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Abstract. This work considers steady, laminar, MHD flow of a micropolarfluid past a
stretched semi-infinite, vertical and permeable surface inthe presence of temperature-
dependent heat generation or absorption, magnetic field andthermal radiation effects.
A set of similarity parameters is employed to convert the governing partial differential
equations into ordinary differential equations. The obtained self-similar equations are
solved numerically by an efficient implicit, iterative, finite-difference method. The
obtained results are checked against previously publishedwork for special cases of the
problem in order to access the accuarcy of the numerical method and found to be in
excellent agreement. A parametric study illustrating the influence of the various physical
parameters on the skin friction coefficient, microrotaion coefficient or wall couple stress
as well as the wall heat transfer coefficient or Nusselt number is conducted. The obtained
results are presented graphically and in tabular form and the physical aspects of the
problem are discussed.
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Nomenclature

B(x) magnetic induction K∗ vortex viscosity
Cf skin-friction coefficient k∗ mean absorption coefficient
Cq heat transfer coefficient N angular velocity or microrotation

or Nusselt number Nr radiation parameter
Cr wall couple stress Pr Prandtl number
cp specific heat at constant pressureQ(x) heat generation or absorption
Ec Eckert number coefficient
f dimensionless stream function qr radiative heat flux
F0 dimensionless wall mass T temperature at any point

transfer coefficient Tw wall temperature
Ha Hartmann number T∞ free stream temperature
j microrotation per unit mass u tangential orx-component of velocity
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U0 stretching velocity w dimensionless angular velocity or
v normal ory-component of velocity microrotation
Vw dimensional wall mass transfer or x distance along the plate

suction/injection velocity y distance normal to the plate

Greek symbols

∆ microrotation coupling constant µ fluid dynamic viscosity
α molecular thermal diffusivity ν fluid apparent kinematic viscosity
φ dimensionless heat generation or ψ stream function

absorption parameter σ fluid electrical conductivity
γ spin gradient viscosity σ∗ Stefan-Boltzmann constant
η dimensionless distance normal θ dimensionless temperature

to the plate ρ fluid density
λ microrotation material parameter

1 Introduction

Micropolar fluids are referred to those fluids that contain micro-constituents that can
undergo rotation which affect the hydrodynamics of the flow.In this context, they can
be distinctly non-Newtonian in nature. The basic continuumtheory for this class of
fluids was originally formulated by Eringen [1]. The equations governing the flow of
a micropolar fluid involve a microrotation vector and a gyration parameter in addition to
the classical velocity vector field. Eringen’s micropolar fluid theory has been employed
to study a number of various flow situations such as the flow of low concentration suspen-
sions, liquid crystals, blood, and turbulent shear flows. The theory may also be applied to
explain the flow of colloidal solutions, fluids with additives and many other situations.

Over the years, the dynamics of micropolar fluids has been a popular area of research
and a significant amount of research papers dealing with micropolar fluid flow over a
flat plate was reported. For instance, Peddieson and McNitt [2] studied the boundary
layer flow of a micropolar fluid past a semi-infinite plate. Gorla [3] investigated the
forced convective heat transfer to a micropolar fluid flow over a flat plate. Rees and
Bassom [4] analyzed Blasius boundary-layer flow of a micropolar fluid over a flat plate.
Hady [5] considered heat transfer to micropolar fluid from a non-isothermal stretching
sheet with injection. Kelson and Desseaux [6] studied the effect of surface conditions on
the flow of a micropolar fluid driven by a porous stretching surface. The boundary layer
flow of micropolar fluids past a semi-infinite plate was studied by Ahmadi [7] taking
into account the gyration vector normal to the xy-plane and the micro-inertia effects.
Soundalgekar and Takhar [8] studied the flow and heat transfer of a micropolar fluid
past a continuously moving plate. Perdikis and Raptis [9] studied the heat transfer of
a micropolar fluid in the presence of radiation and later Raptis [10] considered the flow
of a micropolar fluid past a continuously moving plate in the presence of radiation. El-
Arabawy [11] analyzed the problem of the effect of suction/injection on the flow of a
micropolar fluid past a continuously moving plate in the presence of radiation. Abo-
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Eldahab and Ghonaim [12] studied radiation effects on heat transfer of a micropolar fluid
through a porous medium. Abo-Eldahab and El Aziz [13] analyzed flow and heat transfer
in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium
with uniform free stream. Eldabe and Ouaf [14] solved the problem of heat and mass
transfer in a hydromagneticflow of a micropolar fluid past a stretching surface with Ohmic
heating and viscous dissipation using the Chebyshev finite difference method. Odda and
Farhan [15] studied the effects of variable viscosity and variable thermal conductivity on
heat transfer to a micro-polar fluid from a non-isothermal stretching sheet with suction
and blowing. Mahmoud [16] considered thermal radiation effects on MHD flow of a
micropolar fluid over a stretching surface with variable thermal conductivity. Aouadi [17]
reported a numerical study for micropolar flow over a stretching sheet.

