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Abstract. This paper presents one-dimensional (1-D) and two-dinoeasi (2-D)
in-space mathematical models for amperometric biosensits an outer perforated
membrane. The biosensor action was modelled by reactfeusidin equations with
a nonlinear term representing the Michaelis-Menten kisetif an enzymatic reaction.
The conditions at which the 1-D model can be applied to siteuthe biosensor
response accurately were investigated numerically. Theiracy of the biosensor
response simulated by using 1-D model was evaluated by Hpomnee simulated with
the corresponding 2-D model. A procedure for a numericaluatimn of the effective
diffusion coefficient to be used in 1-D model was proposecke fibmerically calculated
effective diffusion coefficient was compared with the cepending coefficients derived
analytically. The numerical simulation was carried outngsithe finite difference
technique.
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1 Introduction

Biosensors are analytical devices made up of a combinafiarspecific biological ele-
ment, usually an enzyme, that recognizes a specific analybst{rate) and the transducer
that translates the biorecognition event into an eledtsicmal [1, 2]. The amperometric
biosensors measure the current that arises on a workingadedy direct electrochemi-
cal oxidation or reduction of the biochemical reaction protd The current is proportional
to the concentration of the target analyte.

The biosensors are widely used in clinical diagnosticsirenment monitoring, food
analysis and drug detection because they are reliabldytsghsitive and relatively cheap

*This work was partially supported by Lithuanian State Soéerand Studies Foundation, project
No. N-08007.
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devices [3-5]. However, amperometric biosensors possessrder of serious draw-

backs. One of the main reasons restricting wider use of tieebisors is a relatively short
linear range of the calibration curve [6]. Another seriouaveback is the instability of

bio-molecules. These problems can be partially solved bgpgtication of an additional

outer perforated membrane [1-3].

To improve the productivity and efficiency of a biosensorigiess well as to op-
timize the biosensor configuration a model of the real bisseshould be built [7, 8].
Modelling of a biosensor with a perforated membrane has bdéready performed by
Schulmeister and Pfeiffer [9]. The proposed one-dimeraiomspace (1-D) mathemati-
cal model does not take into consideration the geometryeofittmbrane perforation and
includes effective diffusion coefficients. Authors of thédImodel have recognized that
“its quantitative value is limited” [9].

Recently, a two-dimensional-in-space (2-D) mathemativadiel taking into consi-
deration the perforation geometry has been proposed [10Hdwever, a simulation
of the biosensor action based on the 2-D model is much more¢mnsuming than a
simulation based on the corresponding 1-D model. This ig@&afly important when
investigating numerically peculiarities of the biosensgsponse in wide ranges of cata-
lytical and geometrical parameters. The multifold numedrgmulation of the biosensor
response based on the 1-D model is much more efficient thairthaation based on the
corresponding 2-D model.

In this paper, we investigate the conditions at which the xéthematical model
can be applied to simulate accurately the biosensor aclioaaccuracy of the biosensor
response simulated by using 1-D model was evaluated by #pomnee simulated with
the corresponding 2-D model. Additionally, this paper pres a procedure for numerical
evaluation of the effective diffusion coefficient used iDInodel. For a certain biosensor,
the effective diffusion coefficient can be efficiently cdblted having the response simu-
lated with the corresponding 2-D model. The numericallgokdted effective diffusion
coefficient was compared with the corresponding coeffidenived analytically [12—-14].
The numerical simulation was carried out using the finitéedénce technique [15].

2 Mathematical model

The biosensor operation is based on the enzymatic reactbtha mass transport by dif-
fusion of substances. We consider an enzyme-catalysetimeachematically expressed
as follows:

E+S=ES—E+P.

In this scheme the substrate (S) combines reversibly wiletizyme (E) to form a com-
plex (ES). The complex then dissociates into a product (B)the enzyme is regenera-
ted [1,2]. At the electrode surface the reaction produciielved into an electrochemical
reaction where some electrons are released. The elecripal! is then amplified and
presented to end-user. In the case of amperometry, thensioseurrent is proportional
to the concentration of the substrate (target analyte).
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Assuming the quasi steady state approximation, the coratent of the intermediate
complex (ES) does not change and may be neglected when simgutlae biochemical
behaviour of biosensors [2,16]. At these conditions, the ofithe enzymatic reaction is
usually described by the Michaelis-Menten equation,

‘/’YH’LLL:CS

R(S) = 22, &)
whereV,,... is the maximal rate of the enzymatic reactiéf, is the Michaelis constant,
S is the concentration of the substrate d@ib) represents the reaction rate as a function
of the substrate concentration [16, 17].

