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Abstract. Recently, a modified version of the so called Holling-Tannesdel is
introduced in the ecological literature. A detailed acdmfrthe deterministic dynamics
of this model is presented. The growth rates of the prey aedator are then perturbed
by Gaussian white noises to take into account the effect ofulting environment. The
resulting stochastic model is cultured by the techniquetafistical linearization and
criteria for non-equilibrium fluctuation and stability aderived. Numerical simulations
are carried out. The implications of our analytical findilags addressed critically.
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1 Introduction

Over the last century, mathematical biology research opprasnew exciting cornucopia
of challenging problems for the mathematicians. On therdtlaad, for the biologists,
mathematical modelling offers another research tool consmeate with new powerful
laboratory techniques. Different mathematical technicheve been successfully derived
to get an insight into the problems of biology, but there isdeaying that it is a strong
tendency of the mathematicians to neglect factors whicHdcmar the beauty of the
analysis. In widening and deepening the scope of matheahbimogy, consideration of
some relevant factors are very important.

The most crucial element in predator-prey models is the cfiomal response” or
“trophic function”, the function that describes the numbgprey consumed per predator
per unit time for given quantities of preyand predatoy. Various forms of functional
responses have become the focus of considerable attergiortime to time in ecological
literature. The so called Holling-Tanner model is concdméth the Michaelis-Menten
or Holling Type-II functional response of the forpjxz) = -2, wherec is the maximal

m+x’
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predator per capita consumption rate, i.e. the maximum reumiprey that can be eaten
by a predator in each time unit amd is the half capturing saturation constant, i.e. the
number of prey necessary to achieve one-half of the maxinaterr Such functional
responses are labelled “prey-dependent” by Arditi and Ring [1] since it depends on
prey density only. It was recognized early that the preddémrsity could have a direct
effect on functional response. A number of such “predagpethdent” models have been
proposed, the most widely known being those of Hassell anteyd?], DeAngelis et
al. [3], Beddington [4] and Arditi and Akcakaya [5]. A predatdependent functional
response, which is a function of the ratio of the prey and gi@glis known as a ratio-
dependent functional response. Arditi and Ginzburg [Ifodticed a Michaelis-Menten

type ratio-dependent functional response of the fptayy) = ,,fﬁi%) = 'rn;ﬂw, where
x, y stand for densities of prey and predator respectively. Ts#tige constants andm
are the capturing rate and the half capturing saturatiostan, respectively. Predator-
prey models with such ratio-dependent functional resp@meestrongly supported by
numerous field and laboratory experiments (Arditi and Gimgl{1], Arditi and Berry-
man [6], Arditi et al. [7], Hanski [8], Arditi and Saiah [9], @ierrez [10], Blaine and
DeAngelis [11], Poggiale et al. [12], Bernstein et al. [18hsner et al. [14], Arditi et
al. [15]). Detailed arguments on the merits of ratio-deerdnodel in comparison with
other models may be found in the works of Berezovskaya et @].dnd Arditi et al. [17].
Various aspects of the Michaelis-Menten type ratio-depahgredator-prey system and
the effect of many relevant factors like time-delay, diftus environmental stochasticity
etc., have been extensively discussed in the literaturest maent works being those
of Bandyopadhyay and Chattopadhyay [18], Tang and Zhanfy 190 and Li [20],
Lizana and Marin V. [21], Maiti and Samanta [22], Wang et aB][ Zeng [24], Zeng
and Zhai [25], Maiti et al. [26, 27], Ruan et al. [28].

