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Abstract. This paper presents one-dimensional (1-D) and two-dimensional (2-D)
in-space mathematical models for amperometric biosensorswith an outer perforated
membrane. The biosensor action was modelled by reaction-diffusion equations with
a nonlinear term representing the Michaelis-Menten kinetics of an enzymatic reaction.
The conditions at which the 1-D model can be applied to simulate the biosensor
response accurately were investigated numerically. The accuracy of the biosensor
response simulated by using 1-D model was evaluated by the response simulated with
the corresponding 2-D model. A procedure for a numerical evaluation of the effective
diffusion coefficient to be used in 1-D model was proposed. The numerically calculated
effective diffusion coefficient was compared with the corresponding coefficients derived
analytically. The numerical simulation was carried out using the finite difference
technique.
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1 Introduction

Biosensors are analytical devices made up of a combination of a specific biological ele-
ment, usually an enzyme, that recognizes a specific analyte (substrate) and the transducer
that translates the biorecognition event into an electrical signal [1, 2]. The amperometric
biosensors measure the current that arises on a working electrode by direct electrochemi-
cal oxidation or reduction of the biochemical reaction product. The current is proportional
to the concentration of the target analyte.

The biosensors are widely used in clinical diagnostics, environment monitoring, food
analysis and drug detection because they are reliable, highly sensitive and relatively cheap

∗This work was partially supported by Lithuanian State Science and Studies Foundation, project
No. N-08007.
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devices [3–5]. However, amperometric biosensors possess anumber of serious draw-
backs. One of the main reasons restricting wider use of the biosensors is a relatively short
linear range of the calibration curve [6]. Another serious drawback is the instability of
bio-molecules. These problems can be partially solved by anapplication of an additional
outer perforated membrane [1–3].

To improve the productivity and efficiency of a biosensor design as well as to op-
timize the biosensor configuration a model of the real biosensor should be built [7, 8].
Modelling of a biosensor with a perforated membrane has beenalready performed by
Schulmeister and Pfeiffer [9]. The proposed one-dimensional-in-space (1-D) mathemati-
cal model does not take into consideration the geometry of the membrane perforation and
includes effective diffusion coefficients. Authors of the 1-D model have recognized that
“its quantitative value is limited” [9].

Recently, a two-dimensional-in-space (2-D) mathematicalmodel taking into consi-
deration the perforation geometry has been proposed [10, 11]. However, a simulation
of the biosensor action based on the 2-D model is much more time-consuming than a
simulation based on the corresponding 1-D model. This is especially important when
investigating numerically peculiarities of the biosensorresponse in wide ranges of cata-
lytical and geometrical parameters. The multifold numerical simulation of the biosensor
response based on the 1-D model is much more efficient than thesimulation based on the
corresponding 2-D model.

In this paper, we investigate the conditions at which the 1-Dmathematical model
can be applied to simulate accurately the biosensor action.The accuracy of the biosensor
response simulated by using 1-D model was evaluated by the response simulated with
the corresponding 2-D model. Additionally, this paper presents a procedure for numerical
evaluation of the effective diffusion coefficient used in 1-D model. For a certain biosensor,
the effective diffusion coefficient can be efficiently calculated having the response simu-
lated with the corresponding 2-D model. The numerically calculated effective diffusion
coefficient was compared with the corresponding coefficientderived analytically [12–14].
The numerical simulation was carried out using the finite difference technique [15].

2 Mathematical model

The biosensor operation is based on the enzymatic reaction and the mass transport by dif-
fusion of substances. We consider an enzyme-catalysed reaction schematically expressed
as follows:

E + S ⇄ E S→ E + P.

In this scheme the substrate (S) combines reversibly with the enzyme (E) to form a com-
plex (ES). The complex then dissociates into a product (P) and the enzyme is regenera-
ted [1,2]. At the electrode surface the reaction product is involved into an electrochemical
reaction where some electrons are released. The electricalsignal is then amplified and
presented to end-user. In the case of amperometry, the biosensor current is proportional
to the concentration of the substrate (target analyte).
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Assuming the quasi steady state approximation, the concentration of the intermediate
complex (ES) does not change and may be neglected when simulating the biochemical
behaviour of biosensors [2,16]. At these conditions, the rate of the enzymatic reaction is
usually described by the Michaelis-Menten equation,

R(S) =
VmaxS

KM + S
, (1)

whereVmax is the maximal rate of the enzymatic reaction,KM is the Michaelis constant,
S is the concentration of the substrate andR(S) represents the reaction rate as a function
of the substrate concentration [16,17].

A practical biosensor contains a multilayer enzyme membrane. The electrode acting
as a transducer of the biosensor is covered by a selective membrane, following a layer
of immobilized enzyme and an outer membrane [2, 9]. Fig. 1 presents such biosensor
schematically.