In certain applications such as those involving heat removal from nuclear fuel debris,
underground disposal of radioactive waste material, storage of food stuffs, and exothermic
chemical reactions and dissociating fluids in packed-bed reactors, the working fluid heat
generation or absorption effects are important. Patil and Kulkarni [18] studied the effects
of chemical reaction on free convective flow of a polar fluid through a porous medium
in the presence of internal heat generation. Representative studies dealing with heat
generation or absorption effects have been reported previously by such authors as Acharya
and Goldstein [19], Vajravelu and Nayfeh [20] and Chamkha [21].

The objective of this paper is to consider MHD flow of a micropolar fluid along a
vertical semi-infinite permeable plate in the presence of wall suction or injection effects
and heat generation or absorption effects.

2 Problem formulation

Consider steady, laminar, MHD boundary-layer flow of a micropolar fluid past a perme-
able uniformly stretched semi-infinite vertical plate in the presence of heat generation
or absorption, thermal radiation and viscous dissipation effects. The fluid is assumed
to be viscous and has constant properties. The applied magnetic field is assumed to be
constant and the magnetic Reynolds number is assumed to be small so that the induced
magnetic field is neglected. No electric field is assumed to exist and the Hall effect of
magnetohydrodynamics is neglected.

The governing boundary-layer equations may be written as follows:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=
µ+K∗

ρ

∂2u

∂y2
+
K∗

ρ

∂N

∂y
−
σB2(x)

ρ
u, (2)

γ

K∗

∂2N

∂y2
− 2N −

∂u

∂y
= 0, (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
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cp

(
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+
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∂qr
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, (4)
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whereu, v,N , andT are the fluidx-component of velocity, y-component of velocity,
angular velocity or microrotation and temperature, respectively. ρ, ν (ν = (µ+K∗)/ρ),
µ, cp andα are the fluid density, apparent kinematic viscosity, fluid dynamic viscosity,
specific heat at constant pressure and thermal diffusivity,respectively.γ andK∗ are the
spin gradient viscosity and the vortex viscosity, respectively. σ,B(x), Q(x) andqr are
the electrical conductivity, magnetic induction, heat generation (> 0) or absorption (< 0)
coefficient and the radiative heat flux, respectively.

The boundary conditions for this problem can be written as

y = 0: u = U0, v = Vw, N = 0, T = Tw, (5)

y → ∞ : u→ 0, N → 0, T → T∞, (6)

whereU0, Vw andTw are the stretching velocity, suction (Vw < 0) or injection (Vw > 0)
velocity and wall temperature, respectively.

