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Abstract. Recently, a modified version of the so called Holling-Tannermodel is
introduced in the ecological literature. A detailed account of the deterministic dynamics
of this model is presented. The growth rates of the prey and predator are then perturbed
by Gaussian white noises to take into account the effect of fluctuating environment. The
resulting stochastic model is cultured by the technique of statistical linearization and
criteria for non-equilibrium fluctuation and stability arederived. Numerical simulations
are carried out. The implications of our analytical findingsare addressed critically.
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1 Introduction

Over the last century, mathematical biology research opensup a new exciting cornucopia
of challenging problems for the mathematicians. On the other hand, for the biologists,
mathematical modelling offers another research tool commensurate with new powerful
laboratory techniques. Different mathematical techniques have been successfully derived
to get an insight into the problems of biology, but there is nodenying that it is a strong
tendency of the mathematicians to neglect factors which could mar the beauty of the
analysis. In widening and deepening the scope of mathematical biology, consideration of
some relevant factors are very important.

The most crucial element in predator-prey models is the “functional response” or
“trophic function”, the function that describes the numberof prey consumed per predator
per unit time for given quantities of preyx and predatory. Various forms of functional
responses have become the focus of considerable attention from time to time in ecological
literature. The so called Holling-Tanner model is concerned with the Michaelis-Menten
or Holling Type-II functional response of the formp(x) = cx

m+x , wherec is the maximal
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predator per capita consumption rate, i.e. the maximum number of prey that can be eaten
by a predator in each time unit andm is the half capturing saturation constant, i.e. the
number of prey necessary to achieve one-half of the maximum ratec. Such functional
responses are labelled “prey-dependent” by Arditi and Ginzburg [1] since it depends on
prey density only. It was recognized early that the predatordensity could have a direct
effect on functional response. A number of such “predator-dependent” models have been
proposed, the most widely known being those of Hassell and Varley [2], DeAngelis et
al. [3], Beddington [4] and Arditi and Akcakaya [5]. A predator-dependent functional
response, which is a function of the ratio of the prey and predator, is known as a ratio-
dependent functional response. Arditi and Ginzburg [1] introduced a Michaelis-Menten
type ratio-dependent functional response of the formp(x/y) = c(x/y)

m+(x/y) = cx
my+x , where

x, y stand for densities of prey and predator respectively. The positive constantsc andm
are the capturing rate and the half capturing saturation constant, respectively. Predator-
prey models with such ratio-dependent functional responseare strongly supported by
numerous field and laboratory experiments (Arditi and Ginzburg [1], Arditi and Berry-
man [6], Arditi et al. [7], Hanski [8], Arditi and Saiah [9], Gutierrez [10], Blaine and
DeAngelis [11], Poggiale et al. [12], Bernstein et al. [13],Cosner et al. [14], Arditi et
al. [15]). Detailed arguments on the merits of ratio-dependent model in comparison with
other models may be found in the works of Berezovskaya et al. [16] and Arditi et al. [17].
Various aspects of the Michaelis-Menten type ratio-dependent predator-prey system and
the effect of many relevant factors like time-delay, diffusion, environmental stochasticity
etc., have been extensively discussed in the literature; most recent works being those
of Bandyopadhyay and Chattopadhyay [18], Tang and Zhang [19], Huo and Li [20],
Lizana and Marin V. [21], Maiti and Samanta [22], Wang et al. [23], Zeng [24], Zeng
and Zhai [25], Maiti et al. [26,27], Ruan et al. [28].

Most of the models proposed and studied in the ecological literature work within
the framework of an unvarying, deterministic environment.However, the parameters
characterizing real environments all, to greater or lesserdegree, exhibit random fluctu-
ation. That is, real environments are uncertain, stochastic. Therefore, in deterministic
situation, it is always difficult to predict the future of thesystem accurately. One reason
to this difficulty is that biological systems are subject to apparently random fluctuations.
In fact, randomness or stochasticity plays a vital role in the structure and function of
biological systems (May [29], Renshaw [30], Nisbet and Gurney [31], Samanta [32]).
The environmental factors are time-dependent, randomly varying and should be taken
as stochastic. Renshaw [30] mentioned that the most naturalphenomena do not follow
strictly deterministic laws but rather oscillate randomlyabout some average so that the
deterministic equilibrium is not an absolutely fixed state;instead it is a “fuzzy” value
around which the biological system fluctuates. Both demographic stochasticity and the
environmental stochasticity play a significant part in the realistic dynamical modelling of
ecosystems. A central obstacle in the stochastic modellingof an ecosystem is the lack
of mathematical machinery available to analyze non-linearmulti-dimensional stochastic
process. A quantum leap in the mathematical sophisticationof ecological modelling
occurred when May [29] introduced stochastic differentialequations to investigate li-
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mits to niche overlap in randomly fluctuating environment. Subsequently, the sensibility
of stochastic models in comparison with deterministic models is established by many
researchers (see Dimentberg [33, 34], Samanta [32, 35], Samanta and Maiti [36, 37],
Bandyopadhyay and Chakrabarti [38], Bandyopadhyay and Chattopadhyay [18], Maiti
and Samanta [22, 39], Maiti et al. [26] and references cited there in). Also, the effects of
environmental fluctuations on the models with ratio-dependent functional responses have
now become the focus of considerable attention in the literature (see Bandyopadhyay and
Chattopadhyay [18], Maiti and Samanta [39], Mankin et al. [40], and Maiti et al. [26]).