For the biosensor shown in Fig. 1, one and two-dimensional-in-space mathematical
models are known [9, 10]. The 2-D model takes into consideration the geometry of
perforation, and therefore describes the biosensor in moredetail. In the 1-D model the
perforated membrane is modelled by a homogeneous layer withan appropriate effective
diffusion coefficient and the reaction rate.

Fig. 1. Principal structures of a practical biosensor with aperforated membrane and of
the corresponding simplified biosensor in which the perforated membrane is treated as

a homogeneous medium. Figure is not to scale.

2.1 Two-dimensional-in-space model

When modelling a practical biosensor, the holes in the perforated membrane were mo-
delled by right cylinders of uniform diameter and spacing, forming a regular hexagonal
pattern. The entire biosensor may be divided into equal hexagonal prisms with regular
hexagonal bases. For simplicity, it is reasonable to consider a circle whose area equals to
that of the hexagon and to regard one of the cylinders as a unitcell of the biosensor. Due
to the symmetry of the unit cell, only a half of the transversesection of the unit cell is
considered in 2-D mathematical model formulated in cylindrical coordinates [10,11].
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Fig. 2(a) shows the profile of the unit of the biosensor, whereΩ1 represents the
selective membrane,Ω2 corresponds to the enzyme region,Ω3 stands for the buffer
solution, andΩ4 represents an impermeable carrier of the perforated membrane,

Ω1 = (0, r2) × (0, z1), Ω2 = (0, r2) × (z1, z3) \ Ω4,

Ω3 = (0, r1) × (z3, z4), Ω4 = (r1, r2) × (z2, z4),
(2)

here and belowΩi is the closed region corresponding to open regionΩi, i = 1, 2, 3, 4.

Fig. 2. The profiles of the unit cell in 1-D (a) and 2-D (b) domain. Figure is not to scale.

In Fig. 2,r2 is the radius of the base of the unit cell,r1 is the radius of the holes,z1

stands for the thickness of the selective membrane,z2 − z1 is the thickness of the basic
enzyme layer,z4 − z2 is the thickness of the perforated membrane. We assume that the
holes can be fully or partially filled with the enzyme,z3 stands for the level of filling the
holes.

In the regionΩ1 corresponding to the selective membrane, only the mass transport
by diffusion of the product takes place,

∂P1

∂t
= D1∆P1, (r, z) ∈ Ω1, t > 0, (3)

whereP1 = P1(r, z, t) is the product concentration inΩ1, D1 is the diffusion coefficient
of the product in the selective membrane, and∆ is the Laplace operator in cylindrical
coordinates [15]. There is no substrate inΩ1.

In the enzyme regionΩ2, the enzymatic reaction and the diffusion of the substrate
and the product take place. The dynamics of the concentrations is described by the
reaction-diffusion equations (t > 0),

∂S2

∂t
= D2∆S2 − R(S2),

∂P2

∂t
= D2∆P2 + R(S2), (r, z) ∈ Ω2, (4)
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whereS2 = S2(r, z, t) andP2 = P2(r, z, t) are the substrate and product concentrations
in Ω2, D2 is the diffusion coefficient of the substrate and the productin the enzyme.
Although, the diffusion coefficients for the substrate and product can be different, in this
work for simplicity we use identical coefficients for both species.

In the regionΩ3, the mass transport of both species by diffusion takes place,

∂S3

∂t
= D3∆S3,

∂P3

∂t
= D3∆P3, (r, z) ∈ Ω3, t > 0, (5)

whereS3 = S3(r, z, t) andP3 = P3(r, z, t) are the substrate and product concentrations
in Ω3, andD3 is the diffusion coefficient of these substances in the diffusion region.

Equations (3), (4) and (5) describe the concentrations of the substrate and product in
the open areasΩ1, Ω2 andΩ3. In addition to these equations, the initial, boundary and
matching conditions are required.

For further convenience, we introduce the following symbols:

Γ0 = [0, r2] × {0},

Γi = Ωi ∩ Ωi+1, i = 1, 2,

Γ3 = [0, r1] × {z4},

Γnl =
(

Ω1 ∪ Ω2 ∪ Ω3

)

\ (Ω1 ∪ Ω2 ∪ Ω3) \ (Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3).

