Nonlinear Analysis: Modelling and Control, 2009, Vol. 149N, 115-122

Numerical Analysis of the Eigenvalue Problem for
One-Dimensional Differential Operator with Nonlocal
Integral Conditions

S. Sajavtius!, M. Sapagovas

LFaculty of Mathematics and Informatics, Vilnius Univeysit
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
svajunas.sajavicius@mif.vu.lt

2|nstitute of Mathematics and Informatics
Akademijos str. 4, LT-08663 Vilnius, Lithuania
m.sapagovas@ktl.mii.lt

Received:2009-01-23 Published online: 2009-03-10

Abstract. In this paper the eigenvalue problem for one-dimensiorfééreintial operator
with nonlocal integral conditions is investigated numallic The special cases of general
problem are analyzed and hypothesis about the dependerthe spectral structure of
that problem on the coefficient of differential operator ahd parameters of nonlocal
conditions are formulated.
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1 Introduction. Statement of the problem

We consider the eigenvalue problem for one-dimensionfdrdifitial operator with given
nonlocal integral boundary conditions,

—dix(p(x)%) =X, O<z<l, 1)
1

u(0) = 'yo/u(m)dx, (2)
0

u(l) =m /u(:c)da:, 3)
0

wherep(z) > po > 0, 0,7 € R, and the corresponding eigenvalue problem for
difference operator. Such values dfthat problem (1)—(3) has the non-trivial solution
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u(z) # 0 are calledeigenvalues and set of all eigenvalues is callegectrum of the
problem.

The analysis of the spectrum of a difference operator wittoalatal conditions
permits us to analyze the stability of difference schemg2][Justify the convergence of
iterative methods for finite-difference equations [3, 4§ @also of interest in itself.

Whenp(z) = 1, 70 = 71 = 0, we get the well-known problem with classical
boundary conditions (see, e.g., [5]). The eigenvalues olf uoblem are real, positive
and simple:

Me = (k)% k=1,2,....

When, for exampley; # 0 and instead of classical boundary condition at the poiat 1
we have nonlocal Bitsadze-Samarskii type boundary canditi

U(l) = 71“(5); 0< 5 < 17

the spectral structure of the problem is more complicatedjest to parameterg and¢,
the eigenvalues can be both real (positive or non-posiind)complex numbers (see [6]).

In papers [7, 8] the eigenvalue problems for one-dimensidifi@rential operator
with p(z) = 1 and various nonlocal integral conditions are investigatadlytically.
However, such problems with a non-constant coefficigny are met in the literature
quite rarely and are considerably less investigated.

The main aim of the present paper is to investigate specsaiscaf problem (1)—(3)
numerically and to formulate the hypothesis about the dépece of qualitative structure
of the spectrum of the problem on coefficigiit:) and parameterg, 1.

The paper is organized as follows. In Section 2 we describditiite-difference
scheme and formulate equivalent eigenvalue problem farrémsition matrix. Technical
details and results of numerical analysis of the speciasasthe problem are presented
and discussed in Section 3. Some remarks in Section 4 canthedaper.

2 Problem discretization

To solve the differential problem (1)—(3), we can apply timité-difference method [5].
Let us define the uniform discrete grid on the interiall ):

wh=A{z;: 2y =ih,i=1,2,...,N—1, h=1/N}.
We approximate the differential problem (1)—(3) by thedaling finite-difference scheme:
_ Pi—1/2Uia — (Pi—1/2 + Pit1/2)Ui + Div1/2Uisa

3 = \U;, x; €wh, (4)
N—-1
Uy +U
Uy = voh <OTN + Ui) , (5)
=1
N—-1
Uy +U
UN—1h<“2N+ Uz>, (6)
=1
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wherep;1,/; = p(M)
We rewrite integral conditions (5) and (6) in the form of atsys of two linear

algebraic equations with unknowbg andU:

h h N—-1
<1 - WL) Uo — VLUN = 0h Z Ui,
e (7)
h ’ylh
—VLUOJr (1——)UN—’71hZU
=1
This system has a unique solution if its determinant is natétp zero, i.e.,
L Yoh o 0h
2 2
D= 0.
_mh o mh 7
2 2
If My = max {|vol,|71|} < oo and the grid step
1
h < — 8
<30 (8)
then
Yoh  mh Mih Mk
D=1-"—_-1">1- — =1-M .
2 2 = 2 2 th >0

We can write the solution of system (7) in the form

Uy = 7‘)h 7MN_1 .
0= Z Uy, Un= D Z U;.
i=1

Now we define the square matrix of ordeéy — 1)

bi+d0 a1+d g .. do do 0o
aq bg a9 0 0 0
0 as b3 e 0 0 0
A=h"2 ,
0 0 0 beg anN_3 0
0 0 0 ... aN_3 bN_g anN_—2
01 01 01 ... 01 an—2+d1 bn_1+d;
where
Yoh mh

a; = —Pit1/2s b; = *(%'71 + az‘% 0o = ap— D’ 0 = GN71?~

One can see, that the difference eigenvalue problem (4is-€gjuivalent to the eigenvalue
problem

AU = \U )

for the matrixA.
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3 Numerical results and discussion

3.1 Technical details of numerical analysis

In order to analyze the qualitative structure of the spectodithe differential eigenvalue
problem (1)—(3) numerically, the eigenvalue problem (9@ matrixA was solved. For
numerical analysis MATLAB (The MathWorks, Inc.) softwaragkage [9] was used.

Numerical experiments were executed with different typesoefficientp(z) and
various values of parameteys, 1. We executed series of numerical solution procedures
for problem (9) with concrete coefficienig2) and points(o, 1) from discrete set
selected in the rectangle with restrictions

% <W<Y%, Nn<m<n
In order to ensure the validity of inequality (8), in all nurival experiments we used
N =500, ~f=n~7=-500, A5 =n~7"=500.