Recently, a modification of the so called Holling-Tanner model by invoking the ratio-
dependent functional response is suggested by Haque and Li [41]. In this paper, a detailed
dynamics of the model is presented when the environment is assumed to be determin-
istic. Our analytical findings are illustrated through computer simulations. Wollkind
et al. [42], Collings [43] have used the Holling-Tanner model to study the population
interaction between the predacious miteMetaseiulus occidentalisNesbitt and its spider
mite preyTetranychus mcdanieliMcGregor. It has been reported by many researchers
that environmental fluctuations play a very significant roleon M. occidentalis– T. mc-
danieli interaction (e.g., Wollkind and Logan [44], Wollkind et al.[42], Collings [43]).
To take into account the effect of fluctuating environment, we formulate the stochastic
version of the model by perturbing the growth rates of the prey and predator by Gaussian
white noises. The criteria for non-equilibrium fluctuationand stability are derived. A
comparative study of the stability behaviour of the model indeterministic and stochastic
environment is presented.

2 The basic deterministic model

The May or Holling-Tanner model for predator-prey interaction is

dN1

dT
= N1

[

r

(

1 − N1

K

)

− cN2

m + N1

]

,

dN2

dT
= sN2

(

1 − N2

nN1

) (1)

with

N1(0) > 0, N2(0) > 0,

dN2

dT
= 0 for N1 = 0,

r, K, c, m, s, n > 0.

HereN1(T ) andN2(T ) denote prey and predator densities, respectively, in timeT . It is
assumed that in the absence of the predator, the prey population density grows according
to a logistic curve with carrying capacityK and with an intrinsic growth rate (or biotic
potential)r. The parameters denotes the intrinsic growth rate of the predator.c is the
maximal predator per capita consumption rate andm is the half capturing saturation
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constant. The predator growth equation is of logistic type with a modification of the
conventional one. Here the available resources is not constant, but is equal tonN1, which
is proportional to prey abundance. The parametern is the measure of the food quality
that the prey provides for conversion into predator births.Several dynamical behaviours
of Holling-Tanner model have been studied extensively in literature (see May [29], Tan-
ner [45], Wollkind et al. [42], Murray [46], Hsu and Hwang [47], Collings [43, 48], Śaez
and Gonźalez-Olivares [49], Braza [50]).

It is already mentioned that Haque and Li [41] have introduced a modified version
of the above Holling-Tanner model by replacing the Holling type-II prey-dependent func-
tional response with a ratio-dependent one. Although not mentioned clearly, the main
reason for such modification would be perhaps the widespreadpopularity of the ratio-
dependent functional response in comparison of its prey-dependent counterpart. Further,
it seems that Haque and Li [41] might have expected some different result on “paradox of
enrichment” (which they have successfully obtained also).However, as a starting point of
our study, we take their modified model described under the framework of the following
set of ordinary differential equations:

dN1

dT
= N1

[

r

(

1 − N1

K

)

− cN2

mN2 + N1

]

,

dN2

dT
= sN2

(

1 − N2

nN1

) (2)

with

N1(0) > 0, N2(0) > 0,

dN1

dT
= 0 for (N1, N2) = (0, 0),

dN2

dT
= 0 for N1 = 0,

r, K, c, m, s, n > 0.

The model we have just specified has six parameters, which makes analysis difficult.
To reduce the number of parameters and to determine which combinations of parameters
control the behaviour of the system, we nondimensionalize the system (2). We choose

X =
N1

K
, Y =

mN2

K
and t = rT.

Then the system (2) takes the form (after some simplification)

dX

dt
= X(1 − X) − βXY

X + Y
,

dY

dt
= γY

(

1 − δ
Y

X

)

,

(3)
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where

X(0) > 0, Y (0) > 0,

dX

dt
= 0 for (X, Y ) = (0, 0),

dY

dt
= 0 for X = 0,

β =
c

mr
, γ =

s

r
and δ =

1

mn
.

