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Abstract. This paper investigates the combined effects of magnetohydrodynamics and
radiation on free convection flow past an impulsively started isothermal vertical plate
with Rosseland diffusion approximation. The fluid considered is a gray, absorbing-
emitting radiation but a non-scattering medium, with approximate transformations the
boundary layer governing the flow are reduced to non-dimensional equations valid in the
free convection regime. The dimensionless governing equations are solved by the finite
element method.
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Nomenclature

B2
o magnetic field induction T dimensionless temperature

Cp specific heat constant pressure T ′

∞
temperature of fluid away from the

g acceleration due to gravity plate
Gr thermal Grashof number T ′

w temperature of the plate
k thermal conductivity of the fluid t′ time
k∗ mean absorption coefficient t dimensionless time
M magnetic field parameter u0 velocity of the plate
N Rosseland or Stark conduction u, v velocity components in

radiation parameter x, y-directions respectively
Nu

X
dimensionless local Nusselt number U, V dimensionless velocity components

Nu dimensionless average Nusselt inX, Y -directions respectively
number x spatial coordinate along the plate

Pr Prandtl number X dimensionless spatial coordinate
T ′ temperature along the plate

73



G. Palani, I. A. Abbas

y spatial coordinate normal Y dimensionless spatial coordinate
to the plate normal to the plate

Greek symbols

α thermal diffusivity µ coefficient of viscosity
β volumetric coefficient of ν kinematic viscosity

thermal expansion σ electrical conductivity
τX local skin friction σ∗ Stefan Boltzmann constant
τ average skin friction ρ density

Subscripts

w conditions on the wall ∞ free stream conditions

1 Introduction

The experimental and theoretical studies of magnetohydrodynamics flows are important
from a technological point of view, because they have many applications, as for examples
in magnetohydrodynamics electrical power generation, geophysics etc.

The influence of a magnetic field on viscous incompressible flow of electrically
conducting fluid is of importance in many applications such as extrusion of plastics
in the manufacture of Rayon and Nylon, purification of crude oil, magnetic materials
processing, glass manufacturing control processes and thepaper industry in different
geophysical cases etc., In many process industries, the cooling of threads or sheets of
some polymer materials is of importance in the production line. Magneto convection
plays an important role in various industrial applicationsincluding magnetic control of
molten iron flow in the steel industry and liquid metal cooling in nuclear reactors.

Free convection heat transfer due to the simultaneous action of buoyancy and induced
magnetic forces was investigated by Sparrow and Cess [1]. They observed that the free
convection heat transfer to liquid metals may be significantly affected by the presence of
a magnetic field.The interaction of thermal radiation with free convection heat transfer
was studied by Cess [2]. The effects of a transversely applied magnetic field on the flow
of an electrically conducting fluid past an impulsively started vertical plate for the case
when the plate is isothermal studied by Soundalgekar et al. [3], when it was characterized
by variable surface temperature [4]. The dimensionless governing equations were solved
by the Laplace transform technique. The flow of viscous incompressible electrically con-
ducting fluid past an impulsively started infinite vertical isothermal plate was studied by
Soundalgekar and Abdulla Ali [5] by employing the finite difference technique. Kumari
and Nath [6] studied the development of the asymmetric flow ofa viscous electrically
conducting fluid in the forward stagnation point region of a two-dimensional body and
over a stretching surface with an applied magnetic field, when the external stream or the
stretching surface was set into an impulsive motion from therest. Vajravelu [7] considered
the exact solution for the hydrodynamic boundary layer flow and heat transfer over a
continuous, moving and vertical flat surface with uniform suction, internal heat generation
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and absorption.
Radiative flows are encountered in countless industrial andenvironmental processes

e.g., heating and cooling chambers, fossil fuel combustionand energy processes, evapo-
ration from large open water reservoirs, astrophysical flows and solar power technology.
Soundalgekar and Takhar [8] considered the radiative free convective flow of an optically
thin gray-gas past a semi-infinite vertical plate. Radiation effects on mixed convection
along an isothermal vertical plate were studied by Hossain and Takhar [9]. Raptis and
Perdikis [10] studied the effects of thermal radiation and free convection flow past a
moving vertical plate. Muthucumaraswamy and Ganesan [11] studied radiation effects
on flow past an impulsively started infinite vertical plate with variable temperatures using
the Laplace transform technique.