A practical biosensor contains a multilayer enzyme mendardhe electrode acting
as a transducer of the biosensor is covered by a selectiveoraes following a layer
of immobilized enzyme and an outer membrane [2,9]. Fig. gmées such biosensor
schematically.

For the biosensor shown in Fig. 1, one and two-dimensianapiace mathematical
models are known [9, 10]. The 2-D model takes into consiiarathe geometry of
perforation, and therefore describes the biosensor in mietal. In the 1-D model the
perforated membrane is modelled by a homogeneous layerawitdppropriate effective
diffusion coefficient and the reaction rate.

OO O O
OO OO >
NI >
Two-dimensional  Modelled areas One-dimensional

Fig. 1. Principal structures of a practical biosensor wiffedorated membrane and of
the corresponding simplified biosensor in which the petéatanembrane is treated as
a homogeneous medium. Figure is not to scale.

2.1 Two-dimensional-in-space model

When modelling a practical biosensor, the holes in the patéd membrane were mo-
delled by right cylinders of uniform diameter and spacirgnfing a regular hexagonal
pattern. The entire biosensor may be divided into equal dn@xal prisms with regular
hexagonal bases. For simplicity, it is reasonable to censictircle whose area equals to
that of the hexagon and to regard one of the cylinders as aelhibf the biosensor. Due
to the symmetry of the unit cell, only a half of the transvessetion of the unit cell is
considered in 2-D mathematical model formulated in cylicalrcoordinates [10, 11].
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Fig. 2(a) shows the profile of the unit of the biosensor, wHererepresents the
selective membrane, corresponds to the enzyme regidn; stands for the buffer
solution, and, represents an impermeable carrier of the perforated memapra

Q1 = (0,72) x (0, 21), Qo = (0,72) x (21,23) \ Qu,

Q3 = (O,Tl) X (23,24), Q4 = (7‘1,7‘2) X (22724),

)

here and below; is the closed region corresponding to open redion = 1,2, 3, 4.
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Fig. 2. The profiles of the unit cell in 1-D (a) and 2-D (b) domdFigure is not to scale.

In Fig. 2,4 is the radius of the base of the unit cell,is the radius of the holes;
stands for the thickness of the selective membrage; z; is the thickness of the basic
enzyme layerz, — z5 is the thickness of the perforated membrane. We assumehthat t
holes can be fully or partially filled with the enzyms, stands for the level of filling the
holes.

In the region(2; corresponding to the selective membrane, only the masspoan
by diffusion of the product takes place,

P
A _DiAP, (2 e, 150, 3)

whereP; = Py (r, z,t) is the product concentration {n,, D, is the diffusion coefficient
of the product in the selective membrane, akds the Laplace operator in cylindrical
coordinates [15]. There is no substratéin

In the enzyme regiof,, the enzymatic reaction and the diffusion of the substrate
and the product take place. The dynamics of the concentsi® described by the
reaction-diffusion equations ¢ 0),

0S5
992 _ poAS, —
5 2ASy — R(S2),

oP,

5 = D2AP + R(S2), (r,2) € Qa, (4)
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whereS; = Sy(r, z,t) and P, = Py(r, z,t) are the substrate and product concentrations
in Q3, D5 is the diffusion coefficient of the substrate and the prodadhe enzyme.
Although, the diffusion coefficients for the substrate anadoict can be different, in this
work for simplicity we use identical coefficients for bothesjies.

In the regiort)s, the mass transport of both species by diffusion takes place

0853 0P

5 = D3ASs, s
whereSs; = S3(r, z,t) andP; = Ps(r, z,t) are the substrate and product concentrations
in Q5, andDs is the diffusion coefficient of these substances in the giéfa region.

Equations (3), (4) and (5) describe the concentrationseo$thbstrate and product in
the open areaQ;, 2, and3. In addition to these equations, the initial, boundary and
matching conditions are required.