Most of the models proposed and studied in the ecologicaialitire work within
the framework of an unvarying, deterministic environmehtowever, the parameters
characterizing real environments all, to greater or ledsgree, exhibit random fluctu-
ation. That is, real environments are uncertain, stoohadtherefore, in deterministic
situation, it is always difficult to predict the future of thgstem accurately. One reason
to this difficulty is that biological systems are subject pparently random fluctuations.
In fact, randomness or stochasticity plays a vital role ia $tructure and function of
biological systems (May [29], Renshaw [30], Nisbet and @yr{31], Samanta [32]).
The environmental factors are time-dependent, randomilying and should be taken
as stochastic. Renshaw [30] mentioned that the most ngihesdomena do not follow
strictly deterministic laws but rather oscillate randoralyout some average so that the
deterministic equilibrium is not an absolutely fixed statestead it is a “fuzzy” value
around which the biological system fluctuates. Both demulgyjcastochasticity and the
environmental stochasticity play a significant part in thalistic dynamical modelling of
ecosystems. A central obstacle in the stochastic modedliram ecosystem is the lack
of mathematical machinery available to analyze non-limealti-dimensional stochastic
process. A quantum leap in the mathematical sophisticatfoecological modelling
occurred when May [29] introduced stochastic differenéigliations to investigate li-
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mits to niche overlap in randomly fluctuating environmenibS§equently, the sensibility
of stochastic models in comparison with deterministic ni®de established by many
researchers (see Dimentberg [33, 34], Samanta [32, 35]afanand Maiti [36, 37],
Bandyopadhyay and Chakrabarti [38], Bandyopadhyay andt@edhyay [18], Maiti
and Samanta [22, 39], Maiti et al. [26] and references chedet in). Also, the effects of
environmental fluctuations on the models with ratio-deenflinctional responses have
now become the focus of considerable attention in the titeegsee Bandyopadhyay and
Chattopadhyay [18], Maiti and Samanta [39], Mankin et ab][4nd Maiti et al. [26]).

Recently, a modification of the so called Holling-Tanner rlday invoking the ratio-
dependent functional response is suggested by Haque aatl|Lif this paper, a detailed
dynamics of the model is presented when the environmentisnasd to be determin-
istic. Our analytical findings are illustrated through cargy simulations. Wollkind
et al. [42], Collings [43] have used the Holling-Tanner miotdestudy the population
interaction between the predacious miletaseiulus occidentalilesbitt and its spider
mite preyTetranychus mcdanieMcGregor. It has been reported by many researchers
that environmental fluctuations play a very significant r@eM. occidentalis— T. mc-
danieli interaction (e.g., Wollkind and Logan [44], Wollkind et §.2], Collings [43]).
To take into account the effect of fluctuating environmerg, farmulate the stochastic
version of the model by perturbing the growth rates of the jared predator by Gaussian
white noises. The criteria for non-equilibrium fluctuatiand stability are derived. A
comparative study of the stability behaviour of the modedé@terministic and stochastic
environment is presented.

2 The basic deterministic model

The May or Holling-Tanner model for predator-prey interacts

MGMPGEQ mg}

dr K m+ N,

(1)
AN =sNo(1— &
dar — 72 nN,

with

N;(0) >0, N3(0)>0,
dNs
dT

r,K,c,m,s,n > 0.

=0 for Ny =0,

Here N;(T') andN»(T") denote prey and predator densities, respectively, in fimk is
assumed that in the absence of the predator, the prey pimputiensity grows according
to a logistic curve with carrying capacity and with an intrinsic growth rate (or biotic
potential)r. The parametes denotes the intrinsic growth rate of the predatois the
maximal predator per capita consumption rate amds the half capturing saturation
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constant. The predator growth equation is of logistic typthva modification of the
conventional one. Here the available resources is notanfdiut is equal ta.N;, which

is proportional to prey abundance. The parameté the measure of the food quality
that the prey provides for conversion into predator birtheveral dynamical behaviours
of Holling-Tanner model have been studied extensivelyterditure (see May [29], Tan-
ner [45], Wollkind et al. [42], Murray [46], Hsu and Hwang [ Collings [43, 48], 3ez
and Gonalez-Olivares [49], Braza [50]).

It is already mentioned that Haque and Li [41] have introdugenodified version
of the above Holling-Tanner model by replacing the Hollipge-II prey-dependent func-
tional response with a ratio-dependent one. Although naitioeed clearly, the main
reason for such modification would be perhaps the widesppeadlarity of the ratio-
dependent functional response in comparison of its pr@gaaent counterpart. Further,
it seems that Haque and Li [41] might have expected somerdiffeesult on “paradox of
enrichment” (which they have successfully obtained alsl@wever, as a starting point of
our study, we take their modified model described under #waémwork of the following
set of ordinary differential equations:

dN, Ny cNo

N (122 ) - g2
dNs (1= DN
ar — 7 nN,

with

N1(0)>0a N2(0>>0a

dN1 dN2
=0 for (N1, N2) = (0,0 =0 for Ny =0
dT ( 1, 2) ( ) )a T 1 5

r,K,c,m,s,n > 0.