On the other hand,the Magnetohydrodynamics flow past a plateby the presence
of radiation was studied by Raptis and Massalas [12]. An analytical solution for the
mean temperature, velocity and the magnetic field have been arrived and the effects
of radiation on temperature are discussed. The combined effects of thermal radiation
flux, thermal conductivity, Reynolds number and non-Darcian (Forcheimmer drag and
Brinkman boundary resistance) body forces on a steady laminar boundary layer flow
along a vertical surface in an idealized geological porous medium were investigated by
Takhar et al. [13].The effects of thermal radiation and porous drag forces on the natural
convection heat and mass transfer of a viscous, incompressible, gray, absorbing emitting
fluid flowing past an impulsively started moving vertical plate adjacent to a non-Darcian
porous regime was studied by Anwar et al. [14].

However, the free convection MHD flow with thermal radiationfrom an impul-
sively started semi-infinite isothermal vertical plate hasnot received the attention of any
researcher.The object of the present investigation is to study the combined effects of
MHD and Radiation on the free convection flow past a semi-infinite vertical plate,when
the fluid is compressible, viscous and electrically conducting.The fluid considered is a
gray,radiation, absorbing, emitting but non-scattering medium and the Rosseland appro-
ximation is used to describe the radiative heat transfer in the energy equation. The set of
non-dimensional governing equations are solved by the finite element method.

2 Mathematical analysis

We considered the unsteady flow of a viscous incompressible and electrical conduc-
ting fluid past an impulsively started semi-infinite vertical plate. Thex-axis is taken along
the plate in the vertical direction and they-axis is taken normal to the plate. Initially, the
plate and the fluid were at the same temperature in a stationary condition. At timet′ > 0
the plate is given an impulse motion in the vertical direction against the gravitational force
with constant velocityu0 and its temperature was instanteously raised toT ′

w which was
thereafter maintained constant. It is assumed that the plate is electrically non conducting
and the magnetic field is applied uniform and perpendicular to the plate. The magnetic
Reynolds number on the flow is taken to be small so that the induced magnetic field is
negligible. The effects of viscous dissipation are neglected in the energy equation. All the

75



G. Palani, I. A. Abbas

fluid properties are assumed to be constant except the influence of the density variation
with temperature is considered only in the body force term.

Under the above assumption, the flow is governed by the following set of equations.

∂u

∂x
+

∂v

∂y
= 0, (1)

∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂y
= gβ

(

T ′
− T ′

∞

)

+ ν
∂2u

∂y2
−

σB2
o

ρ
u, (2)

ρCp

[

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y

]

= k
∂2T ′

∂y2
−

∂qr

∂y
, (3)

where the Rosseland approximation (Brewster [15]) is used,which leads to

qr =
−4σ∗

3k∗

∂T ′4

∂y
. (4)

The initial and boundary conditions are

t′ ≤ 0: u = 0, v = 0, T ′ = T ′

∞
,

t′ > 0: u = u0, v = 0, T ′ = T ′

w at y = 0,
(5)

u = 0 T ′ = T ′

∞
at x = 0,

u → 0, T → T∞, as y → ∞.

We assumed that the temperature differences within the flow are sufficiently small
such thatT ′4 may be expressed as a linear function of the temperature. This was accom-
plished by expandingT ′4 in a Taylor series aboutT ′

∞
and neglecting higher-order terms.