(6)

The non-leakage conditions were applied for the boundarieson which the species
touches the impermeable carrier of the perforated or selective membrane and for the
boundaries corresponding the symmetry axis of the modelledcell as well as the perimeter
of it,

Di

∂Si

∂n

∣

∣

∣

∣

Ωi∩Γnl

= 0, i = 2, 3,

Di

∂Pi

∂n

∣

∣

∣

∣

Ωi∩Γnl

= 0, i = 1, 2, 3,

D2

∂S2

∂n

∣

∣

∣

∣

Γ1

= 0,

(7)

wheren stands for the normal direction.
The matching conditions were used for the boundaries between adjacent regions with

the different diffusivities,

S2 = S3, (r, z) ∈ Γ2, D2

∂S2

∂n

∣

∣

∣

∣

Γ2

= D3

∂S3

∂n

∣

∣

∣

∣

Γ2

;

Pi = Pi+1, (r, z) ∈ Γi, Di

∂Pi

∂n

∣

∣

∣

∣

Γi

= Di+1

∂Pi+1

∂n

∣

∣

∣

∣

Γi

, i = 1, 2.

(8)

The conditions for the external boundary of the biosensor and for the surface of the
electrode were defined by the following equations:

S3(r, z4, t) = S0, P3(r, z4, t) = 0, r ∈ [0, r1],

P1(r, 0, t) = 0, r ∈ [0, r2],
(9)
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whereS0 is the concentration of the substrate in the bulk solution.
The simulation of the biosensor action starts in the state where no substrate appears

inside the biosensor, but the external surface of the biosensor already touches the analyte.
This state is defined by initial conditions (t = 0) of the biosensor operation [10],

Pi = 0, (r, z) ∈ Ωi, i = 1, 2, 3,

Si = 0, (r, z) ∈ Ωi \ Γ3, i = 2, 3,

S3 = S0, (r, z) ∈ Γ3.

(10)

The current density of the amperometric biosensor is proportional to the concentra-
tion gradient of the reaction product at the electrode surface,

i(t) = neFD1

1

πr2
2

2π
∫

0

r2
∫

0

∂P1

∂z

∣

∣

∣

∣

z=0

r dr dϕ,

= neFD1

2

r2
2

r2
∫

0

∂P1

∂z

∣

∣

∣

∣

z=0

r dr,

(11)

wherei(t) is the density of the current at timet, ϕ is the third cylindrical coordinate,ne

is a number of electrons emitted in the electrochemical reaction, andF is the Faraday
constant [10,16].

Often the end-user of the biosensor is interested only in thefinal result – the station-
ary current,

I = lim
t→∞

i(t), (12)

whereI is the density of steady state current.

2.2 One-dimensional-in-space model

Assuming the perforated membrane as the periodic medium, the homogenization process
can be applied to it [18]. According to this approach, the perforated membrane is replaced
by a homogeneous medium with the properties similar to the properties of the perforated
membrane. This makes possible to describe the biosensor operation in 1-D space [9,19].
In this section, we define a 1-D model that corresponds to the 2-D model (2)–(12).

The 1-D mathematical model contains three governing equations, each of which
corresponds to a layer shown in Fig. 2(b). The diffusion of the product that takes place in
the selective membrane is defined by the equation

∂P ∗

1

∂t
= D1∆P ∗

1 , z ∈ (0, z1), t > 0, (13)

whereP ∗

1 = P ∗

1 (z, t) is the product concentration in the selective membrane,∆ is the
Laplace operator formulated in the one-dimensional Cartesian coordinate system.
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In the one-dimensional modelling, the enzyme region coversonly the interval in
which the mass transport and the enzyme reaction are described by the following equa-
tions (t > 0):

∂S∗

2

∂t
= D2∆S∗

2 − R(S∗

2 ),
∂P ∗

2

∂t
= D2∆P ∗

2 + R(S∗

2 ), z ∈ (z1, z2), (14)

whereS∗

2 = S∗

2 (z, t) and P ∗

2 = P ∗

2 (z, t) are the concentrations of the substrate the
product in the enzyme layer, respectively.

Since the perforated membrane is a non-homogeneous media, ahomogenization
process have to be applied to it [9,18]. The dynamics of the concentrations of the substrate
and product in the homogenized perforated membrane as follows (t > 0):

∂S∗

3

∂t
= D∗

3∆S∗

3 − γR(S∗

3 ),
∂P ∗

3

∂t
= D∗

3∆P ∗

3 + γR(S∗

3 ), z ∈ (z2, z4), (15)

whereS∗

3 = S∗

3 (z, t) andP ∗

3 = P ∗

3 (z, t) are the concentrations of the substrate and the
product in the layer[z2, z4], D∗

3 is the effective diffusion coefficient of the substrate and
product in the homogenized perforated membrane,γ is the correction coefficient for the
rate of the enzymatic reaction.