For further convenience, we introduce the following synsbol

Ty = [0,72] x {0},

=N Qy, i=1,2,

s =1[0,71] x {24},
L= (U0 U03) \ (2 UQUQ3) \ (ToUI Ul UTy).

The non-leakage conditions were applied for the boundaneshich the species
touches the impermeable carrier of the perforated or sedeatembrane and for the
boundaries corresponding the symmetry axis of the mode##é@s well as the perimeter
of it,

= D3AP3, (T,Z) (S Qg, t> 0, (5)

(6)

95,
Yon

oF;
Yon

ﬁi N

0, i=1,23, @
ﬁiﬂl‘nl

I
wheren stands for the normal direction.

The matching conditions were used for the boundaries betagj@cent regions with
the different diffusivities,

a5 05
Sy =83, (r,2) €Ty, Dy 22| =Dy =2|
on I on I ®)
OP; OP;11 .
P =P ) ) Fi7 D; — =D, ) =1,2.
+1, (r2) € on |, 1 on r, !

The conditions for the external boundary of the biosensat fan the surface of the
electrode were defined by the following equations:

SS(T; Z4;t) = S(); PB(T; Z47t> = 07 S [Oarl]a (9)
Pl(T',O,t):O, TE[O,T’Q],
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wheresSj is the concentration of the substrate in the bulk solution.

The simulation of the biosensor action starts in the staterevho substrate appears
inside the biosensor, but the external surface of the bguseaiready touches the analyte.
This state is defined by initial conditions-£ 0) of the biosensor operation [10],

P=0, (rz2) ey, i=1,23,
SZ'ZO, (T,Z)Eﬁi\].—‘fj, i:2,3, (10)
53 = SO, (T,Z) S F3.

The current density of the amperometric biosensor is ptapal to the concentra-
tion gradient of the reaction product at the electrode setfa

27 T2
1 oP,
i(t) =neFD1—5 // =1 rdr de,
Ty 9z [,
o (11)
2 [ OP
Ne 17,2 / 92 Z:()T T,

2
0

wherei(t) is the density of the current at tintey is the third cylindrical coordinate,.
is a number of electrons emitted in the electrochemicaltimacand F' is the Faraday
constant [10, 16].

Often the end-user of the biosensor is interested only ifitlaéresult — the station-
ary current,

I = lim i(t), (12)

t—o0o

wherel is the density of steady state current.

2.2 One-dimensional-in-space model

Assuming the perforated membrane as the periodic mediwemdmogenization process
can be applied to it [18]. According to this approach, thdgrated membrane is replaced
by a homogeneous medium with the properties similar to tbpgaties of the perforated
membrane. This makes possible to describe the biosensmatmpein 1-D space [9, 19].
In this section, we define a 1-D model that corresponds to {bevibdel (2)—(12).

The 1-D mathematical model contains three governing egustieach of which
corresponds to a layer shown in Fig. 2(b). The diffusion efgthoduct that takes place in
the selective membrane is defined by the equation

oP;
ot

=D1AP}, 2€(0,z), t>0, (13)

where Pj = P;(z,t) is the product concentration in the selective membrané the
Laplace operator formulated in the one-dimensional Camesoordinate system.
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In the one-dimensional modelling, the enzyme region coweaty the interval in
which the mass transport and the enzyme reaction are deddripthe following equa-
tions ¢ > 0):

053

ot

oP;
ot

where S5 = S5(z,t) and Py = Pj(z,t) are the concentrations of the substrate the
product in the enzyme layer, respectively.

Since the perforated membrane is a non-homogeneous metmnagenization
process have to be applied to it [9,18]. The dynamics of tineentrations of the substrate
and product in the homogenized perforated membrane asv(to> 0):

= DyAS; — R(S3), = D2AP; + R(S3), 2 € (21,22), (14)

0853 OP;
5, = DiAS; —yR(S5), 5k = D3APS +9R(S5), 2 € (22,21),  (15)

whereS3 = S5(z,t) and Py = Pj(z,t) are the concentrations of the substrate and the
product in the layefzz, z4], Dj is the effective diffusion coefficient of the substrate and
product in the homogenized perforated membranis,the correction coefficient for the
rate of the enzymatic reaction.