Thus

T ′4 ∼= 4T ′3

∞
T ′

− 3T ′4

∞
. (6)

Using (4) and (6) in (3) gives

ρCp

[

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y

]

= k
∂2T ′

∂y2
+

16σ∗T ′3
∞

3k∗

∂2T ′

∂y2
. (7)

On introducing the following non-dimensional quantities:

X =
xu0

ν
, Y =

yu0

ν
, U =

u

u0

, V =
v

u0

,

t =
t′u2

0

ν
T =

T ′ − T ′

∞

T ′

w − T ′

∞

, Gr =
gβν(T ′

w − T ′

∞
)

u3

0

,

P r =
µCp

k
, N =

k∗k

4σ∗T ′3
∞

, M =
σB2

oν

ρu2
o

(8)
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equations (1), (2) and (7) are reduced to the following dimensionless form

∂U

∂X
+

∂V

∂Y
= 0, (9)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= Gr T +

∂2U

∂Y 2
− MU, (10)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

(3N + 4)

(3N)

∂2T

∂Y 2
. (11)

The corresponding initial and boundary conditions in a dimensionless form are as follows:

t ≤ 0: U = 0, V = 0, T = 0, for all y,

t > 0: U = 1, V = 0, T = 1, at Y = 0,
(12)

U = 0, T = 0 at X = 0,

U → 0, T → 0 as Y → ∞.

3 Finite element method

The governing equations (9)–(11) are unsteady, coupled andnon-linear with initial and
boundary conditions (12). They are solved numerically by finite element method (FEM).
In the method of finite element, the region of integration of the governing equations is
divided into rectangular meshes formed by two sets of lines,parallel to the coordinate
axis. Here the region of integration is considered as a rectangle with sidesxmax(= 1.0)
andymax(= 7.0) whereymax corresponds to(y = ∞) which lies very well outside the
momentum and thermal boundary layers. The numerical valuesof the dependent variables
like velocityU, V and the temperatureT are obtained at the interesting points which are
called degrees of freedom. The weak formulations of the non-dimensional governing
equations are derived. The set of independent test functions to consist of the velocity
U, V and the temperatureT is prescribed. The governing equations are multiplied by
independent weighting functions and then are integrated over the spatial domain within
the boundary. Applying integration by parts and making use of the divergence theorem
reduce the order of the spatial derivatives and allows for the application of the boundary
conditions. The same shape functions were defined piecewiseon the elements. Using
the Galerkin procedure, the unknown fieldsU, V andT and the corresponding weighting
functions were approximated by the same shape functions. The last step towards the finite
element discretization is to choose the element type and theassociated shape functions.
Eight nodes of quadrilateral elements were used. The unknown fields were approxi-
mated either by linear shape functions, which were defined byfour corner nodes or by
quadratic shape functions, which were defined by all of the eight nodes (two-dimensional
quadrilateral elements). On other hand the unknown fields were approximated either
by linear shape functions, which were defined by three cornernodes or by quadratic
shape functions, which were defined by all of the six nodes (two-dimensional triangular
elements). The shape function is usually denoted by the letter N and is usually the
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coefficient that appears in the interpolation polynomial. Ashape function was written
for each individual node of a finite element and has the property that its magnitude is
1 at that node and0 for all other nodes in that element. We assumed that the master
element has its local coordinates in the range[−1, 1]. In our case, the two-dimensional
quadrilateral elements were used, which given by

linear shape functions:

N1 =
1

4
(1 − ξ)(1 − η), N2 =

1

4
(1 + ξ)(1 − η),

N3 =
1

4
(1 + ξ)(1 + η), N4 =

1

4
(1 − ξ)(1 + η),

quadratic shape functions:

N1 =
1

4
(1 − ξ)(1 − η)(−1 − ξ − η), N5 =

1

2

(

1 − ξ2
)

(1 − η),

N2 =
1

4
(1 + ξ)(1 − η)(−1 + ξ − η), N6 =

1

2
(1 + ξ)

(

1 − η2
)

,

N3 =
1

4
(1 + ξ)(1 + η)(−1 + ξ + η), N7 =

1

2

(

1 − ξ2
)

(1 + η),

N4 =
1

4
(1 − ξ)(1 + η)(−1 − ξ + η), N8 =

1

2
(1 − ξ)

(

1 − η2
)

.