As in the 2-D model, the matching conditions were defined for the common points
of the adjacent intervals,

D1

∂P ∗

1

∂z

∣

∣

∣

∣

z=z1

= D2

∂P ∗

2

∂z

∣

∣

∣

∣

z=z1

, P ∗

1 (z1, t) = P ∗

2 (z1, t),

D2

∂P ∗

2

∂z

∣

∣

∣

∣

z=z2

= D∗

3

∂P ∗

3

∂z

∣

∣

∣

∣

z=z2

, P ∗

2 (z2, t) = P ∗

3 (z2, t),

D2

∂S∗

2

∂z

∣

∣

∣

∣

z=z2

= D∗

3

∂S∗

3

∂z

∣

∣

∣

∣

z=z2

, S∗

2 (z2, t) = S∗

3 (z2, t).

(16)

The rest boundary conditions are also very similar to that used in the 2-D model,

P ∗

1 (0, t) = 0, D2

∂S∗

2

∂z

∣

∣

∣

∣

z=z1

= 0, S∗

3 (z4, t) = S0, P ∗

3 (z4, t) = 0. (17)

The initial conditions were defined as follows:

P ∗

1 (z, 0) = 0, z ∈ [0, z1],

S∗

2 (z, 0) = P ∗

2 (z, 0) = 0, z ∈ [z1, z2],

S∗

3 (z, 0) = P ∗

3 (z, 0) = 0, z ∈ [z2, z4),

S∗

3 (z4, 0) = S0, P ∗

3 (z4, 0) = 0.

(18)

The density of the current generated by the biosensor at the time t is defined in the
same way as in the 2-D model only rewritten for the 1-D Cartesian coordinate system,

i∗(t) = neFD1

∂P ∗

1

∂z

∣

∣

∣

∣

z=0

. (19)
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Correspondingly, the density of the steady state current isdefined as follows:

I∗ = lim
t→∞

i∗(t). (20)

2.3 Effective diffusion coefficient and reaction rate

In comparison with the 2-D model (3)–(5), (7)–(10), the 1-D model (13)–(18) of the
biosensor action contains two additional parameters: the coefficientD∗

3 of the effective
diffusion and the effectiveness coefficientγ of the enzymatic reaction. These two parame-
ters arose when applying the homogenization process to the perforated membrane [18,20].
The parameters have a limited physical sense [9].

According to the volume averaging approach [20], the correction coefficientγ for
the reaction rate can be calculated as the volume fraction ofthe enzyme in the entire
perforated membrane (see Fig. 2),

γ =
πr2

1(z3 − z2)

πr2
2(z4 − z2)

= αβ, (21)

whereα stands for a perforation level, andβ is a level of filling the holes with the enzyme,

α =
πr2

1

πr2
2

=
r2
1

r2
2

, β =
z3 − z2

z4 − z2

. (22)

The perforation levelα can also be called as the volume fraction of holes in the perforated
membrane, while filling levelβ as the relative volume of the enzyme in the holes.

One of the most general restrictions for the effective diffusivity D∗

3 can be expressed
as follows:

0 ≤ D∗

3 ≤ max(D2, D3). (23)

The more precise evaluation of the diffusivityD∗

3 should take into consideration the
geometry of the membrane perforation. The volume averagingapproach can be also
applied to evaluate the effective diffusivityD∗

3 [18,20].
In the case when the material is a two-phase composite, the effective diffusion

coefficientd∗ is considered as a function of the constituent diffusion coefficients (d1 and
d2) and the volume fraction (υ) [21,22],

d1d2

υd2 + (1 − υ)d1

≤ d∗ ≤ υd1 + (1 − υ)d2, (24)

wheredi is the diffusion coefficient of the species in a phasei, i = 1, 2, andυ is the
volume fraction of the species in the phase 1. Accordingly, the volume fraction of the
species 2 equals(1 − υ).

The effective diffusion coefficientd∗ in a two-phase composite can be also evaluated
by it’s upper bound given in (24) and the tortuosity factorθ (0 ≤ θ ≤ 1) [12,14],

d∗ = θ
(

υd1 + (1 − υ)d2

)

. (25)
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Very similar approach to the effective diffusion coefficient was applied in modelling of
glucose diffusion through an isolated pancreatic islet of Langerhans [13].

When modelling holes of the perforated membrane by rights cylinders, the tortuosity
of the holes equals approximately to unity,θ ≈ 1. Consequently, the effective diffusion
coefficientD∗

h inside the holes can be calculated as follows:

D∗

h = βD2 + (1 − β)D3, (26)

whereβ is the volume fraction of the enzyme inside the holes as defined in (22). As-
suming zero diffusivity of both species in the insulator region Ω4 and the unity tortuosity
of holes, we apply the formula (25) to the entire perforated membrane to calculate the
effective diffusion coefficientD∗

3 ,

D∗

3 = αD∗

h = α
(

βD2 + (1 − β)D3

)

. (27)

Although, the volume averaging approach is widely used, several cases are when the
generally-accepted it gives incorrect results. The case ofan impermeable aggregate is
among them [23]. In such case, more precise modelling of a reaction-diffusion system
requires additional parameters [24]. On the other hand, the2-D model taking into consid-
eration the geometry of the membrane perforation requires no correction coefficients.