The rest of the paper is structured as follows. Section 3 is composed of a blend
of dynamical behaviours of the model (3) in deterministic environment. In Section 4,
computer simulations are carried out to validate some of theanalytical results. The
stochastic version of the model is formulated in Section 5 totake into account the effect
of fluctuating environment characterized by Gaussian whitenoises and the analysis of
the stochastic model by the method of statistical linearization (Valsakumar et al. [51]).
The criteria for non-equilibrium fluctuation and stabilityare also derived in this section.
Section 6 contains the general discussions of the paper and acomparative study of the
stability in the deterministic and stochastic environment.

3 Dynamical behaviour

In this section, we present a blend of dynamical behaviours of the model (3). Haque and
Li [41] have derived some important results for the model (3)(although they have omitted
some proofs for the lack of space). We have also derived some useful results. The results
are listed below.

Theorem 1. All solutions of the system(3) which start inR
2
+ are uniformly bounded.

Haque and Li [41] have omitted the proof of this theorem for the lack of space. We
have provided the proof in the Appendix.

Theorem 2. The system(3) always has the boundary equilibrium pointsE0(0, 0) and
E1(1, 0). The interior equilibrium pointE∗(X∗, Y ∗) exists uniquely if and only if the
following condition is true:

β < 1 + δ.

In this caseX∗ andY ∗ are given byX∗ = 1+δ−β
1+δ , Y ∗ = 1+δ−β

δ(1+δ) .

Theorem 3. The necessary condition to reach the origin followingX − Y plane isβ >
1 + γ(1 + δ). AlsoE1(1, 0) is a standard saddle point.

See the proof in Haque and Li [41].

Theorem 4. If β < 1, γ > 1, γδ > β, then the system(3) is persistent.

The proof of the theorem is deferred to the Appendix.

Theorem 5. If β < 1, then the system(3) is permanent.
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Haque and Li [41] have also obtained the above result on permanence but they have
omitted the proof. Readers can have the proof in the Appendix.

Theorem 6. If E∗ exists, then it is locally asymptotically stable or unstable according as
∆ = (1 + γ)(1 + δ)2 − β(1 + 2δ) > or < 0.

The proof is given in the Appendix.

Theorem 7. If γ ≥ 1 andβ < 1, then local stability ofE∗ ensures its global stability.

See Haque and Li [41] for proof.

Theorem 8. Let E∗ exists andβ∗ = (1+γ)(1+δ)2

1+2δ . Then Hopf bifurcation occurs at
β = β∗.

The proof is deferred to the Appendix.

Remark. When a Hopf bifurcation occurs, there exists small amplitude periodic orbits
nearE∗(X∗, Y ∗).

4 Numerical simulation

In this section we present computer simulation of some solutions of the determinis-
tic system (3). We choose the parameters of the system (3) asδ = 1.5, β = 1.8,
γ = 0.2. Then E∗(X∗, Y ∗) = (0.2800, 0.1867) and∆ = 0.03000 > 0. Therefore, by
Theorem 6,E∗ is locally asymptotically stable. The phase portrait for different choices
of X(0) andY (0) is depicted in Fig. 1. Clearly the solution is a stable spiralconverging
to E∗.
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Fig. 1. Phase portrait of the system (3) for different initial choices whenδ = 1.5,
γ = 0.2, β = 1.8 < β∗. Clearly it is a stable spiral converging toE∗(X∗, Y ∗) =

(0.2800, 0.1867).
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If we gradually increase the value ofβ (keeping other parameter values fixed), it is
observed that the behaviour of the system changes asβ passes through the bifurcation
valueβ∗ = 1.875 (obtained by using Theorem 8). Forβ = 1.9 > β∗, we see that
∆ = −0.0200 < 0 and therefore by Theorem 3,E∗(X∗, Y ∗) = (0.2480, 0.1653) is
unstable. The corresponding phase portrait is a periodic orbit aroundE∗ (see Fig. 2).
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Fig. 2. Phase portrait of the system (3) (for different initial choices) showing a periodic
orbit nearE∗(X∗, Y ∗) = (0.2480, 0.1653) when all the parameters are same as in

Fig. 1 exceptβ = 1.9 > β∗.

Thus usingβ as control, it is possible to break the stable behaviour of the system and
drive it to an unstable state. Also it is possible to keep the populations at a desired level
using the above control.