As in the 2-D model, the matching conditions were definedlierdcommon points
of the adjacent intervals,

OP; OP%
D, 2 =Dy —2 Pj(21,t) = Py(z1,t
1 az . 2 az i 9 1(21’ ) 2(217 )a
oPy oP;
D, 22 _ pr 93 P} (29,1) = P (29, t
2 B s 3 9z s ) 2 (ZQ, ) 3 (Z27 )a (16)
0S5 0S%
Dy 2 =D; =2 Sy (22,t) = S5 (22,1).
2 92 s 3 92 s ) 2 (225 ) 3 (225 )

The rest boundary conditions are also very similar to thatlus the 2-D model,

083

Pr(0,t) = D
l(oa) 0; 2 9z

= 0, S;(Z;;,t) = S(), P;(Z;;,t) = 0 (17)

zZ=z1

The initial conditions were defined as follows:
Pf(2,0)=0, z€]0,z2],

S5(2,0) = Py (2,0) =0, z € [z1,22],
S3(2,0) = P{(2,0) =0, z €[22, 24),
S3(24,0) = S, P3(24,0) =0.

(18)

The density of the current generated by the biosensor airtteet tis defined in the
same way as in the 2-D model only rewritten for the 1-D Caaresibordinate system,

opP;

i"(t) = neFDy —-

(19)

z=0
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Correspondingly, the density of the steady state curratefined as follows:

" = lim i*(t). (20)

2.3 Effective diffusion coefficient and reaction rate

In comparison with the 2-D model (3)—(5), (7)-(10), the 1-Ddal (13)-(18) of the
biosensor action contains two additional parameters: tledficient D3 of the effective
diffusion and the effectiveness coefficiendf the enzymatic reaction. These two parame-
ters arose when applying the homogenization process teetti@rpted membrane [18,20].
The parameters have a limited physical sense [9].

According to the volume averaging approach [20], the cdioacoefficienty for
the reaction rate can be calculated as the volume fractidheoEnzyme in the entire
perforated membrane (see Fig. 2),

2 « J—
p= TR (21)
7y (24 — 22)

whereq stands for a perforation level, agds a level of filling the holes with the enzyme,

2 2
7TT1 7'1 zZ3 — 29

Rl S 6227 ' (22)
2 2 4 — 22

The perforation levek can also be called as the volume fraction of holes in the petéd
membrane, while filling leveb as the relative volume of the enzyme in the holes.

One of the most general restrictions for the effective diffity D; can be expressed
as follows:

The more precise evaluation of the diffusivily; should take into consideration the
geometry of the membrane perforation. The volume averagppyoach can be also
applied to evaluate the effective diffusivify; [18, 20].

In the case when the material is a two-phase composite, feetigé diffusion
coefficientd* is considered as a function of the constituent diffusiorffa@ents ; and
ds) and the volume fraction [21, 22],

dida

— << d*<wd 1—v)d 24
Ud2+(1—U)d1_ _U1+( U)27 ( )

whered; is the diffusion coefficient of the species in a phasé = 1,2, andv is the
volume fraction of the species in the phase 1. Accordindig, tolume fraction of the
species 2 equald — v).

The effective diffusion coefficient* in a two-phase composite can be also evaluated
by it's upper bound given in (24) and the tortuosity fadtdp < 6 < 1) [12, 14],

d* = 9(’Ud1 + (1 — U)dg). (25)
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Very similar approach to the effective diffusion coeffidi@vas applied in modelling of
glucose diffusion through an isolated pancreatic isletariderhans [13].

When modelling holes of the perforated membrane by rigHiedgrs, the tortuosity
of the holes equals approximately to unifyx 1. Consequently, the effective diffusion
coefficientD; inside the holes can be calculated as follows:

Dy, = D3 + (1= B)Ds, (26)

whereg is the volume fraction of the enzyme inside the holes as dgfimg22). As-
suming zero diffusivity of both species in the insulatorioed), and the unity tortuosity
of holes, we apply the formula (25) to the entire perforateshnbrane to calculate the
effective diffusion coefficienDs,

Although, the volume averaging approach is widely useczisdcases are when the
generally-accepted it gives incorrect results. The casendmpermeable aggregate is
among them [23]. In such case, more precise modelling of eticeradiffusion system
requires additional parameters [24]. On the other hand4bBeanodel taking into consid-
eration the geometry of the membrane perforation requivesnrection coefficients.