4 Results and discussion

In order to ascertain the accuracy of our numerical results,the present study was compared
with the available exact solution in the literature. The velocity profiles forGr = 0.2, M =
2, 4, N = 0 andt = 0.5, 1.0 compared with the available exact solution of Soundalgekar
[3], is shown in Fig. 1. It was observed that the agreement with the theoretical solution of
velocity is excellent.
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Fig. 1. Comparison of velocity profiles.
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The velocity profiles for different values of the Grashof number, Prandtl number,
magnetic field parameter and radiation parameter are shown in Fig. 2. The velocity
profiles decreased with an increasing Prandtl number. Physically, this is true because the
increase in the Prandtl number is due to increase in the viscosity of the fluid which makes
the fluid thick and hence causes a decrease in the velocity of the fluid.It was observed that
an increase inGr, leads to a rise in the values of velocity due to enhancement in buoyancy
force. AsM increases, the Lorentz force, which opposes the flow, also increases and
leads to enchanted deceleration of the flow. This result qualitatively agrees with the
expectations, since the magnetic field exerts a retarding force on the free convection flow.
It was observed that an increase in the radiation parameter lead to a fall in the velocity.
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Fig. 2. Transient velocity profiles atX = 1.0.

The temperature profiles were calculated numerically from equation 11 for different
values of parameters occurring into the problem are shown inFig. 3. The effect of the
Prandtl number is very important in the temperature field. A fall in temperature occurs due
to an increasing value of the Prandtl number. This is in agreement with the physical fact
that the thermal boundary layer thickness decreases with increasingPr. The effects of a
magnetic field parameter on the temperature profile was nil. It is seen that the temperature
decreases as the radiation parameterN increases. This result qualitatively agrees with
expectations, since the effect of radiation is to decrease the rate of energy transport to the
fluid, thereby decreasing the temperature of the fluid.
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Fig. 3. Transient temperature profiles atX = 1.0.

Knowing the velocity and the temperature field, it is customary to study the skin-
friction and the rate of heat transfer.

The local as well as average skin friction and Nusselt numberin non-dimensional
form are given by the following expressions:

τX = −

(

∂U

∂Y

)

Y =0

, (13)

τ̄ = −

1
∫

0

(

∂U

∂Y

)

Y =0

dX, (14)

NuX = −X

(

∂T

∂Y

)

Y =0

, (15)

Nu = −

1
∫

0

(

∂T

∂Y

)

Y =0

dX (16)

The local and average skin friction are shown in Figs. 4, 5. Itwas observed that local
skin friction increases with increasing the Prandtl numberbut decreases with an increasing
Grashof number. The local wall shear stress decreases asM decreases. This is because
of the fact that the velocity decreases near the plate asM increases. It is also observed
that the local skin friction decreases with the decreasing value of radiation parameterN .
The same trend is also noticed for average skin friction.
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Fig. 4. Local skin friction.
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Fig. 5. Average skin friction.
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Fig. 6. Local Nusselt number.
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Fig. 7. Average Nusselt number.
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The local and average Nusselt number were calculated numerically and are plotted in
Figs. 6, 7. It was observed that local Nusselt number increases with an increasing Grashof
number (or) decreasing magnetic field parameter. The local heat transfer was stronger on
Pr than on the other parameters, since a lowerPr gives thicker temperature profiles.
Larger values of Nusselt numberwere observed for higher values of Prandtl number.

In the initial time, higher values of average Nusselt numbers were observed. They
decreased with time and become steady state after some time.Average Nusselt numbers
were presented for various values ofPr, Gr, M andN . It was observed that for short
times, the average Nusselt number was constant at each levelof various parameters. This
shows that initially there is only heat conduction. The average Nusselt number became
reduced by the increasing value of the magnetic field parameter M . But it also gets
reduced by the decreasing value of Grashof number (or) radiation parameterN . The
average Nusselt number was found to decrease with the decreasing value of the Prandtl
number of the fluid.

5 Conclusion

A Mathematical model has been presented for the unsteady convection heat transfer from
a vertical plate with combined effects of MHD and thermal radiation. The governing
boundary layer equations have been non-dimensionalised and solved using the finite el-
ement method. It has been shown that the velocity increases with a decreasing thermal
radiation parameter (or) magnetic field parameter M. Dimensionless temperature is also
seen to decreases owing to an increase in thermal radiation.
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