5 The stochastic model

It is now well understood that deterministic models in ecology do not usually incorporate
environmental fluctuations based on the idea that in the caseof large populations, stochas-
tic deviations (or the effect of random environmental fluctuation) are small enough to be
ignored. A stochastic model provides a more realistic picture of a natural system than its
deterministic counterpart. We have already mentioned thatenvironmental fluctuations
play an important role in the interaction ofM. occidentalis– T. mcdanieli(Wollkind
and Logan [44], Wollkind et al. [42], Collings [43]). Svirezhev and Logofet [52], Di-
mentberg [33], Samanta [32], Maiti and Samanta [39], and many others have mentioned
that the basic mechanism and factors of population growth like the resources and vital
rates – birth, death, immigration and emigration, change non-deterministically due to
random environment. Here we assume that fluctuations in the environment will manifest
themselves mainly as fluctuations in the growth coefficientsof the prey and predator
since these are the main parameters subject to coupling of a prey-predator pair with its
environment (Svirezhev and Logofet [52], Dimentberg [33]). Thus, as a starting point of
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this section, we consider the following stochastic versionof the model (3):

dX

dt
= X

(

1 + η1(t) − X
)

− βXY

X + Y
,

dY

dt
= Y

(

γ + η2(t) − γδ
Y

X

)

.

(4)

Clearly the system (4) has the same interior equilibrium point as the system (3). To
study the behaviour of the system (4) about the steady stateE∗(X∗, Y ∗) we put X =
u+X∗ and Y = v+Y ∗. Then the system of equations (4) reduces to the form (neglecting
power greater than 2 and in terms of the deviated variablesu, v) (Bandypoadhyay and
Chakrabarti [38], Maiti and Samanta [39]):

du

dt
= a1u + b1u

2 + c1v + d1v
2 + e1uv + η1(t),

dv

dt
= a2u + b2u

2 + c2v + d2v
2 + e2uv + η2(t),

(5)

whereη1(t), η2(t) are assumed to be independent Gaussian white noises satisfying the
conditions:

〈

ηj(t)
〉

= 0 and
〈

ηj(t)ηj(t
′)
〉

= ǫjδ(t − t′) for j = 1, 2.

Hereǫj (j = 1, 2) are the intensities or strengths of the random perturbations,δ, the Dirac
delta function and〈.〉 represents the ensemble average and

a1 = −X∗ +
βX∗Y ∗

(X∗ + Y ∗)2
, b1 =

βY ∗2

(X∗ + Y ∗)3
− 1, c1 =

−βX∗2

(X∗ + Y ∗)2
,

d1 =
βX∗2

(X∗ + Y ∗)3
, e1 =

−2βX∗Y ∗

(X∗ + Y ∗)3
,

a2 = γδ
Y ∗2

X∗2
, b2 = −γδ

Y ∗2

X∗3
, c2 = −γ, d2 =

−γδ

X∗
, e2 =

2γ

Y ∗δ
.

These are It̂o type of stochastic differential equations (non-linear coupled bivariate
Langevin equations) governing the system behaviour about the steady stateE∗(X∗, Y ∗).
The solutions(u(t), v(t)) of (5) subject to known initial values(u(0), v(0)) represent the
state of the system at timet > 0.

Now, we are concerned with stochastic differential equations (5) which are driven by
Gaussian white-noises and interpreted mathematically as Itô stochastic differential equa-
tions. Gaussian white noise, which is a delta-correlated random process, is very irregular
and as such it is to be treated with care. In spite of this it is an immensely useful concept
to model rapidly fluctuating phenomenon. Of course, true white noise does not occur
in nature. However, as can be seen by studying their spectra,thermal noise in electrical
resistance, the force acting on a Brownian particle and climate fluctuations, disregarding
the periodicities of astronomical origin etc. are white to avery good approximation.
These examples support the usefulness of the white-noise idealization in applications
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to natural systems. Furthermore, it can be proved that the process(u, v), a solution of
(5), is Markovian if and only if the external noises are white. These results explain the
importance and appeal of the white noise idealization (Horsthemke and Lefever [53]).

In the past few decades, different techniques of linearization of nonlinear stochastic
differential equations giving rise to a set of deterministic moment equations have been
receiving a great deal of attention in different fields of science and technology (Nisbet
and Gurney [31], Haken [54]). Jumarie [55] pointed out the fact that moment tech-
niques can be used to solve a large class of problems in stochastic optimization involved
with the problem of stochastic optimal control. In the following, the behaviour of the
stochastic model (4) about the steady state will be culturedby the technique of statistical
linearization developed by Valsakumar et al. [51]. This approach has some limitations in
their validity compared to the original non-linear stochastic differential equations have.
However, this technique has some advantages in reducing thecomplexity of the solution
of original non-linear equations without loss of information about the system too much.