The model we have just specified has six parameters, whicksraialysis difficult.
To reduce the number of parameters and to determine whichioations of parameters
control the behaviour of the system, we nondimensiondtieesystem (2). We choose

y_-M Y:mNg

and t=1rT.
K’ K "

Then the system (2) takes the form (after some simplification

ax 8XY
L xagox) - 2L

at ( ) Xy -
¥ (Y

a ! X))
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where

X(0)>0, Y(0)>0,

dXx dYy
— =0 for (X,Y)=1(0,0 — =0for X=0
dt (X,Y) =(0,0), dt ’
1
ﬁ:i, 'yzf and § = —.
mr T mn

The rest of the paper is structured as follows. Section 3 mpased of a blend
of dynamical behaviours of the model (3) in deterministigisonment. In Section 4,
computer simulations are carried out to validate some ofathalytical results. The
stochastic version of the model is formulated in Section ke into account the effect
of fluctuating environment characterized by Gaussian whitses and the analysis of
the stochastic model by the method of statistical lineéiona(Valsakumar et al. [51]).
The criteria for non-equilibrium fluctuation and stabildye also derived in this section.
Section 6 contains the general discussions of the paper anthparative study of the
stability in the deterministic and stochastic environment

3 Dynamical behaviour

In this section, we present a blend of dynamical behaviotitiseomodel (3). Haque and
Li [41] have derived some important results for the mode(&Bhough they have omitted
some proofs for the lack of space). We have also derived seefeluresults. The results
are listed below.

Theorem 1. All solutions of the syste3) which start in]R%r are uniformly bounded.

Haque and Li [41] have omitted the proof of this theorem fer ldick of space. We
have provided the proof in the Appendix.

Theorem 2. The systen{3) always has the boundary equilibrium poin (0, 0) and
E4(1,0). The interior equilibrium pointE™ (X *,Y™*) exists uniquely if and only if the
following condition is true:

B <1+6.

H * * : * _ 1460 x* __ 146—0
In this caseX™* andY™* are given byX™* = o Y = ER

Theorem 3. The necessary condition to reach the origin followikig— Y plane isg >
1+ ~(1+6). AlsoE;(1,0) is a standard saddle point.

See the proof in Hague and Li [41].
Theorem 4. If 3 < 1, v > 1, v§ > (3, then the systelf8) is persistent.
The proof of the theorem is deferred to the Appendix.

Theorem 5. If § < 1, then the systelf8) is permanent.
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Haque and Li [41] have also obtained the above result on pegnte but they have
omitted the proof. Readers can have the proof in the Appendix

Theorem 6. If E* exists, then it is locally asymptotically stable or unstaftcording as
A=(14+7v)(1+6)*—pB(1+26) > or <O0.

The proof is given in the Appendix.
Theorem 7. If v > 1 and 3 < 1, then local stability of* ensures its global stability.

See Haque and Li [41] for proof.

Theorem 8. Let E* exists and3* = % Then Hopf bifurcation occurs at
B =p
The proof is deferred to the Appendix.

Remark. When a Hopf bifurcation occurs, there exists small ampétpdriodic orbits
nearE*(X*,Y™).

4 Numerical simulation

In this section we present computer simulation of some mwistof the determinis-
tic system (3). We choose the parameters of the system (3) as 1.5, § = 1.8,
~ = 0.2. Then E*(X*,Y*) = (0.2800,0.1867) andA = 0.03000 > 0. Therefore, by
Theorem 6,E* is locally asymptotically stable. The phase portrait fdfatent choices
of X (0) andY (0) is depicted in Fig. 1. Clearly the solution is a stable spiverging
to E*.