In Section 4 we describe a procedure for numerical evaluation of the effective dif-
fusion coefficient used in 1-D model. Applying this approachfor a certain biosensor,
the effective diffusion coefficient is calculated having the response simulated with the
corresponding 2-D model.

3 Numerical simulation

Biosensors with selective and perforated membranes were modelled by non-stationary
reaction-diffusion equations containing a non-linear term defining the enzymatic reaction.
Analytical solutions for this type of equations are known only in very limited cases [17,
25]. Therefore, the initial boundary value problems were solved numerically by using
finite difference technique [15,26,27].

A domain of the problem was discretized using a quasi-uniform grid. In the case
of 2-D model, discretization was done using variable steps in time and space. The same
approach was used in [10,11]. In the case of 1-D model, a constant stepτ = 0.001 s was
used for a time dimension. A space dimension of the 1-D model was discretized by using
uniform grid for each interval of[0, z1], [z1, z2] and [z2, z4]. In all simulations each of
these intervals was divided into200 equal parts.

Applying the alternating direction method to 2-D model, a semi-implicit linear finite
difference scheme has been built as a result of the difference approximation [10]. The
system of linear algebraic equations was solved efficientlybecause of the tridiagonality
of the system matrix.

The densitiesI and I∗ of the steady state current are limits whent → ∞. In
numerical simulation, the stationary biosensor response time was assumed as the time
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when the absolute current slope value falls below a given small value normalized with the
current and time. In other words, the time needed to achieve agiven dimensionless decay
rateε was used, and the densityIR of the steady state current was defined by

IR = i(TR) ≈ I, TR = min
ij>0

{

tj :
ij − ij−1

τ
×

tj
ij

< ε

}

,

tj = τj, ij = i(tj), j = 1, 2, . . . ,

(28)

whereτ stands for the size of time step, andTR is an approximate time at which the
steady state is reached. In calculation,ε = 0.01 was used.

The response timeTR is highly sensitive to the decay rateε, i.e. TR → ∞ when
ε → 0. Because of this, we use a less sensitive part of the steady state time by introducing
the resultant relative output signal functioni(t),

i(t) =
IR − i(t)

IR

, 0 ≤ i(t) ≤ 1. (29)

We use the half-timeT0.5 defined byi(T0.5) = 0.5. T0.5 expresses the time at which
the half of the steady state current is reached [10, 17]. In the case of the 1-D model the
half-time of the stationary currentT ∗

0.5 is defined in the same way.
The numerical simulation was performed at different geometries of the membrane

perforation and the levelβ of filling the holes with the enzyme. The following values of
the model parameters were constant in all the numerical experiments:

D1 = 1 µm2/s, D2 = 300 µm2/s, D3 = 600 µm2/s,

r2 = 1 µm, z1 = 2 µm, z2 = z1 + 2 µm, z4 = z2 + 10 µm,

KM = 100 µM, Vmax = 10 µM/s, ne = 2.

(30)

4 Calculation of the effective diffusion coefficient

The coefficientD∗

3 is the effective diffusivity of the substrate and product inthe homoge-
nized perforated membrane. Assuming the 2-D model as the model where the perforated
membrane is modelled precisely, the effective diffusion coefficientD∗

3 can be found by
minimizing the difference between the responses of the 2-D and the corresponding 1-D
models. We introduce the relative errorη of the steady state current calculated by using
1-D model,

ηI(D, S0) =
|I − I∗|

I
, (31)

whereD stands for a value of the effective diffusion coefficientD∗

3 used in numerical
modelling,S0 is the concentration of the substrate to be analyzed,I is the density of the
stationary current calculated by using 2-D model, andI∗ is the density of the stationary
current calculated by using corresponding 1-D model. In definition (31),I is assumed as
the true value of the biosensor current density, whileI∗ – as the approximate one.
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The relative errorηI depends on the value of the effective diffusion coefficient
D∗

3 used in the 1-D model and the catalytical as well as the geometrical parameters
of the modelled biosensor. Values of all the parameters of the 1-D model excluding
only D∗

3 can be derived directly from the corresponding 2-D model. For a concrete
substrate concentrationS0, the effective diffusion coefficientD∗

3 can be expressed as a
value minimizing the relative errorηI ,

D∗

3(S0) = arg min
D

ηI(D, S0), 0 ≤ D ≤ max(D2, D3), (32)

where the upper value ofD comes from (23).
The minimization (32) can be achieved by changingD and solving the 1-D model

of the biosensor action using different valuesD of D∗

3 . In order to find the value ofD∗

3 in
the efficient way, the following procedure was introduced.