By using Rosseland approximation and following El-Arabawy[11], the radiative
heat fluxqr is given by

qr = −
4σ∗

3k∗
∂(T 4)

∂y
, (7)

whereσ∗ is the Stefan-Boltzmann constant andk∗ is the mean absorption coefficient.
Assuming that the temperature differences within the flow are sufficiently small so

thatT 4 can be expanded in Taylor series about the free stream temperatureT∞ to yield

T 4 ≡ 4T 3
∞
T − 3T 4

∞
, (8)

where the higher-order terms of the expansion are neglected.
Defining the dimensional stream function in the usual way such thatu = ∂ψ

∂y and

v = −∂ψ
∂x and using the following dimensionless variables (El-Arabawy, [11]):

η = y

√

U0

2νx
, ψ =

√

2νU0xf(η),

θ(η) =
T − T∞
Tw − T∞

, N =

√

U3
0

2νx
w(η), (9)

u = U0f
′(η), v = −

√

νU0

2x
[t(η) − ηf ′(η)].

Along with equations (7) and (8) results in the following self-similar equations:

f ′′′ + ff ′′ −Ha2f ′ + ∆w′ = 0, (10)

λw′′ − 4w − 2f ′′ = 0, (11)

(3Nr + 4)θ′′ + 3NrPrfθ
′ + 3NrPr φ θ + 3NrPrEc(f

′′)2 = 0, (12)
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where

Ha =

√

2σxB2(x)

ρU0
, P r =

ρνcp
k

, λ =
γU0

K∗νx
, ∆ =

K∗

ρν
,

Ec =
U2

0

cp(Tw − T∞)
, φ =

2xQ(x)

ρcpU0
, Nr =

κk∗

4σ∗T 3
∞

(13)

are the Hartmann number, Prandtl number, microrotation parameter, coupling constant
parameter, Eckert number, dimensionless internal heat generation or absorption parameter
and the radiation parameter, respectively. It should be noted thatB(x) = B0/x

1/2, γ(x) =
γ0x andQ(x) = Q0/x whereB0, γ0 andQ0 are constants.

The dimensionless form of the boundary conditions becomes

η = 0: f = F0, f ′ = 1, w = 0, θ = 1, (14)

η → ∞ : f ′→ 0, w → 0, θ → 0, (15)

whereF0 =−Vw/
√

2x/(νU0) is the dimensionless suction of injection velocity such that
F0>0 indicates fluid wall suction andF0<0 indicates fluid wall blowing or injection.

The local skin-friction coefficient, wall couple stress andthe local heat transfer (or
Nusselt number) coefficients are important physical parameters for this flow and heat
transfer situation. These are defined as follows:

Cf =
(µ+K∗)(∂u/∂y)y=0 +K∗N |y=0

(1/2)ρU2
0

= −2Re−(1/2)
x f ′′(0), (16)

Cr =
(γ/K∗)(∂N/∂y)y=0

γU3
0 (2K∗ν2)

= Re−1
x w′(0), (17)

Cq =
−x(∂T/∂y)y=0

Tw − T∞
= −2Re−(1/2)

x θ′(0), (18)

whereRex = U0x/ν is the local Reynolds number.

3 Numerical method

The implicit finite-difference method discussed by Blottner [22] has proven to be adequate
and accurate for the solution of differential equations similar to equations (10) through
(11). For this reason, it is employed in the present work. These equations have been
linearized and then descritized using three-point centraldifference quotients with variable
step sizes in theη direction. The resulting equations form a tri-diagonal system of
algebraic equations that can be solved line by line by the well-known Thomas algorithm
(see Blottner, [22]). Due to the nonlinearities of the equations, an iterative solution is
required. For convergence, the maximum absolute error between two successive iterations
was taken to be10−7. A starting step size of0.001 in theη direction with an increase of
1.0375 times the previous step size was found to give accurate results. The total number
of points inη direction was taken to be199.
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The accuracy of the aforementioned numerical method was validated by direct com-
parisons with the numerical results reported earlier by El-Arabawy [11]. Tables 1 and 2
present comparisons for the wall slopes of velocity, microrotation and temperature values
for various conditions. These comparisons show excellent agreement between the results.