Note that opportunities of symbolic calculations give ugeyafficient way to avoid
some undesirable effects of numerical calculations wheseating the behaviour of the
function

P(X\70,m1) = det (A — \E),

whereF is the identity matrix.
Now let us analyze a couple of cases of the coeffigi¢n}.

32 Caselip(z)=afz—Lz+(1+%), aa>—4

In this casep(x) are concave{4 < « < 0) or convex & > 0) and symmetrical in
respect of the line = 1/2 quadratic functions. Whea = 0, we have the well-known
casep(z) = 1 (see [7]).

The results of numerical analysis of the problem in Case b wit= —7/2, -3,
-2,-1,-1/2,1/2,1,2, 3,5, 10,50, 100, 500, 1000 allow us to formulate the following
generalization:

All the eigenvaluesin Case 1 of the considered problemare real numbers. If vo +v1 < 2,
then all eigenvalues are positive. When ~y + 1 = 2, the number A = 0 isan eigenvalue
of the problem. Lastly, there exists only one negative eigenvalue, when g + 1 > 2.

These results coincide with analytical results in ga@e = 1 (see [7]).
Note that whem = 0, the general solution of equation (1) in Case 1 is

u(x) = c1 + cparctan ((z — 1/2)v/a) (10)
and the condition, + v1 = 2 for A = 0 being an eigenvalue of the differential problem

can be easily derived analytically. Indeed, by substitusolution (10) into boundary
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conditions (2) and (3), we get the system of two linear algetequations with unknowns
¢ andcs:

(1 —~1)er + arctan (—v/a/2)co =0,

(1 —72)c1 + arctan (va/2)c; = 0.

Thus, this system has a unique solution if its determinaaqigal to zero, i.ey; +v2 = 2.

3.3 Case2:p(:c):a:c+(lf%), —2<a<?2, a#0

We have monotonically decreasingd < a < 0) or increasing{ < « < 2) linear
functionsp(z) in this case.

We numerically analyzed problem with = —3/2,-1,—-1/2,1/2,1,3/2. The
results of analysis are presented in Fig. 1.

When\ = 0, the general solution of equation (1) in Case 2 is

1 2—«

u(z) =c1+ c2 n(:c+ 50 )

As marked in all graphs of Fig. 1, in this case the problem ligengalue\ = 0 when
parametersy and~; belongs to the straight line, which is denoted as dashedUsig
the same technique as in Case 1, it is easy to make sure, thatdiya, —2 < a < 2,
« # 0, the equation of the certain straight line is

2 —

9 _
a a+2a)71:2a1n
o 2

((a—Q)ln;J_ra —2a)70+ ((a+2)1n2+

«

o (11)
When~, and~; are located somewhere above the straight line in the natl@zction
from the origin of coordinates, the considered problem hastty one negative eigen-
value.

The parameters, and~; when exists non-negative multiple eigenvalue are located
on the hyperbola-like curves. As we can see from Fig. 1, tihections of branches
of hyperbolas are different in cases of decreasing andasarg functiong(x). Each
hyperbola divide the coordinate plaiigy, 1) into three unbounded regions. All the
eigenvalues are real, when poinf, 1) belongs to the region between two branches
of the hyperbola. However, whefy,,~1) belongs to one of two other regions, the
considered problem has complex eigenvalue.

The structure of the spectrum is rather complicated whempé#nameters, and~;
are located near one of the half-branches of the hyperbetaqadrants in the southeast
and the northwest directions from the origin of coordinategraphs Fig. 1(a), 1(b), 1(c)
and Fig. 1(d), 1(e), 1(f), respectively). Whém, v1) belongs to the region between the
dashed straight line and the ray which start point lies int $iti@ight line and which is
denoted as dash-dot line with circles in the graphs of Fighére exist two negative
eigenvalues. Moreover, whepg and~; are located somewhere between two rays which
are denoted as dotted line with crosses and dash-dot lifeawitles, the considered
problem has conjugate complex eigenvalues with negatalgeaats.
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Fig. 1. The structure of the spectrum of the problem in Casda:ac = —3/2;
b)a = -1, ©a = -1/2; o = 1/2;, €)a = 1; ) a = 3/2.

The considered problem has complex eigenvalues with re&d paual to zero, two
negative eigenvalues, non-negative multiple eigenvalueigenvalue equal to zero

when parameters, and-y; are located on dotted curves with crosses-( + - - - -),
dashed-dot curves with circles-(- — o — - —), solid curves with asterisks (—«—)
and dashed curves (- ———— ), respectively.
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Now let us generalize the results of numerical analysis®fttoblem in Case 2:

Subject to nonlocal boundary conditions parameters ~o and ~1, both real and complex
numbers can be eigenvalues of the problem in Case 2. The problem has multiple non-
negative eigenvalues when ~, and ~; belongs to the hyperbola-like curves. Parameters
~o and v1, when A\ = 0 is an eigenvalue of the problem, are located on the straight line
(see equation (11)). In addition, there exist such values of v, and ~; that considered
problem has one or two negative eigenvalues or complex eigenvalues with non-positive
real parts.

4 Conclusions

The results of numerical analysis allow us to make the fahaveonclusions:

e We can investigate the general problem (9) in particulaes@nd formulate hypo-
thesis about the qualitative structure of the spectrumisfiitoblem when using the
technique of numerical analysis.

e Despite the fact that in particular cases the qualitativecttire of the spectrum
is simple, in general case this structure can be rather doatptl as well as the
qualitative behaviour of eigenvalues: depending on tharpatersy, and~; both
real numbers (positive or non-positive) and complex numbeith positive or non-
positive real parts) can be eigenvalues of the problem.
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