5.1 Statistical linearization: moment equations

The statistical linearization of the equations (5) consists of replacing the equations by the
system of linear equations:

du

dt
= p1u + q1v + s1 + η1(t),

dv

dt
= p2u + q2v + s2 + η2(t),

(6)

where the errors in the above linearization are given by

E1 = a1u + b1u
2 + c1v + d1v

2 + e1uv − p1u − q1v − s1,

E2 = a2u + b2u
2 + c2v + d2v

2 + e2uv − p2u − q2v − s2.
(7)

The unknown co-efficientspi, qi, si (i = 1, 2) of the equations (6) are determined from
the minimization of the averages of the squares of the errors(7). We determine the
unknown co-efficients by demanding that (Valsakumar et al. [51], Van Kampen [56],
Bandyopadhyay and Chakrabarti [38]):

∂

∂pi

〈

E2
i

〉

=
∂

∂qi

〈

E2
i

〉

=
∂

∂si

〈

E2
i

〉

= 0, i = 1, 2.

Also we use the following expressions (Valsakumar et al. [51]):
〈

u4
〉

= 3
〈

u2
〉2 − 2〈u〉4,

〈

u2v2
〉

=
〈

u2
〉〈

v2
〉

+ 2〈uv〉2 − 2〈u〉2〈v〉2,
〈

u3v
〉

= 3
〈

u2
〉

〈uv〉 − 2〈u〉3〈v〉,
〈

u3
〉

= 3〈u〉
〈

u2
〉

− 2〈u〉3,
〈

v3
〉

= 3〈v〉
〈

v2
〉

− 2〈v〉3,
〈

u2v
〉

= 2〈u〉〈uv〉 − 2〈u〉2〈v〉 +
〈

u2
〉

〈v〉,
〈

uv2
〉

= 2〈v〉〈uv〉 − 2〈u〉〈v〉2 + 〈u〉
〈

v2
〉

.

(8)
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Then the expressions forpi, qi, si (i = 1, 2) are given by

pi = ai + 2bi〈u〉 + ei〈v〉, qi = ci + 2di〈v〉 + ei〈u〉,
si = bi

(〈

u2
〉

− 2〈u〉2
)

+ di

(〈

v2
〉

− 2〈v〉2
)

+ ei

(

〈uv〉 − 2〈u〉〈v〉
)

.

The co-efficients are the functions of the parameters involved with the model system and
also of the different moment involvingu andv. Simple calculations lead to the system of
equations of the first two moments:

d〈u〉
dt

= a1〈u〉 + b1

〈

u2
〉

+ c1〈v〉 + d1

〈

v2
〉

+ e1〈uv〉,
d〈v〉
dt

= a2〈u〉 + b2

〈

u2
〉

+ c2〈v〉 + d2

〈

v2
〉

+ e2〈uv〉,

d
〈

u2
〉

dt
= 2

[

a1

〈

u2
〉

+ b1

〈

u3
〉

+ c1〈uv〉 + d1

〈

uv2
〉

+ e1

〈

u2v
〉]

+ 2ε1,

d
〈

v2
〉

dt
= 2

[

a2〈uv〉 + b2

〈

u2v
〉

+ c2

〈

v2
〉

+ d2

〈

v3
〉

+ e2

〈

uv2
〉]

+ 2ε2,

d〈uv〉
dt

= a1〈uv〉 + b1

〈

u2v
〉

+ c1

〈

v2
〉

+ d1

〈

v3
〉

+ e1

〈

uv2
〉

+ a2

〈

u2
〉

+ b2

〈

u3
〉

+ c2〈uv〉 + d2

〈

uv2
〉

+ e2

〈

u2v
〉

,

where we have used the relations

〈uη1〉 = ε1, 〈uη2〉 = 〈vη1〉 = 0, 〈vη2〉 = ε2. (9)

Let us now assume that the system size expansion is valid suchthat the correlationsε1

andε2 given by (9) decrease with the increase of the population size and they are assumed
to be the order of the inverse of the population sizeN (Valsakumar et al. [51], Baishya
and Chakrabarti [57], Bandyopadhyay and Chakrabarti [38]):

εi ∝ o

[

1

N

]

, i = 1, 2. (10)

Therefore, using the expressions (8), (9) and keeping the lowest order terms and replacing
the averages〈u〉 and 〈v〉 by their steady state values〈u〉 = 〈v〉 = 0 (Nicolis and
Prigogine [58]), we get the following reduced equations forsecond order moments:

[D − 2a1]
〈

u2
〉

= 2c1〈uv〉,
[D − 2c2]

〈

v2
〉

= 2a2〈uv〉,
[D − a1 − c2]〈uv〉 = a2

〈

u2
〉

+ c1

〈

v2
〉

,

(11)

whereD stands for the operatorddt .
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5.2 Non-equilibrium fluctuation and stability analysis