Table 1. Comparison of−f ′′(0) andw′(0) with El-Arabawy [11] forHa = 0, ∆ = 0.2
andλ = 2.0

F0 −f ′′(0) w′(0) −f ′′(0) w′(0)
El-Arabawy [11] El-Arabawy [11] Present Work Present Work

−0.7 0.278827 0.236917 0.278939 0.237101
−0.4 0.404227 0.286997 0.404381 0.287120
−0.2 0.504059 0.321165 0.504192 0.321321

0 0.616542 0.355330 0.616844 0.355563
0.2 0.741521 0.389278 0.741691 0.389410
0.4 0.877517 0.422223 0.877682 0.422393
0.7 1.099430 0.468923 1.103311 0.469098

Table 2. Comparison of−θ′(0) with El-Arabawy [11] for Ec = 0.02, F0 = 0,
Ha = 0, Nr = ∞, ∆ = 0.2, λ = 2.0 andΦ = 0

Pr −θ′(0) −θ′(0)
El-Arabawy [11] Present Work

0.733 0.501327 0.501423
7.0 1.931150 1.931256
10 2.337000 2.337201
20 3.360750 3.360839
50 5.380040 5.380149

4 Results and discussion

Figs. 1 through 3 display the influence of the Hartmann numberHa on the velocity (f ′),
microrotation (w) and the temperature (θ) profiles. The presence of a magnetic field
has the tendency to produce a drag-like force called the Lorentz force which acts in the
opposite direction of the fluid’s motion. This causes the fluid velocity and microrotation to
decrease and the fluid temperature to increase as the Hartmann numberHa increases. In
addition, the boundary-layer thickness decreases while the thermal boundary-layer thick-
ness increases asHa increases. It is also observed from Fig. 2 that asHa increases, the
microrotation decreases everywhere within the boundary layer except in the immediate
vicinity of the plate surface.

Table 3 illustrates the effects of the Hartmann numberHa on the skin-friction co-
efficient (−f ′′(0)), the wall couple stress (w′(0)) and the Nusselt number (−θ′(0)). As
mentioned before, increasing the value ofHa causes the linear velocity to decrease resul-
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ting in increased negative wall slope of the velocity (−f ′′(0)). Similarly, the wall slope
of the microrotation or angular velocity increases asHa increases. On the other hand,
it is also observed that the negative wall slope of the temperature profile (−θ′(0)) or the
Nusselt number decreases asHa increases.

Table 3. Effects ofHa on −f ′′(0), w′(0) and−θ′(0) for Ec = 0.02, F0 = 0,
Nr = ∞, P r = 0.59, ∆ = 0.2, λ = 2.0 andφ = 0

Ha −f ′′(0) w′(0) −θ′(0)

0 0.6168441 0.3555639 0.4301508
1 1.14692 0.4715558 0.3418584
2 2.066495 0.6029878 0.2310590
3 3.040321 0.6871593 0.1609032
4 4.028647 0.7429327 0.1159298

Figs. 4 through 6 show representative velocity, microrotation and temperature pro-
files for various values of the wall mass transfer parameterF0, respectively. In general,
imposition of fluid wall suction (F0 > 0) tends to decrease all of the fluid velocity,
microrotation, and temperature as well as their boundary-layer thicknesses. On the other
hand, injection or blowing of fluid at the plate surface (F0 < 0) produces the exact
opposite effect namely increases in the fluid velocity, microrotation and temperature and
their boundary-layer thicknesses. These behaviors are obvious from Figs. 4 through 6. In
addition, it is seen from Fig. 5 that asF0 increases, the angular velocity or microrotaion
increases close to the plate surface and then decreases elsewhere.