Let E∗ be an ordered sequence of triplets〈D∗

3,i, I
∗

i , T ∗

0.5,i〉, whereI∗i is the density
of the simulated stationary current,T ∗

0.5,i is the half-time of the steady state, andD∗

3,i

denotes the averaged diffusion coefficient used in the simulation, i = 1, 2, . . .. Each
triplet in the sequenceE∗ couples the parameters characterizing a concrete simulation of
the biosensor action by using 1-D model. The half-timeT ∗

0.5,i of the steady state response
stands for the dynamics of the biosensor action. The order inthis sequence is preserved
according to the following rule:D∗

3,i ≥ D∗

3,i+1, ∀i ≥ 1. The procedure of calculation of
D∗

3 is defined by the following steps:

1. Simulate the operation of a particular biosensor using the 2-D model. The steady
state current densityI and half-timeT0.5 of the steady state are results of this simu-
lation to be used in the next steps. Go to step 2.

2. Perform a preliminary variation of the effective diffusion coefficientD∗

3 . The biosen-
sor responses are simulated by using the 1-D model changing values ofD∗

3 ∈
[0, max(D2, D3)]. The simulation results are appended to the sequenceE∗. Let
M denote the number of elements inE∗. Go to step 3.

3. Construct a set of intervalsG = {[D∗

3,i+1, D
∗

3,i] : I∗i+1 ≤ I ≤ I∗i or I∗i+1 ≥ I ≥
I∗i , i ≥ 1}. If G = ∅ then go to step 4, otherwise go to step 6.

4. Findm (1 ≤ m ≤ M ) for which the difference|I∗m − I| is the minimal. If variation
of the effective diffusion coefficient of the adjacent elements in the sequenceE∗ is
small enough, i.e.(D∗

3,m−1 − D∗

3,m+1)/D∗

3,m < ǫ, then stop the procedure with
D∗

3,m as the output. Otherwise, go to step 5.

5. Simulate two more responses of the biosensor atD∗

3 = (D∗

3,m−1 + D∗

3,m)/2 and
D∗

3 = (D∗

3,m +D∗

3,m+1)/2, wherem comes from step 4. Append the corresponding
two triplets to the sequenceE∗ and go to step 3.

6. For each interval from the setG produced in step 3, apply the method of chords
(secants [27]) to find a number of values ofD∗

3 minimizing (32). Between them, find
k-th for which the corresponding difference|T0.5 − T ∗

0.5,k| is minimal. The output
of the procedure isD∗

3,k.
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In step 2, the preliminary variation of the effective diffusion coefficientD∗

3 can be
done in a number of different ways. In this work, it was achieved by simulating the
biosensor action by using the 1-D model at the values ofD∗

3 chosen as follows:

D∗

3,j =

{

max(D2, D3), j = 1;
D∗

3,j−1

2
, j = 2, . . . , N.

(33)

This sequence is constructed in the way to cover the entire domain of D∗

3 (0 < D∗

3 ≤
max(D2, D3)) and to find a smaller subdomain in which the value minimizingthe error
ηI exists. The result of each simulation is appended to the sequenceE∗. The prelimi-
nary variation is performed until the stationary current density I∗j starts to decrease and
becomes smaller thanI.

An application of the proposed procedure is illustrated in Fig. 3. The figure shows
values of the effective diffusion coefficientD∗

3 used in 1-D simulations and the cor-
responding steady state current densities. All the simulations were performed atr1 =
100 nm,r2 = 10 r1, z3 = z4, S0 = 3.3 mM and values defined in (30).

 0

 1

 2

 3

 4

 0.01  0.1  1  10  100

I*  (
nA

/m
m

2 )

D
*
3 (µm2/s)

Fig. 3. The stationary current densityI∗ versus the effective diffusion coefficientD∗

3

obtained by applying the procedure. The dashed line shows the stationary current
densityI obtained by using 2-D model,r1 = 100 nm (α = 0.01), z3 = z4 (β = 1),

S0 = 3.3 mM, values of all other parameters are as defined in (30).