Eliminating 〈u2〉 and〈v2〉 from the equations of (11), we get the following third order
linear ordinary differential equation in〈uv〉:

[

D3 + 3AD2 + 3BD + C
]

〈uv〉 = 0. (12)

The auxiliary equation of (12) is given by

m3 + 3Am2 + 3Bm + C = 0, (13)

where

A = −(a1 + c2) = X∗ + γ − βX∗Y ∗

(X∗ + Y ∗)2
,

B =
2

3

{

(a1+c2)
2 + 2(a1c2−a2c1)

}

=
2

3

[{

βX∗Y ∗

(X∗+Y ∗)2
− X∗ − γ

}2

+ 2γX∗

]

,

C = −4(a1 + c2)(a1c2 − a2c1) = 4γX∗

{

X∗ + γ − βX∗Y ∗

(Y ∗ + X∗)2

}

.

Let

H = A2 − B =
1

3

{

βX∗Y ∗

(X∗ + Y ∗)2
− X∗ − γ

}2

− 4γX∗

3
.

Then the nature and structure of the roots of (13) will solelydepend upon the quantities
A andH (since2A3 − 3AB + C = 0).

Case 1.H < 0.

In this case the roots of (13) are given by

m1 = −A, m2,3 = −A ± i
√
−3H.

The solutions of the system of linear equations (11) are thengiven by

〈uv〉 = e−At
{

L11 + L12 cos t
√
−3H + L13 sin t

√
−3H

}

,
〈

u2
〉

= e−At
{

L21 + L22 cos t
√
−3H + L23 sin t

√
−3H

}

+ P1e
2a1t,

〈

v2
〉

= e−At
{

L31 + L32 cos t
√
−3H + L33 sin t

√
−3H

}

+ P2e
2c2t,

whereLij (i, j = 1, 2, 3), P1, P2 are constants. Whena1 < 0, then A > 0 and
consequently each of〈u2〉, 〈v2〉, 〈uv〉 decreases to zero with increasing time (asc2 < 0).
So according to the criteria of stability in the sense of second order moments,E∗(X∗, Y ∗)
is stable whena1 < 0. When eithera1 > 0 or A < 0 (or both), thenE∗ is unstable as
the second order moments diverge with increasing time. Now we notice thatA > 0 ⇔
∆ < 0. Therefore whena1 < 0, the deterministic stability criterion (∆ < 0) of E∗ is
satisfied and it is enough to guarantee the stability for the stochastic model (4). Also ifE∗

is unstable for the deterministic system (3), then it is alsoso for the stochastic system (4).
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Case 2.H > 0.

In this case the roots of (13) are given by

m1 = −A, m2,3 = −A ±
√

3H.

The solutions of the system of linear equations (11) are thengiven by

〈uv〉 = e−At
{

N11 + N12e
t
√

3H + N13e
−t

√
3H

}

,
〈

u2
〉

= e−At
{

N21 + N22e
t
√

3H + N23e
−t

√
3H

}

+ Q1e
2a1t,

〈

v2
〉

= eAt
{

N31 + N32e
t
√

3H + N33e
−t

√
3H

}

+ Q2e
2c2t,

whereNij (i, j = 1, 2, 3), Q1, Q2 are constants. Ifa1 < 0, thenA > 0 and consequently
the deterministic stability criterion (∆ < 0) is satisfied. In the stochastic environment,
however, it is seen that each of the second order moments〈u2〉, 〈v2〉, 〈uv〉 converges
with increasing time whenevera1 < 0 andA >

√
3H. Thus ifa1 < 0 andA >

√
3H,

then the stochastic system is stable in the sense of second order moments . On the other
hand, wheneverA <

√
3H with a1 < 0 then each of〈u2〉, 〈v2〉, 〈uv〉 diverges with

increasing time and hence the stochastic system becomes unstable, although it is stable in
the deterministic environment. In all other cases also, thestochastic system is unstable.

Some of our results in stochastic environment are illustrated through numerical simu-
lation. When we chooseδ = 1.5, β = 1.5, γ = 0.2, then H = −0.0875,
a1 = −0.0400 < 0, A = 0.2400 > 0, and consequentlyE∗ is stable in the sense
of second order moments (see Fig. 3). Fig. 4 shows unstable behaviour of E∗ when
δ = 1.9, β = 1.5, γ = 0.2 (H = −0.0639 < 0). On the other hand, ifδ = 0.9,
β = 0.9, γ = 0.02 thenH = −0.0205, a1 = −0.3019 < 0, A = 0.32190 > 0, andE∗

is stable in stochastic environment (see Fig. 5).
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Fig. 3. Stable behaviour of the system (4) in the sense of second order moments when
δ = 1.5, β = 1.5, γ = 0.2.
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Fig. 4. Unstable behaviour of the system (4) whenδ = 1.9, β = 1.5, γ = 0.2.
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Fig. 5. Behaviour of the system (4) in the sense of second order moments when
δ = 0.9, β = 0.9, γ = 0.02.