Table 4 depicts the influence of the wall mass transfer parameter F0 on the skin-
friction coefficient, the wall couple stress and the Nusseltnumber. Increasing the value of
F0 from negative to positive values causes increases in all of the negative wall slopes of
the velocity and temperature and the wall slope of the angular velocity or microrotation
resulting in increased values of all of the skin-friction coefficient, the wall couple stress
and the Nusselt number. These behaviors are clear from Table4.
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Table 4. Effects ofF0 on −f ′′(0), w′(0) and−θ′(0) for Ec = 0.02, Ha = 1.0,
Nr = ∞, P r = 0.59, ∆ = 0.2, λ = 2.0 andφ = 0

F0 −f ′′(0) w′(0) −θ′(0)

−0.7 0.8197412 0.3964357 0.1032472
−0.4 0.9477000 0.4284665 0.1947786
−0.2 1.043334 0.4500362 0.2649712

0 1.146929 0.4715558 0.3418584
0.2 1.258714 0.4928372 0.4244762
0.4 1.378121 0.5136983 0.5113263
0.7 1.571476 0.5439026 0.6493271
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Fig. 7 presents the effect of the Prandtl numberPr on the temperature profiles.
Increasing the value ofPr has the tendency to decrease the fluid temperature in the
boundary layer as well as the thermal boundary-layer thickness. This causes the wall
slope of the temperature profile to decrease asPr increases causing the Nusselt number
to increase as clearly seen from Table 5. From Table 5, it is also observed that the
skin-friction coefficient and the wall couple stress do not change asPr changes. This
is expected since the linear and angular momentum equations(8) and (9) are uncoupled
from the energy equation (10) for this problem.
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Fig. 7. Effects ofPr on temperature profiles.

Table 5. Effects ofPr on −f ′′(0), w′(0) and−θ′(0) for Ec = 0.02, F0 = 0,
Ha = 0, Nr = ∞, ∆ = 0.2, λ = 2.0 andφ = 0

Pr −f ′′(0) w′(0) −θ′(0)

0.027 0.6168441 0.3555639 0.0367856
0.1 0.6168441 0.3555639 0.0997646
0.3 0.6168441 0.3555639 0.2570476
0.4 0.6168441 0.3555639 0.3219283
0.59 0.6168441 0.3555639 0.4301508
0.78 0.6168441 0.3555639 0.5230769

Fig. 8 presents the temperature profile for various values ofthe heat generation or
absorption coefficientφ. In general, the presence of heat generation effects (φ > 0) has
the tendency to increase the temperature of the fluid. It is also interesting to note that for
φ = 1.0 a distinctive peak in the temperature profile greater than that of the wall occurs
in the vicinity of the plate surface. However, the case whenφ = 2.0 does not follow
the same increasing trend as it drops below the profile forφ = 1.0 with a noted oscillatory
behavior. On the other hand, the opposite behavior in the temperature profiles is obtained
due to the presence of heat absorption effects (φ < 0). The peak temperature value in the
case of heat absorption is that of the wall. All of these trends are clearly seen from Fig. 8.

36



MHD Flow of a Micropolar Fluid past a Stretched Permeable Surface

The variations of the skin-friction coefficient, the wall couple stress and the Nusselt
number asφ changes is shown in Table 6. As expected the values of−f ′′(0) andw′(0)
do not change asφ changes. This is because the energy equation is uncoupled from the
momentum equations. However, the values of−θ′(0) follow a consistent decreasing trend
for heat absorption conditions as increases from−2 to 0 (no heat source or sink). On the
other hand, in general, for heat generation, the Nusselt number decreases asφ increases
but the value−θ′(0) for φ = 2.0 is higher than that forφ = 1.0. It is also predicted
that the Nusselt number becomes negativeφ = 1. This is associated with the existence of
the peak in the temperature profiles forφ = 1 (see Fig. 8) which causes its wall slope to
change its sign.
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Fig. 8. Effects ofφ on temperature profiles.