Using 2-D simulation, we obtained the densityI of the stationary current of
2.76 nA/mm2. A half of the steady state current was reached at4.4 s, T0.5 = 4.4 s.
In Fig. 3, the horizontal dashed line shows the stationary current densityI calculated
by using 2-D model. This line crosses the curve drawn throughvalues of the effective
diffusion coefficient. Two crossing points represent the values of D∗

3 for which the
relative errorηI equals to0, i.e. at two values (0.07 and 1.8µm2/s) of D∗

3 the 1-D
simulation produces the stationary current identical to that calculated by using 2-D model,
I∗ = I. Having two values ofD∗

3 at whichηI = 0, we choose only one of them under
consideration of the response time. ApplyingD∗

3 = 0.07 µm2/s to 1-D simulation, the
half-time T ∗

0.5 was found to be191 s, while atD∗

3 = 1.8 µm2/s the timeT ∗

0.5 equals
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13.4 s. Since|4.4 − 191| > |4.4 − 13.4|, the resulting effective diffusion coefficientD∗

3

equals approximately 1.8µm2/s.
At this concrete geometry of the perforation (r1 = 0.1r2, α = 0.01) and the level of

filling the holes with the enzyme (z3 = z4, β = 1), the effective diffusion coefficientD∗

3

can be independently calculated from (27),D∗

3 = 0.01 * 300 = 3 (µm2/s). This value of
D∗

3 notably differs from that (1.8µm2/s) calculated by applying the procedure presented
in this section. Below we investigate this effect in details.

5 Results and discussion

In order to determine conditions under which the 1-D model (13)–(18) may be used
for accurate prediction of the biosensor response, a modelling error was investigated
at different geometries of the membrane perforation and catalytical parameters of the
biosensor. The modelling error was estimated by comparing the biosensor response
simulated by using 1-D model with the response obtained by using the corresponding
2-D model.

A concrete practical biosensor is usually used for analysing the substrate of different
concentrations. Because of this, it is important to evaluate the modelling error for a wide
range of the substrate concentrations. An application of the 2-D model for calculation
of the “true” biosensor response is an essential feature of the procedure to be used for
determination of the effective diffusion coefficientD∗

3 . The simulation of the biosensor
response supposes a particular concentration of the substrate. If the substrate concentra-
tion effects the modelling error then it is important to determine the concentration to be
used in the procedure when calculating a value ofD∗

3 . On the other hand, having a value
of D∗

3 , it is important to determine an interval of substrate concentrations for which the
value ofD∗

3 can be applied for accurate prediction of the response.
We introduce a relative error of 1-D modelling as follows:

ηS(SD, SV ) = ηI

(

D∗

3(SD), SV

)

, (34)

whereD∗

3 is the effective diffusion coefficient introduced by (32),SD is the substrate
concentration used in 2-D simulation when calculating the effective diffusion coefficient,
SV is the substrate concentration used in 1-D simulation.ηS can be called as a 1-D
modelling error arose because of an application ofD∗

3 for the prediction of the biosensor
response at the substrate concentrationSV .

The coefficientD∗

3 minimizes the relative errorηI for a particular substrate concen-
trationSD. ηS evaluates the error for any concentration (SV ) of the substrate. In order
to cover the entire range of the practical concentrations, the errorηS was evaluated for
∀SD ∈ Ŝ and∀SV ∈ Ŝ, whereŜ = {2k × 100 nM, k = 0, 1, . . . , 20}.

The 1-D model was validated for different values of the membrane perforation level
α (radiusr1 of the holes) and of the levelβ of filling the holes with the enzyme. The
level α was varied by changing the radiusr1 of the perforation holes, while the levelβ
was varied by changingz3 from z2 to z4. Values of all other parameters of the biosensor
action were kept constant.
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5.1 The effect of the level of filling the holes

In order to investigate the dependence of the relative errorηI on the levelβ of filing the
holes of the perforated membrane with the enzyme, the biosensor response was simulated
at the following three values ofβ: 0 (z3 = z2) when the holes were fully filled with
the buffer solution (no enzyme in the holes), 0.5 (z3 = (z2 + z4)/2) when the holes were
half-filled with the enzyme, and 1 (z3 = z4) when holes were fully filled with the enzyme.
Calculated values of the relative errorηS are depicted in the Fig. 4.
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Fig. 4. The relative errorηS at three levels (β) of the enzyme filling: 0 (a), 0.5 (b) and
1 (c);α = 0.01, values of all other parameters are as defined in (30).

The smallest relative errors were achieved in the case when there was no enzyme in
the holes (Fig. 4(a)). In this case,ηS was less than0.6 %. When the level of the enzyme
raises, a preciseness of the 1-D model decreases. In the casewhenβ = 1 (z3 = z4) the
relative error of the 1-D model reaches37 % (Fig. 4(c)). When the holes were half-filled
with the enzyme, the modelling error was less than15% (Fig. 4(b)).