In Section 4 we describe a procedure for numerical evalnatidhe effective dif-
fusion coefficient used in 1-D model. Applying this approdcha certain biosensor,
the effective diffusion coefficient is calculated having ttesponse simulated with the
corresponding 2-D model.

3 Numerical simulation

Biosensors with selective and perforated membranes wedelied by non-stationary
reaction-diffusion equations containing a non-lineamteefining the enzymatic reaction.
Analytical solutions for this type of equations are knowryan very limited cases [17,
25]. Therefore, the initial boundary value problems werkesh numerically by using
finite difference technique [15, 26, 27].

A domain of the problem was discretized using a quasi-unifgrid. In the case
of 2-D model, discretization was done using variable stafggne and space. The same
approach was used in [10, 11]. In the case of 1-D model, a aotstepr = 0.001 s was
used for a time dimension. A space dimension of the 1-D modsldiscretized by using
uniform grid for each interval of0, z1], [2z1, z2] and|[zq, z4]. In all simulations each of
these intervals was divided inf90 equal parts.

Applying the alternating direction method to 2-D model, msémplicit linear finite
difference scheme has been built as a result of the differapproximation [10]. The
system of linear algebraic equations was solved efficidmlyause of the tridiagonality
of the system matrix.

The densities and I'* of the steady state current are limits when— oco. In
numerical simulation, the stationary biosensor respoinse was assumed as the time
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when the absolute current slope value falls below a giverll silae normalized with the
current and time. In other words, the time needed to achigieea dimensionless decay
ratee was used, and the density of the steady state current was defined by
i — i t;
Ir=i(Tg)~ 1, TR:min{ﬁj: A x 2 <E}7
;>0 T 21

(28)
ti=m7j, iy =ilty), J=12...,

wherer stands for the size of time step, afi@ is an approximate time at which the
steady state is reached. In calculation; 0.01 was used.

The response tim& is highly sensitive to the decay ratei.e. T — oo when
¢ — 0. Because of this, we use a less sensitive part of the stea@ytishe by introducing
the resultant relative output signal functign),

it = 210,

0<i(t) <1. (29)
We use the half-timd} 5 defined byi(To5) = 0.5. Tp5 expresses the time at which
the half of the steady state current is reached [10, 17]. érctise of the 1-D model the
half-time of the stationary currefi; 5 is defined in the same way.

The numerical simulation was performed at different geoieeif the membrane
perforation and the leve? of filling the holes with the enzyme. The following values of
the model parameters were constant in all the numericalrerpets:

Dy =1pum?/s, Dy =300um?/s, Dz =600pum?/s,
ro=1pm, 2z =2pum, 2zo0=2z+2pum, 2z4= 29+ 10pum, (30)
Ky =100 uM, Ve =10uM/s, n. =2.

4 Calculation of the effective diffusion coefficient

The coefficientDs is the effective diffusivity of the substrate and produdtia homoge-
nized perforated membrane. Assuming the 2-D model as themdtere the perforated
membrane is modelled precisely, the effective diffusioaffioient D3 can be found by
minimizing the difference between the responses of the 2xDthe corresponding 1-D
models. We introduce the relative ernpof the steady state current calculated by using
1-D model,

|- I"
7 ’

n1(D, So) = (31)
where D stands for a value of the effective diffusion coefficign} used in numerical
modelling, Sy is the concentration of the substrate to be analyZesithe density of the
stationary current calculated by using 2-D model, &hds the density of the stationary
current calculated by using corresponding 1-D model. Imitédin (31),7 is assumed as
the true value of the biosensor current density, while- as the approximate one.
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The relative errom; depends on the value of the effective diffusion coefficient
Dj used in the 1-D model and the catalytical as well as the ga@akparameters
of the modelled biosensor. Values of all the parameters efIfD model excluding
only D} can be derived directly from the corresponding 2-D modelr &@oncrete
substrate concentratio$y, the effective diffusion coefficienD; can be expressed as a
value minimizing the relative erroy;,

D3 (Sy) = argrrbinm(D, So0), 0< D <max(Ds,Ds3), (32)

where the upper value @ comes from (23).

The minimization (32) can be achieved by changin@gnd solving the 1-D model
of the biosensor action using different value®f D3. In order to find the value ab3 in
the efficient way, the following procedure was introduced.