0.08 L L L L L L L L L
0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 0.55 0.6
X

Fig. 1. Phase portrait of the system (3) for different inithoices whery = 1.5,
v =0.2,8 =18 < g*. Clearly it is a stable spiral converging fo" (X", Y™") =
(0.2800, 0.1867).
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If we gradually increase the value gf(keeping other parameter values fixed), it is
observed that the behaviour of the system changes @asses through the bifurcation
value 5* = 1.875 (obtained by using Theorem 8). F6r= 1.9 > 5*, we see that
A = —0.0200 < 0 and therefore by Theorem F*(X*,Y*) = (0.2480,0.1653) is
unstable. The corresponding phase portrait is a periodit moundE* (see Fig. 2).

0.3

0.2

0.1f

L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7

Fig. 2. Phase portrait of the system (3) (for different alithoices) showing a periodic
orbit nearE* (X, Y™) = (0.2480, 0.1653) when all the parameters are same as in
Fig. 1 excepi3 = 1.9 > 5*.

Thus usings as control, it is possible to break the stable behavioure§istem and
drive it to an unstable state. Also it is possible to keep theutations at a desired level
using the above control.

5 The stochastic model

It is now well understood that deterministic models in eggldo not usually incorporate
environmental fluctuations based on the idea that in theafdagge populations, stochas-
tic deviations (or the effect of random environmental flatton) are small enough to be
ignored. A stochastic model provides a more realistic pectf a natural system than its
deterministic counterpart. We have already mentioned ¢éhaironmental fluctuations
play an important role in the interaction 8. occidentalis— T. mcdanieli(Wollkind
and Logan [44], Wollkind et al. [42], Collings [43]). Svireev and Logofet [52], Di-
mentberg [33], Samanta [32], Maiti and Samanta [39], andynediners have mentioned
that the basic mechanism and factors of population growthtle resources and vital
rates — birth, death, immigration and emigration, change-aeterministically due to
random environment. Here we assume that fluctuations inrthieoement will manifest
themselves mainly as fluctuations in the growth coefficiaitthe prey and predator
since these are the main parameters subject to coupling dyappedator pair with its
environment (Svirezhev and Logofet [52], Dimentberg [33]hus, as a starting point of
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this section, we consider the following stochastic versibthe model (3):

ax BXY
E:X(lJrnl(t)*X)*X_’_Ya

dy Yy (4)
— =Y y+m®) -y ).

i = 9

Clearly the system (4) has the same interior equilibriunmpas the system (3). To
study the behaviour of the system (4) about the steady &t&t&*, Y*) we put X =
u+X* andY = v+Y™*. Thenthe system of equations (4) reduces to the form (nxgdec
power greater than 2 and in terms of the deviated variable} (Bandypoadhyay and
Chakrabarti [38], Maiti and Samanta [39]):

d
TQZ = au + biu? + c1v + div? + equv + (1),
)

d
thj = agu + bau® + cov + dov? + equv + n2(t),

wheren, (t), n2(t) are assumed to be independent Gaussian white noises isafitfg
conditions:

(n;(t)) =0 and (n;(t)n;(t')) = €;6(t — ') for j =1,2.

Heree; (j = 1,2) are the intensities or strengths of the random perturbsiothe Dirac
delta function and.) represents the ensemble average and

T _opyr B
1 (X* +Y*)2’ 1 (X* +Y*)3 ) 1 (X* +Y*)2’
5 - BX*? o 28XV
17(X*+Y*)37 li(X*+Y*)3’

Y*2 Y*2 7,}/5 2,-},
a2:75ﬁ7 bzi*’ﬂsﬁ, co=—7v, dy= X 2T v

These are & type of stochastic differential equations (non-lineanled bivariate
Langevin equations) governing the system behaviour abeiwgteady stat&™ (X*, Y™*).
The solutiongu(t), v(t)) of (5) subject to known initial valueg.(0), v(0)) represent the
state of the system at time> 0.

Now, we are concerned with stochastic differential equeti®) which are driven by
Gaussian white-noises and interpreted mathematicallgpastdchastic differential equa-
tions. Gaussian white noise, which is a delta-correlatadoen process, is very irregular
and as such it is to be treated with care. In spite of this ihisranensely useful concept
to model rapidly fluctuating phenomenon. Of course, truetevhbise does not occur
in nature. However, as can be seen by studying their speékhtamal noise in electrical
resistance, the force acting on a Brownian particle andatknfluctuations, disregarding
the periodicities of astronomical origin etc. are white teeay good approximation.
These examples support the usefulness of the white-noésdiZdtion in applications
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to natural systems. Furthermore, it can be proved that theess(u, v), a solution of
(5), is Markovian if and only if the external noises are whifghese results explain the
importance and appeal of the white noise idealization (therske and Lefever [53]).