6 Discussion

In ecology, there are various concepts of stability and various biological phenomena are
connected with them (Svirezhev and Logofet [52]). In the present paper, we are con-
cerned with the deterministic and stochastic dynamical aspects of stability of a modified
version of the Holling-Tanner model. The deterministic part consists of the results on
the boundedness, persistence, permanence, stability and bifurcation of the system under
positive initial population distribution. It is seen that if the growth rate of the prey is
high but the growth rate of the predator surpasses it, then the persistence of the system is
guaranteed. Also, usingβ as control, it is possible to break the stable (spiral) behaviour
of the system (3) and drive it to an unstable (cyclic) state. Also it is possible to keep the
levels of the populations at a required state using the abovecontrol. It is interesting to
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notice that the condition for local stability ofE∗(X∗, Y ∗) is independent of the carrying
capacityK for the prey. So, it can be said that a change in the carrying capacity will not
change the stability ofE∗(X∗, Y ∗). Hence, “paradox of enrichment” can not happen to
this system. A very interesting observation on the deterministic extinction can be made
from the result of Theorem 3. It indicates that if the consumption rate is high, then this will
drive the prey population to extinction, and consequently,the predator will die (extinct)
in starvation. Nowadays, almost all the developing countries are increasingly realizing
the potential of the method of bio-control for exotic pests because of the long list of side
effects of the chemical pesticides. In bio-control, both the areas of co-existence and co-
extinction are very important.

For the stochastic version of the model system, that is, for the model (4) under
random perturbation, it is observed that the deterministiccriteria of stability is no longer
enough to guarantee the stability of the positive interior equilibrium E∗(X∗, Y ∗). The
deterministic and stochastic systems behave alike with respect to stability ofE∗ when
H < 0 anda1 < 0. WhenH > 0 with a1 < 0, then the deterministic criterion for
stability A > 0 (or ∆ < 0) is satisfied but this criterion is not enough to determine
the stability in the stochastic environment. In this case, the stability of the stochastic
system (4) requires an additional conditionA >

√
3H besides the deterministic stability

condition. But ifA <
√

3H, then the system (4) becomes unstable. Thus the stability of
the system under random perturbation changes asA passes through the value

√
3H.

Thus, to sum up, we have two comparative studies here: (i) themodified Holling-
Tanner model versus the traditional one, and (ii) the stochastic model (4) against its
deterministic counterpart. In the first case, it is seen that“paradox of enrichment” cannot
happen to the modified system, whereas it can happen in the classical one. Also, if the
prey-catching capacity is higher then the intrinsic growthrate of the predator only, then the
traditional Holling-Tanner model leads to a total extinction, but for the modified model,
it depends on the growth rates of both prey and predator. Analyzing the stability and
bifurcation results of the Holling-Tanner model and the modified one, we may roughly
say that the modified model is more stable than the traditional one (Haque and Li [41]).
In the second case, when the stability results on the stochastic model (4) is compared
with those of its deterministic counterpart (i.e., the model (3)), it is observed that the
deterministically stable system remains stable under stochastic perturbation if certain
conditions (viz.,H < 0, a1 < 0 or H > 0, a1 < 0, A >

√
3H) are fulfilled. On

the other hand, ifH > 0, a1 < 0, A <
√

3H, then the random perturbation has a
destabilizing effect on the system. Thus, roughly speaking, stability and instability are
consequences of stochastic perturbation of the model system under consideration. Such
a conclusion is in good agreement with Prajneshu [59], Baishya and Chakrabarti [57],
Samanta [32,35], Samanta and Maiti [37], Maiti and Samanta [26] and many others.

Appendix

Proof of Theorem1. Let (X(t), Y (t)) be any solution of the system with positive initial
conditions.
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Since

dX

dt
≤ X(1 − X),

by a standard comparison theorem, we have

lim sup
t→∞

X(t) ≤ 1.

Then,

dY

dt
≤ γY (1 − δY )

which gives

lim sup
t→∞

Y (t) ≤ 1

δ
.

Thus, all the solutions of the system (3) enter into the region

B =

{

(X, Y ) : X ≤ 1, Y ≤ 1

δ

}

.

Hence it is the region of attraction in this case, proving thetheorem.