Let E* be an ordered sequence of triplefs; ;, 17, 75 5 ;), wherel; is the density
of the simulated stationary currenfy ; , is the half-time of the steady state, ahy ,
denotes the averaged diffusion coefficient used in the sitioml, ; = 1,2,.... Each
triplet in the sequencg&™ couples the parameters characterizing a concrete simuloti
the biosensor action by using 1-D model. The half-tifijg ; of the steady state response
stands for the dynamics of the biosensor action. The ord#tisrsequence is preserved
according to the following ruleD;3 ; > D3, .,,Vi > 1. The procedure of calculation of
Dj3 is defined by the following steps:

1. Simulate the operation of a particular biosensor usieg4D model. The steady
state current density and half-timel} 5 of the steady state are results of this simu-
lation to be used in the next steps. Go to step 2.

2. Perform a preliminary variation of the effective diffasicoefficientD;. The biosen-
sor responses are simulated by using the 1-D model changilugs/ of D €
[0, max(D3, D3)]. The simulation results are appended to the sequéiicelet
M denote the number of elementshit. Go to step 3.

3. Construct a set of intervals = {[D3,,,,D5,]: I}, < I < Irorly, > 12>
I,i > 1}. If G = 0 then go to step 4, otherwise go to step 6.

4. Findm (1 <m < M) for which the differencél’, — I| is the minimal. If variation
of the effective diffusion coefficient of the adjacent elensin the sequencE* is
small enough, i.e(D3,, ; — D3 ,,,1)/D3,, < ¢ then stop the procedure with

Dj ,,, as the output. Otherwise, go to step 5.

5. Simulate two more responses of the biosensdvat= (D3, ; + Dj ,,)/2 and
D3 = (D3, + D3 ,,11)/2, wherem comes from step 4. Append the corresponding
two triplets to the sequendeé* and go to step 3.

6. For each interval from the sét produced in step 3, apply the method of chords
(secants [27]) to find a number of valuesiaf minimizing (32). Between them, find
k-th for which the corresponding differen¢k, 5 — T 5 .| is minimal. The output
of the procedure i®; . ’
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In step 2, the preliminary variation of the effective difirs coefficientD; can be
done in a number of different ways. In this work, it was achikby simulating the
biosensor action by using the 1-D model at the value®bthosen as follows:

. max(Ds, D3), j=1;
D3, = {D»« »bs) (33)

NS j=2,...,N.

This sequence is constructed in the way to cover the entinadoof D3 (0 < D3 <
max (D2, D3)) and to find a smaller subdomain in which the value minimizimg error
nr exists. The result of each simulation is appended to theesemE*. The prelimi-
nary variation is performed until the stationary curremslty /7 starts to decrease and
becomes smaller thah

An application of the proposed procedure is illustratedim B. The figure shows
values of the effective diffusion coefficied?; used in 1-D simulations and the cor-
responding steady state current densities. All the sinaulatwere performed at; =
100 nm,ry =107y, 23 = 24, Sp = 3.3 mM and values defined in (30).

I (nA/mn?)

*

O 1 1 1

001 0.1 1 10 100
D; (umzls)

Fig. 3. The stationary current densify versus the effective diffusion coefficienl;

obtained by applying the procedure. The dashed line showsstdttionary current

densityI obtained by using 2-D modet; = 100 nm (@ = 0.01), 23 = z4 (8 = 1),
So = 3.3 mM, values of all other parameters are as defined in (30).

Using 2-D simulation, we obtained the densityof the stationary current of
2.76 nA/mm?. A half of the steady state current was reached.ats, Ty 5 = 4.4 s.
In Fig. 3, the horizontal dashed line shows the stationaryect density/ calculated
by using 2-D model. This line crosses the curve drawn throwghes of the effective
diffusion coefficient. Two crossing points represent th&uesa of D; for which the
relative errorn; equals to0, i.e. at two values (0.07 and 1/8m?/s) of D} the 1-D
simulation produces the stationary current identical & tialculated by using 2-D model,
I* = 1. Having two values o3 at whichn; = 0, we choose only one of them under
consideration of the response time. Applyifg = 0.07 um?/s to 1-D simulation, the
half-time Tj; ; was found to bel91 s, while atD3 = 1.8 um?/s the timeT} ; equals
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13.4 s. Sincel4.4 — 191| > |4.4 — 13.4], the resulting effective diffusion coefficieft;
equals approximately 1,8m?/s.