In the past few decades, different technigues of linedadraif nonlinear stochastic
differential equations giving rise to a set of determimistioment equations have been
receiving a great deal of attention in different fields ofesie and technology (Nisbet
and Gurney [31], Haken [54]). Jumarie [55] pointed out thet fdhat moment tech-
niques can be used to solve a large class of problems in stiiclatimization involved
with the problem of stochastic optimal control. In the faliag, the behaviour of the
stochastic model (4) about the steady state will be cultbyetthe technique of statistical
linearization developed by Valsakumar et al. [51]. Thisrapgh has some limitations in
their validity compared to the original non-linear stodi@mdifferential equations have.
However, this technique has some advantages in reducirgpthplexity of the solution
of original non-linear equations without loss of infornzatiabout the system too much.

5.1 Statistical linearization: moment equations

The statistical linearization of the equations (5) coissidtreplacing the equations by the
system of linear equations:

du
el +qv+s1+m(t),
(6)

dv
= P2 + gov + s2 + n2(1),

where the errors in the above linearization are given by

Ei = aju + biu? + v + div? + e1uv — p1u — quv — S1, e

Eo = asu + bou? + cov + dov? + equv — Dol — oV — So.
The unknown co-efficients;, ¢;, s; (i = 1,2) of the equations (6) are determined from
the minimization of the averages of the squares of the eff@rs We determine the
unknown co-efficients by demanding that (Valsakumar et %l],[ Van Kampen [56],
Bandyopadhyay and Chakrabarti [38]):

0 0 0

—(FE?Y= —(E?Y=—(E*)=0, i=1,2.
api< t> 8(]i< z> 88,‘< z> ? ¢ ’
Also we use the following expressions (Valsakumar et al])[51

(u') =3(u?)” — 2(u)",

(u*v?) = (u?)(v*) + 2(uv)? — 2(u)*(v)?,
(uv) = 3(u?)(uv) — 2(u)*(v),
(u®) = 3(u)(u?) — 2(u)?, 8)
(v*) = 3(v)(v*) — 2(v)?,
(uv) = 2(u)(uv) — 2(u)?(v) + (u?)(v),
{uv®) = 2(v)(uv) — 2(u)(v)* + (u)(v?)
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Then the expressions foy, ¢;, s; (i = 1,2) are given by
pi = a; —+ 2b1<’u> —+ €i<’U>; q; = C; + 2dz<v> + ei<u>7
s =bi((u®) = 2(u)?) + d; ((v?) — 2(v)?) + €; ((uv) — 2(u)(v)).

The co-efficients are the functions of the parameters imgivith the model system and
also of the different moment involvingandwv. Simple calculations lead to the system of
equations of the first two moments:

A o)+ 01 (u?) + )+ (0?) + ex ),
0D — i + 5au2) + en() + da(67) + eafn)
) — 2 (u2) + 0 () cnfun) + s (10) + x (u0)] + 2,
d<dv:> = 2[an(uv) + by (1) + 2(v2) + da(v*) + ex(uv?)] + 26,
dgw = a1 (uv) + by (uv) + c1{v?) + di (v*) + e1 (uv?) + az(u?)

+ b2<u3> + co{uv) + do <uv2> + 62<u2v>,
where we have used the relations

(um) =e1, (un2) = (vm) =0, (vn2)=-e2. 9)

Let us now assume that the system size expansion is validteatlhe correlations;
ande, given by (9) decrease with the increase of the populatienaiul they are assumed
to be the order of the inverse of the population sieéValsakumar et al. [51], Baishya
and Chakrabarti [57], Bandyopadhyay and Chakrabarti [38])

siao{%], 1=1,2. (10)

Therefore, using the expressions (8), (9) and keeping thedborder terms and replacing
the averagesu) and (v) by their steady state valuds) = (v) = 0 (Nicolis and
Prigogine [58]), we get the following reduced equationssecond order moments:

