid at
near-ambient temperature close to the surface increaséedt transfer.

4 Conclusion

In this study the steady flow induced by a rotating disk witlathteansfer in a porous
medium was studied. The results indicate the restrainiferedf the porosity on the
flow velocities and the thickness of the boundary layer. @natiher hand, increasing the
porosity parameter increases the temperature and thiskfiése thermal boundary layer.

References

1. T.von Karman, Uber laminare und turbulente reibitigViM, 1(4), pp. 233—-235, 1921.

2. W.G. Cochran, The flow due to a rotating digk,Camb. Philos. Soc., 30(3), pp. 365-375,
1934.

w

E.R. Benton, On the flow due to a rotating didkrluid Mech., 24(4), pp. 781-800, 1966.

»

K. Millsaps, K. Pohlhausen, Heat transfer by laminar floanf a rotating disk,). Aeronaut.
i, 19, pp. 120-126, 1952.

5. E.M. Sparrow, J.L. Gregg, Mass transfer, flow, and heasfex about a rotating diskSME
J. Heat Transfer, pp. 294-302, Nov. 1960.

6. H.A. Attia, Unsteady MHD flow near a rotating porous diskhwiniform suction or injection,
Fluid Dyn. Res., 23, pp. 283—-290, 1998.

7. H.A. Attia, A.L. Aboul-Hassan, Effect of Hall current oha unsteady MHD flow due to a
rotating disk with uniform suction or injectiorAppl. Math. Model., 25(12), pp. 1089-1098,
2001.

25



H. A. Attia

8.

10.

11.

12.

13.
14.

15.

H. A. Attia, On the effectiveness of uniform suction-ictien on the unsteady flow due to a
rotating disk with heat transfelmt. Commun. Heat Mass, 29(5), pp. 653-661, 2002.

. J.T. Stuart, On the effects of uniform suction on the stefalv due to a rotating disk,

Q. J. Mech. Appl. Math., 7, pp. 446-457, 1954.

H. K. Kuiken, The effect of normal blowing on the flow neamo#ating disk of infinite extent,
J. Fluid Mech., 47(4), pp. 789-798, 1971.

H. Ockendon, An asymptotic solution for steady flow abaweinfinite rotating disk with
suction,Q. J. Mech. Appl. Math., 25, pp. 291-301, 1972.

D.D. Joseph, D. A. Nield, G. Papanicolaou, Nonlinearagign governing flow in a staturated
porous mediay\ater Resour. Res., 18(4), pp. 1049-1052, 1982.

D. B. Ingham, I.Poplransport Phenomena in Porous Media, Pergamon, Oxford, 2002.

A.R.A. Khaled, K. Vafai, The role of porous media in madglflow and heat transfer in
biological tissuesint. J. Heat Mass Tran., 46, pp. 4989-5003, 2003.

W. F. Ames,Numerical Methods in Partial Differential Equations, 2nd edition, Academic
Press, New York, 1977.

26