At this concrete geometry of the perforation € 0.1r2, o = 0.01) and the level of
filling the holes with the enzyme{ = z4, 5 = 1), the effective diffusion coefficienD;
can be independently calculated from (2D); = 0.01 * 300 = 3 zm?/s). This value of
Dj notably differs from that (1.&m?/s) calculated by applying the procedure presented
in this section. Below we investigate this effect in details

5 Results and discussion

In order to determine conditions under which the 1-D mod&)€{18) may be used
for accurate prediction of the biosensor response, a mondedrror was investigated
at different geometries of the membrane perforation andlytidal parameters of the
biosensor. The modelling error was estimated by compatiegbiosensor response
simulated by using 1-D model with the response obtained liyguthe corresponding
2-D model.

A concrete practical biosensor is usually used for anafytie substrate of different
concentrations. Because of this, it is important to evaltia¢ modelling error for a wide
range of the substrate concentrations. An application ®24D model for calculation
of the “true” biosensor response is an essential featur@eptocedure to be used for
determination of the effective diffusion coefficieBt;. The simulation of the biosensor
response supposes a particular concentration of the atéastf the substrate concentra-
tion effects the modelling error then it is important to detane the concentration to be
used in the procedure when calculating a valu®gf On the other hand, having a value
of D3, it is important to determine an interval of substrate comeions for which the
value of D3 can be applied for accurate prediction of the response.

We introduce a relative error of 1-D modelling as follows:

1ns(Sp, Sv) = n1(D3(Sp), Sv), (34)

where D3 is the effective diffusion coefficient introduced by (33), is the substrate
concentration used in 2-D simulation when calculating tifecéve diffusion coefficient,
Sy is the substrate concentration used in 1-D simulatigg.can be called as a 1-D
modelling error arose because of an applicatio®gffor the prediction of the biosensor
response at the substrate concentratipn

The coefficientD3 minimizes the relative erroj; for a particular substrate concen-
tration Sp. ns evaluates the error for any concentratiéfy | of the substrate. In order
to cover the entire range of the practical concentratidres gtrrorns was evaluated for
VSp € S andvSy € S, whereS = {2% x 100nM, k = 0,1,...,20}.

The 1-D model was validated for different values of the meambrperforation level
« (radiusr; of the holes) and of the levél of filling the holes with the enzyme. The
level o was varied by changing the radius of the perforation holes, while the levgl
was varied by changing; from z» to z4. Values of all other parameters of the biosensor
action were kept constant.
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5.1 The effect of the level of filling the holes

In order to investigate the dependence of the relative egran the levels of filing the
holes of the perforated membrane with the enzyme, the bsoseasponse was simulated
at the following three values of: 0 (z3 = z2) when the holes were fully filled with
the buffer solution (no enzyme in the holes), &:5 £ (22 + z4)/2) when the holes were
half-filled with the enzyme, and { = z,) when holes were fully filled with the enzyme.
Calculated values of the relative erngy are depicted in the Fig. 4.

Fig. 4. The relative errong at three levels(f) of the enzyme filling: 0 (a), 0.5 (b) and
1 (c);a = 0.01, values of all other parameters are as defined in (30).

The smallest relative errors were achieved in the case wieze tvas no enzyme in
the holes (Fig. 4(a)). In this casgs was less thaf.6 %. When the level of the enzyme
raises, a preciseness of the 1-D model decreases. In thevhasel = 1 (23 = z4) the
relative error of the 1-D model reach&s % (Fig. 4(c)). When the holes were half-filled
with the enzyme, the modelling error was less thaft (Fig. 4(b)).

Fig. 4 also shows the dependence of the eygoon the substrate concentratiosis
(used in 2-D simulation when calculating the effectivewfbn coefficientD3) and Sy
(used in 1-D simulation). One can see in Fig. 4 that the radatirorng is usually smaller
when 1-D model is applied for the substrate concentrafipismaller than that{p) used
in 2-D simulation for evaluation oD%. Consequently, the substrate concentration used
to find the effective diffusion coefficient should be chosamér than concentrations for
which the 1-D model will be applied.