[D — 2a1){u®) = 2¢y
[D — 2¢5](v*) = 2as(
[D — a1 — ca]{uw) = a2<u2> + cl<vz>,

uvy,
uv),

(11)

whereD stands for the operate(%.
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5.2 Non-equilibrium fluctuation and stability analysis

Eliminating (u?) and (v?) from the equations of (11), we get the following third order
linear ordinary differential equation ifuv):

[D® +3AD? + 3BD + C](w) = 0. (12)

The auxiliary equation of (12) is given by

m3 4+ 3Am? +3Bm + C =0, (13)
where
A=—(a1+c)=X +’Y*m,
2 ) 2[( BX*Y* . 2 .
b= orse? atmeoen =5 {7 - X -} +nx]
X*Y*
C= —4(@1 + CQ)(GlCQ — agcl) = 4’}/X*{X* +v— (YE+7X*)2}
Let
1( BX*Y* 7 4y X
H=A>-B=-{ _— _ __ _X*_— — .
3{(){* T Y2 7} 3

Then the nature and structure of the roots of (13) will sotidpend upon the quantities
A andH (since2A43 — 3AB + C = 0).

Case 1. H < 0.

In this case the roots of (13) are given by
mlz—A, m273:—Aii\/— H.
The solutions of the system of linear equations (11) are ¢fivan by

(uwv) = e { L1y + Lya costv/—3H + Lyzsintyv/—3H },
<’u,2> = e_At{L21 + Logcostv —3H + Lag Sinﬁw/—SH} + P162alt7
<v2> e_At{L31 + L3scostv—3H + Lss sint\/ng} 1 Pyeeet,

whereL;; (i,j = 1,2,3), Pi, P, are constants. Whea; < 0, thenA > 0 and
consequently each @fi?), (v?), (uv) decreases to zero with increasing timedas: 0).
So according to the criteria of stability in the sense of selaarder momentdy* (X *, Y*)

is stable whem; < 0. When either; > 0 or A < 0 (or both), thenE™* is unstable as
the second order moments diverge with increasing time. Newatice thatd > 0 <

A < 0. Therefore whem; < 0, the deterministic stability criterion’ < 0) of E* is
satisfied and it is enough to guarantee the stability forthersstic model (4). Also iE*

is unstable for the deterministic system (3), then it is alséor the stochastic system (4).
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Case 2. H > 0.

In this case the roots of (13) are given by
mlifA, m273:7A:|: \/3H
The solutions of the system of linear equations (11) are ¢fivan by

<’U/U> = eiAt{Nll + nget\/ﬁ + N13€7t\/ﬁ}7
<u2> - eiAt{Nﬂ + N22€t\/ﬁ + N2367t\/ﬁ} + Q1e*™,
(v?) = e {Nay + NjpetV3H Ngge_t\/ﬁ} 1 Qqe2eet,

whereN;; (i,7 =1,2,3), Q1, Q2 are constants. i; < 0, thenA > 0 and consequently
the deterministic stability criterion < 0) is satisfied. In the stochastic environment,
however, it is seen that each of the second order momed}s (v?), (uv) converges
with increasing time whenever, < 0 andA > v/3H. Thus ifa; < 0 andA4 > V/3H,
then the stochastic system is stable in the sense of secdadmoments . On the other
hand, whenever < v/3H with a; < 0 then each ofu?), (v?), (uv) diverges with
increasing time and hence the stochastic system becomablaalthough it is stable in
the deterministic environment. In all other cases alsosthehastic system is unstable.
Some of our results in stochastic environment are illustr&trough numerical simu-
lation. When we choosé = 1.5, § = 1.5, v = 0.2, thenH = —-0.0875,
a; = —0.0400 < 0, A = 0.2400 > 0, and consequentlfg* is stable in the sense
of second order moments (see Fig. 3). Fig. 4 shows unstablavlmeir of E* when
6 =19, 6=15 v =02 (H = —0.0639 < 0). On the other hand, i§ = 0.9,
6 =0.9, v =0.02thenH = —0.0205, a; = —0.3019 < 0, A = 0.32190 > 0, andE*
is stable in stochastic environment (see Fig. 5).