Fig. 4 also shows the dependence of the errorηS on the substrate concentrationsSD

(used in 2-D simulation when calculating the effective diffusion coefficientD∗

3) andSV

(used in 1-D simulation). One can see in Fig. 4 that the relative errorηS is usually smaller
when 1-D model is applied for the substrate concentrationSV smaller than that (SD) used
in 2-D simulation for evaluation ofD∗

3 . Consequently, the substrate concentration used
to find the effective diffusion coefficient should be chosen larger than concentrations for
which the 1-D model will be applied.

Fig. 5 shows the relative errors in the same three cases of theenzyme filling, but
applying two different approaches for calculation of the effective diffusion coefficient
D∗

3 . The procedure defined in the previous section was the first approach (curves 1–3),
while the formula (27) was the second one (curves 4–6). When applying the procedure, a
practically maximal concentration (S0 = SD = 0.1 M) of the substrate was used. As one

98



Computational Modelling of Biosensors with an Outer Perforated Membrane

can see in Fig. 5, the relative errors are notable less forD∗

3 calculated by the procedure
rather than calculated analytically by (27). This propertyis especially bright when 1-D
model is applied at high concentrations of the substrate when the corresponding errors
differs in orders of magnitude.
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2
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4
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Fig. 5. The relative errorηI at three levels (β) of the enzyme filling: 0 (1, 4),
0.5 (2, 5) and 1 (3, 6). The effective diffusion coefficientD∗

3 was calculated by applying
the procedure atSD = 0.1 M (1–3) as well as by applying formula (27) (4–6).

5.2 The effect of the perforation level

In order to investigate the effect of the relative radiusα of the holes of the perforated
membrane, the biosensor response was simulated at the following three values ofα:
10−3 (r1 = 10−

3

2 r2), 10−2 (r1 = 10−1r2) and10−1 (r1 = 10−
1

2 r2). The holes of the
perforated membrane were assumed as fully filled with the enzyme, i.e.β = 1, z3 = z4.
Calculated values of the relative errorηS are depicted in Fig. 6.

One can see in Fig. 6 how the size of the holes influences the preciseness of the
1-D model. The maximal relative errorηS decreases when the relative radius of the holes
increases. In the case when the holes take only0.1% of the overall area of the membrane
surface (Fig. 6(a)), the maximal values ofηS exceed even540 %. In the case when
the area of the holes is10 % of the overall area (Fig. 6(c)), the relative errors are less
than 0.3 %. In the case ofα = 1 (r1 = r2), the perforated membrane becomes so
opened that it disappears at all, and the biosensor becomes asandwich-like multilayer
biosensor [2, 3, 17]. So, it is naturally that the errorηS decreases with an increase in the
level α. Fig. 6 also approves the previous decision that the substrate concentration used
to find the effective diffusion coefficient should be larger than concentrations for which
the 1-D model will be applied.

Fig. 7 compares the relative errors for two different approaches used for calculation
of the effective diffusion coefficientD∗

3 . When applying the procedure (curves 1–3), the
substrate concentrationS0 of 0.1 M was used. As one can see in Fig. 7 that in the cases
of relatively high perforation levels the relative errors are notable less forD∗

3 calculated
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by the procedure rather than calculated analytically by (27) (curves 2, 3, 5 and 6). In the
case of very low values ofα (curves 1, 4), the errors are relatively high and practically
does not depend on the approach ofD∗

3 calculation.
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Fig. 6. The relative errorηS at three levels (α) of the membrane perforation:10−3 (a),
10

−2 (b) and10
−1 (c); β = 1, Vmax = 100 nM/s, values of all other parameters are as

defined in (30).
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Fig. 7. The relative errorηI at three levels (α) of the membrane perforation:10−3 (1, 4),
10

−2 (2, 5) and10−1 (3, 6); The effective diffusion coefficientD∗

3 was calculated by
applying the procedure at the concentrationSD = 0.1 M (1–3) as well as by applying

formula (27) (4–6).
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6 Conclusions

The one-dimensional-in-space model (13)–(18) can be used to moderate simulation of the
operation of the biosensor with the perforated membrane. The preciseness of this model
depends on the geometry of the membrane perforation as well as on the level of filling the
holes with the enzyme. The relative error of the 1-D modelling decreases with a decrease
in the level of the enzyme in the holes of the perforated membrane (Fig. 4). The size of
the holes has inverse influence to the modelling preciseness(Fig. 6).

The two-dimensional-in-space model (3)–(5), (7)–(10) of the biosensor with the
perforated membrane can be used in order to find the value for the effective diffusion
coefficient for the following usage in 1-D simulation. To decrease the modelling error,
the substrate concentration used in the calculation of the effective diffusion coefficient
should be chosen larger than concentrations for which the 1-D model will be applied.

The 1-D model is especially an inaccurate when the holes of the perforated mem-
brane are very small (Figs. 6 and 7). In such cases the 2-D model should be used for an
accurate prediction of the biosensor response.
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