Fig. 5 shows the relative errors in the same three cases dingme filling, but
applying two different approaches for calculation of théeetive diffusion coefficient
D;. The procedure defined in the previous section was the figbaph (curves 1-3),
while the formula (27) was the second one (curves 4-6). Whelyeng the procedure, a
practically maximal concentratios¢ = Sp = 0.1 M) of the substrate was used. As one
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can see in Fig. 5, the relative errors are notable les®fpcalculated by the procedure
rather than calculated analytically by (27). This propéstgspecially bright when 1-D
model is applied at high concentrations of the substratenvthe corresponding errors
differs in orders of magnitude.

107 10° 10° 10* 102 102 10?
Sy (M)

Fig. 5. The relative error; at three levels £) of the enzyme filling: 0 (1, 4),
0.5(2,5)and 1 (3, 6). The effective diffusion coefficidnt was calculated by applying
the procedure a¥p = 0.1 M (1-3) as well as by applying formula (27) (4-6).

5.2 The effect of the perforation level

In order to investigate the effect of the relative radiusf the holes of the perforated
membrane, the biosensor response was simulated at thevifugldhree values ofv:
1073 (r1 = 107 275), 1072 (r; = 10~ !ry) and10~! (r; = 10~ 2r,). The holes of the
perforated membrane were assumed as fully filled with thgraezi.e.5 = 1, z5 = 24.
Calculated values of the relative erngy are depicted in Fig. 6.

One can see in Fig. 6 how the size of the holes influences tloéspreess of the
1-D model. The maximal relative errgg decreases when the relative radius of the holes
increases. In the case when the holes take @i of the overall area of the membrane
surface (Fig. 6(a)), the maximal values mf exceed ever’40 %. In the case when
the area of the holes iB) % of the overall area (Fig. 6(c)), the relative errors are less
than0.3 %. In the case olx = 1 (r; = rg), the perforated membrane becomes so
opened that it disappears at all, and the biosensor becorsasdavich-like multilayer
biosensor [2,3,17]. So, it is naturally that the emgrdecreases with an increase in the
level «. Fig. 6 also approves the previous decision that the substoacentration used
to find the effective diffusion coefficient should be largiean concentrations for which
the 1-D model will be applied.

Fig. 7 compares the relative errors for two different apphas used for calculation
of the effective diffusion coefficienD;. When applying the procedure (curves 1-3), the
substrate concentratia#y of 0.1 M was used. As one can see in Fig. 7 that in the cases
of relatively high perforation levels the relative errors aotable less foDj; calculated

99



K. Petrauskas, R. Baronas

by the procedure rather than calculated analytically by (Rirves 2, 3, 5 and 6). In the
case of very low values aof (curves 1, 4), the errors are relatively high and practjcall
does not depend on the approactigf calculation.

(7R
77

i
"'.',zz,' g

Fig. 6. The relative errons at three levelsq) of the membrane perforation0 > (a),
1072 (b) and10™! (C); B = 1, Vinaz = 100 NM/s, values of all other parameters are as
defined in (30).

107 10° 10° 10* 10° 102 10*

Sy (M)
Fig. 7. The relative errayr at three levelsd) of the membrane perforation0 2 (1, 4),
1072 (2, 5) and10~! (3, 6); The effective diffusion coefficierdd; was calculated by

applying the procedure at the concentratiym = 0.1 M (1-3) as well as by applying
formula (27) (4-6).
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6 Conclusions

The one-dimensional-in-space model (13)—(18) can be useterate simulation of the
operation of the biosensor with the perforated membrane.praciseness of this model
depends on the geometry of the membrane perforation as svef the level of filling the
holes with the enzyme. The relative error of the 1-D modgliecreases with a decrease
in the level of the enzyme in the holes of the perforated mamb(Fig. 4). The size of
the holes has inverse influence to the modelling precis€Rr&ss6).

The two-dimensional-in-space model (3)—(5), (7)—(10) It biosensor with the
perforated membrane can be used in order to find the valudéoeffective diffusion
coefficient for the following usage in 1-D simulation. To dease the modelling error,
the substrate concentration used in the calculation of tfeeteve diffusion coefficient
should be chosen larger than concentrations for which thexiedel will be applied.

The 1-D model is especially an inaccurate when the holeseop#rforated mem-
brane are very small (Figs. 6 and 7). In such cases the 2-DImsbdeld be used for an
accurate prediction of the biosensor response.
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