Proof of Theorem4. We substituteu = Y
X . Then system (3) transforms to the following

system

dX

dt
= X{g(X)− p(u)}, X(0) > 0,

du

dt
= u{−g(X) + f(u) + p(u)}, u(0) =

Y (0)

X(0)
> 0,

(A1)

where

g(X) = 1 − X, p(u) =
βu

1 + u
, f(u) = γ(1 − δu).

We notice the following

(i) g, p and f have continuous second order derivatives in their arguments on (0,∞);

(ii) g(0) = 1 > 0, g′(X) = −1 < 0 and g(1) = 0;

(iii) p(0) = 0 and p′(u) = β
(1+u)2 > 0;

(iv) Note that for the system (A1),0 ≤ X(t) ≤ 1. If the conditions of the theorem are
satisfied, then there exists three boundary equilibria of the system (A1), namely
E0 = (0, 0), E1 = (1, 0) and Ẽ = (0, ũ), where ũ = (−A +

√
D)/(2γδ),

A = 1 − β − γ + γδ, D = A2 − 4γδ(1 − γ).
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It is easy to see that if the conditions of the theorem are satisfied, thenE∗(X∗, u∗) exists
and is is given byg(X∗) = p(u∗) = f(u∗) + p(u∗).

The variational matricesV (E0), V (E1), V (Ẽ) at the boundary equilibriaE0, Ê, Ẽ
respectively are given by:

V (E0) =

[

g(0) − p(0) 0

0 −g(0) + f(0) + p(0)

]

,

V (E1) =

[

g′(1) −p′(0)

0 −g(1) + f(0) + p(0)

]

,

V
(

Ẽ
)

=

[

g(0) − p(ũ) 0

ũg′(0) ũ{f ′(ũ
)

+ p′(u)}

]

.

Since−g(0) + f(0) + p(0) = γ − 1 > 0, E0 is unstable in theu-direction. Also,
−g(1) + f(0) + p(0) = γ > 0. Further, sinceγδ > β, thereforef ′(ũ) + p′(ũ) =
−γδ + β

(1+u)2 < 0.
Now, it is easy to see thatg(0) − p(ũ) = {1 + (1 − β)ũ}/(1 + ũ) > 0 since

β < 1. Therefore the system (A1) (and hence the system (3)) persists (Freedman and
Mathsen [60]).

Proof of Theorem5. We have

dX

dt
= X(1 − X) − βXY

Y + X
= X(1 − X) − βX

(

Y + X − X

Y + X

)

> X

(

1 − X − β

)

.

This implies

lim inf
t→∞

X(t) ≥ 1 − β = X (say)> 0 since β < 1.

Hence, for larget, X(t) > (X/2).
Now, for larget, we have

dY

dt
≥ γY

{

1 − δ
Y

X/2

}

= Y (γX/2 − δY )(X/2)−1.

Therefore,

lim inf
t→∞

Y (t) ≥ γX(δ)−1 = Y (say)> 0.

Choosing a positive numberǫ such thatǫ < min{X
2 , Y

2 }, we see that

lim inf
t→∞

X(t) > ǫ, lim inf
t→∞

Y (t) > ǫ.

Hence, by definition, the theorem follows.
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Proof of Theorem6. The variational matrix atE∗(X∗, Y ∗) is

V (E∗) =

[

−X∗ + βX∗Y ∗

(X∗+Y ∗)2 − βX∗2

(X∗+Y ∗)2

γδY ∗2

X∗2 −γδY ∗

X∗

]

.

It is easy to see that the trace ofV (E∗) is

tr V (E∗) = −X∗ +
βX∗Y ∗

(X∗ + Y ∗)2
− γ =

β(1 + 2δ) − (1 + γ)(1 + δ)2

(1 + δ)2
.

and its determinant

det V (E∗) = γX∗ > 0.

The characteristic equation ofV (E∗) is

λ2 + Pλ + Q = 0,

whereP = −trV (E∗) andQ = detV (E∗).
SinceQ = detV (E∗) > 0, it is clear thatE∗ is locally asymptotically stable or

unstable according asP > or < 0.
Hence the theorem.

Proof of Theorem8. We notice that

(i) [trV (E∗)]β=β∗ = 0;

(ii) [detV (E∗)]β=β∗ > 0;

(iii) when E∗ exists, then the characteristic equation isλ2 + [detV (E∗)]β=β∗ = 0
whose roots are purely imaginary;

(iv) d
dβ [tr V (E∗)]β=β∗ = (1+2δ)

(1+δ)2 6= 0.

Hence all the conditions of the Hopf bifurcation theorem (Murray [46]) are satisfied and
the theorem follows.
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