0.5

03 [5T5s)

-0.11
DuvO

-0.2
0

Fig. 3. Stable behaviour of the system (4) in the sense ofnrgeormer moments when
§=15,8=15 v=0.2.
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300

- L L L L
750 800 850 900 950 1000
t

Fig. 4. Unstable behaviour of the system (4) whes 1.9, 8 = 1.5, v = 0.2.

0.6

05

04F

03

0.2

0.1

Cuvl)

L L
50 100 150
t

Fig. 5. Behaviour of the system (4) in the sense of secondrardenents when
§=0.9, =0.9, v=0.02.

6 Discussion

In ecology, there are various concepts of stability andosribiological phenomena are
connected with them (Svirezhev and Logofet [52]). In thespre paper, we are con-
cerned with the deterministic and stochastic dynamicaetspof stability of a modified
version of the Holling-Tanner model. The deterministictpamsists of the results on
the boundedness, persistence, permanence, stabilityifamdation of the system under
positive initial population distribution. It is seen thétthe growth rate of the prey is
high but the growth rate of the predator surpasses it, thepéhsistence of the system is
guaranteed. Also, using as control, it is possible to break the stable (spiral) behav
of the system (3) and drive it to an unstable (cyclic) statksoAt is possible to keep the
levels of the populations at a required state using the abomgol. It is interesting to
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notice that the condition for local stability &* (X *,Y™*) is independent of the carrying
capacityK for the prey. So, it can be said that a change in the carryipgaty will not
change the stability of* (X *, Y*). Hence, “paradox of enrichment” can not happen to
this system. A very interesting observation on the deteigtilmextinction can be made
from the result of Theorem 3. Itindicates that if the constioiprate is high, then this will
drive the prey population to extinction, and consequetttky,predator will die (extinct)

in starvation. Nowadays, almost all the developing coestdre increasingly realizing
the potential of the method of bio-control for exotic pestsduse of the long list of side
effects of the chemical pesticides. In bio-control, both #ineas of co-existence and co-
extinction are very important.

For the stochastic version of the model system, that is, Herrhodel (4) under
random perturbation, it is observed that the determingstteria of stability is no longer
enough to guarantee the stability of the positive interguibrium E*(X*,Y*). The
deterministic and stochastic systems behave alike withexso stability of £* when
H < 0anda; < 0. WhenH > 0 with a; < 0, then the deterministic criterion for
stability A > 0 (or A < 0) is satisfied but this criterion is not enough to determine
the stability in the stochastic environment. In this cabe, dtability of the stochastic
system (4) requires an additional conditidrn> /3H besides the deterministic stability
condition. But ifA < v/3H, then the system (4) becomes unstable. Thus the stability of
the system under random perturbation change$ passes through the valyé H.

Thus, to sum up, we have two comparative studies here: (ijnbeified Holling-
Tanner model versus the traditional one, and (ii) the ststihanodel (4) against its
deterministic counterpart. In the first case, it is seen‘{matadox of enrichment” cannot
happen to the modified system, whereas it can happen in thgicdhone. Also, if the
prey-catching capacity is higher then the intrinsic grokatie of the predator only, then the
traditional Holling-Tanner model leads to a total extinatj but for the modified model,
it depends on the growth rates of both prey and predator. y&imgj the stability and
bifurcation results of the Holling-Tanner model and the ified one, we may roughly
say that the modified model is more stable than the traditiona (Haque and Li [41]).
In the second case, when the stability results on the sttichrasdel (4) is compared
with those of its deterministic counterpart (i.e., the ma@), it is observed that the
deterministically stable system remains stable undersigtic perturbation if certain
conditions (viz.,H < 0, a; < 0orH > 0, a; < 0, A > /3H) are fulfilled. On
the other hand, iff > 0, a; < 0, A < V/3H, then the random perturbation has a
destabilizing effect on the system. Thus, roughly speakstapility and instability are
consequences of stochastic perturbation of the modelmaysteler consideration. Such
a conclusion is in good agreement with Prajneshu [59], Baisind Chakrabarti [57],
Samanta [32, 35], Samanta and Maiti [37], Maiti and Sama&fadnd many others.