Table 6. Effects ofφ on −f ′′(0), w′(0) and −θ′(0) for Ec = 0.02, F0 = 0,
Ha = 0, Nr = ∞, P r = 0.59, ∆ = 0.2 andλ = 2.0

φ −f ′′(0) w′(0) −θ′(0)

−2 0.6168441 0.3555639 1.188622
−1 0.6168441 0.3555639 0.9009093

0 0.6168441 0.3555639 0.4301508
1 0.6168441 0.3555639 −0.2990513
2 0.6168441 0.3555639 0.3488447

In Table 7, the influence of the radiation parameterNr on the values of−f ′′(0),
w′(0) and−θ′(0) is shown. Again, since the energy equation is uncoupled fromthe
momentum equations, the values of−f ′′(0) andw′(0) do not change asNr changes.
However, the values of−θ′(0) increase asNr increases. It should be noted that the case
Nr = ∞ correspond to the condition where thermal radiation effectis absent. This
indicates that as the parameterNr increases, thermal radiation effects become lower and
this means that the temperature decreases and the negative slope of the temperature profile
at the surface increases resulting in increased heat transfer or Nusselt number values.
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Thus, the conclusion here is that the addition of the thermalradiation effect in the model,
results in increases in the fluid temperature and reductionsin the Nusselt number.

Table 8 elucidates the effect of increasing the value of the microrotation coupling
constant∆ on the values of−f ′′(0) andw′(0) and−θ′(0). It is predicted that as∆
increases, the values of−f ′′(0) and−θ′(0) decrease while the values ofw′(0) increase.

Table 7. Effects ofNr on −f ′′(0), w′(0) and−θ′(0) for Ec = 0.02, F0 = 0,
Ha = 1.0, P r = 0.59, ∆ = 0.2, λ = 2.0 andφ = 0

Nr −f ′′(0) w′(0) −θ′(0)

0.1 1.146929 0.4715558 0.0372252
0.5 1.146929 0.4715558 0.1103665
1.0 1.146929 0.4715558 0.1659859
2.0 1.146929 0.4715558 0.2232631
3.0 1.146929 0.4715558 0.2523357
5.0 1.146929 0.4715558 0.2815142

10 1.146929 0.4715558 0.3089046
∞ 1.146929 0.4715558 0.3418584

Table 8. Effects of∆ on −f ′′(0), w′(0) and −θ′(0) for Ec = 0.02, F0 = 0,
Ha = 1.0, Nr = ∞, P r = 0.59, λ = 2.0 andφ = 0

∆ −f ′′(0) w′(0) −θ′(0)

0 1.163697 0.4706068 0.3445972
0.1 1.155352 0.4710780 0.3433341
0.2 1.146929 0.4715558 0.3418584
0.3 1.138881 0.4720554 0.3405513
0.4 1.130228 0.4725627 0.3392475
0.5 1.121886 0.4730935 0.3376332

5 Conclusions

The problem of steady, laminar, boundary-layer flow of a viscous, micropolar and heat
generating or absorbing fluid past a vertical uniformly stretched permeable plate was
considered. The governing equations for this problem were developed and transformed
using appropriate similarity transformations. The resulting similarity equations were then
solved numerically by an implicit, iterative, finite-difference scheme. The obtained results
for special cases of the problem were compared with previously published work and
found to be in excellent agreement. It was found that, in general, the local skin-friction
coefficient increased as either of the wall suction or injection parameter or the Hartmann
number increased while it decreased as the microrotation coupling constant increased. In
addition, the local heat transfer coefficient or Nusslet number was predicted to increase
due to increases in either of the suction or injection parameter, Prandtl number or the radi-
ation parameter while it decreased as either of the Hartmannnumber, the heat generation
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or absorption coefficient or the microrotation coupling constant increased. Finally, the
local wall microrotation coefficient or couple stress was increased as either of the wall
suction or injection parameter, Hartmann number or the microrotation coupling constant
increased. It is hoped that the present work will serve as a vehicle for understanding
more complex problems involving the various physical effects investigated in the present
problem.
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