Appendix
Proof of Theoreni. Let (X (¢),Y (¢)) be any solution of the system with positive initial

conditions.
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Since

dX
— < X(1-X
dt —_ ( )’

by a standard comparison theorem, we have

limsup X (¢) < 1.

t—oo

Then,

ay
2 v -6y
dt_v( 5Y’)

which gives

limsup Y (¢) <

t—o0

7| =

Thus, all the solutions of the system (3) enter into the negio
B = {(X,Y): X<1,Y< %}

Hence it is the region of attraction in this case, provingtttemrem. O

Proof of Theorend. We substitute, = % Then system (3) transforms to the following
system

% = X{g(X) - p(u)}, X(0)>0,
du (0 .
T = g0+ )+ pw), u(0) = 5 >0
where
Bu

9(X)=1-X, p(u) =
We notice the following
(i) g,p and f have continuous second order derivatives in their argus@n(0, oo);
(i) g(0)=1>0, ¢(X)=—-1<0 and g(1) =0;
(i) p(0) =0 and p'(u) = L5 > 0;

(iv) Note that for the system (A1)) < X (¢) < 1. If the conditions of the theorem are
satisfied, then there exists three boundary equilibria efgysstem (A1), namely
Ey = (0,0), By = (1,0) andE = (0,4), whered = (—A + v/D)/(2v6),
A=1—-B—7y+70, D= A? —4v5(1 — 7).
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Itis easy to see that if the conditions of the theorem arefgadi, thenE* (X ™*, u*) exists
and is is given byy(X*) = p(u*) = f(u*) + p(u*).

The variational matriceE (Ey), V(E1), V(E) atthe boundary equilibri&y, £, E
respectively are given by:

_ [9(0) = p(0) 0
V=100 g0+ £(0) 4+ p(0)]
e —p'(0)
VED=10 0 )+ 0) 4900
- [g(0) = pa) 0
VE) =1 o) ﬂ{f’(ﬂ)+p’(U)}]'

Since—g(0) + f(0) + p(0) = v — 1 > 0, Ey is unstable in the:-direction. Also,
—g(1) + f(0) + p(0) = v > 0. Further, sinceyd > g3, thereforef’(a) + p'(a) =
—vd + ﬁ < 0.

Now, it is easy to see that(0) — p(a) = {1+ (1 — B)a}/(1 + @) > 0 since
B < 1. Therefore the system (Al) (and hence the system (3)) peKsiseedman and

Mathsen [60]). O
Proof of Theorend. We have
dx XY Y+X-X
o A T = XA X) 6X( Y+ X >
> X<1 - X - 6).
This implies

litmian(t) >1—-p=X(say)>0 sinces < 1.

Hence, for large, X (t) > (X/2).
Now, for larget, we have

&, 71/{1 - 5%/2} — Y (4X/2 - Y )(X/2) L.

Therefore,
litm inf Y(t) >yX(0)"! =Y (say)> 0.

Choosing a positive numbersuch that < min{Z, £}, we see that
litm inf X (t) > e, litm inf Y(t) > e.

Hence, by definition, the theorem follows. O
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Proof of Theoren®. The variational matrix ab?*(X*,Y*) is

. BX*Y* BX*2

V(E*) —X + (X*+Y*)2 _(X*+Y*)2
~8Y *2 _ néYy”
X*Z X*

It is easy to see that the trace6f{ E*) is

. BX*Y* _ B(L+28) = (1+~)(1 +6)*
trV(E*) =-X +m—7— 1+ 0)2

and its determinant
det V(E*) = yX* > 0.
The characteristic equation Bf(E*) is
M4+ PA+Q=0,
whereP = —tr V(E*) and@ = det V(E*).
Since@ = det V(E*) > 0, it is clear thatE* is locally asymptotically stable or

unstable according & > or < 0.
Hence the theorem. O

Proof of Theoren8. We notice that
(i) [trV(E")]g=p = 0;
(i) [det V(E*)]|g=p* > 0;

(i) when E* exists, then the characteristic equation\fs+ [det V (E*)]g=p- = 0
whose roots are purely imaginary;

() 5l V(E)]s=s- = {Ti53 #0.

Hence all the conditions of the Hopf bifurcation theorem (M [46]) are satisfied and
the theorem follows. O
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