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Abstract. In this paper the eigenvalue problem for one-dimensional differential operator
with nonlocal integral conditions is investigated numerically. The special cases of general
problem are analyzed and hypothesis about the dependence ofthe spectral structure of
that problem on the coefficient of differential operator andthe parameters of nonlocal
conditions are formulated.
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1 Introduction. Statement of the problem

We consider the eigenvalue problem for one-dimensional differential operator with given
nonlocal integral boundary conditions,

− d

dx

(

p(x)
du

dx

)

= λu, 0 < x < 1, (1)

u(0) = γ0

1
∫

0

u(x) dx, (2)

u(1) = γ1

1
∫

0

u(x) dx, (3)

wherep(x) > p0 ≥ 0, γ0, γ1 ∈ R, and the corresponding eigenvalue problem for
difference operator. Such values ofλ that problem (1)–(3) has the non-trivial solution
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u(x) 6≡ 0 are calledeigenvalues and set of all eigenvalues is calledspectrum of the
problem.

The analysis of the spectrum of a difference operator with a nonlocal conditions
permits us to analyze the stability of difference schemes [1,2], justify the convergence of
iterative methods for finite-difference equations [3,4] and is also of interest in itself.

When p(x) ≡ 1, γ0 = γ1 = 0, we get the well-known problem with classical
boundary conditions (see, e.g., [5]). The eigenvalues of such problem are real, positive
and simple:

λk = (kπ)2, k = 1, 2, . . . .

When, for example,γ1 6= 0 and instead of classical boundary condition at the pointx = 1
we have nonlocal Bitsadze-Samarskii type boundary condition

u(1) = γ1u(ξ), 0 < ξ < 1,

the spectral structure of the problem is more complicated: subject to parametersγ1 andξ,
the eigenvalues can be both real (positive or non-positive)and complex numbers (see [6]).

In papers [7, 8] the eigenvalue problems for one-dimensional differential operator
with p(x) ≡ 1 and various nonlocal integral conditions are investigatedanalytically.
However, such problems with a non-constant coefficientp(x) are met in the literature
quite rarely and are considerably less investigated.

The main aim of the present paper is to investigate special cases of problem (1)–(3)
numerically and to formulate the hypothesis about the dependence of qualitative structure
of the spectrum of the problem on coefficientp(x) and parametersγ0, γ1.

The paper is organized as follows. In Section 2 we describe the finite-difference
scheme and formulate equivalent eigenvalue problem for thetransition matrix. Technical
details and results of numerical analysis of the special cases of the problem are presented
and discussed in Section 3. Some remarks in Section 4 conclude the paper.

2 Problem discretization

To solve the differential problem (1)–(3), we can apply the finite-difference method [5].
Let us define the uniform discrete grid on the interval(0, 1):

ωh = {xi : xi = ih, i = 1, 2, . . . , N − 1, h = 1/N}.
We approximate the differential problem (1)–(3) by the following finite-difference scheme:

− pi−1/2Ui−1 − (pi−1/2 + pi+1/2)Ui + pi+1/2Ui+1

h2
= λUi, xi ∈ ωh, (4)

U0 = γ0h

(

U0 + UN

2
+

N−1
∑

i=1

Ui

)

, (5)

UN = γ1h

(

U0 + UN

2
+

N−1
∑

i=1

Ui

)

, (6)
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wherepi±1/2 = p(xi+xi±1

2
).

We rewrite integral conditions (5) and (6) in the form of a system of two linear
algebraic equations with unknownsU0 andUN :



























(

1 − γ0h

2

)

U0 −
γ0h

2
UN = γ0h

N−1
∑

i=1

Ui,

− γ1h

2
U0 +

(

1 − γ1h

2

)

UN = γ1h

N−1
∑

i=1

Ui.

(7)

This system has a unique solution if its determinant is not equal to zero, i.e.,

D =

∣

∣

∣

∣

∣

∣

∣

1 − γ0h

2
−γ0h

2

−γ1h

2
1 − γ1h

2

∣

∣

∣

∣

∣

∣

∣

6= 0.

If M1 = max {|γ0|, |γ1|} < ∞ and the grid step

h <
1

M1

, (8)

then

D = 1 − γ0h

2
− γ1h

2
≥ 1 − M1h

2
− M1h

2
= 1 − M1h > 0.

We can write the solution of system (7) in the form

U0 =
γ0h

D

N−1
∑

i=1

Ui, UN =
γ1h

D

N−1
∑

i=1

Ui.

Now we define the square matrix of order(N − 1)

A = h−2





















b1 + δ0 a1 + δ0 δ0 . . . δ0 δ0 δ0

a1 b2 a2 . . . 0 0 0
0 a2 b3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . bN−3 aN−3 0
0 0 0 . . . aN−3 bN−2 aN−2

δ1 δ1 δ1 . . . δ1 aN−2 + δ1 bN−1 + δ1





















,

where

ai = −pi+1/2, bi = −(ai−1 + ai), δ0 = a0

γ0h

D
, δ1 = aN−1

γ1h

D
.

One can see, that the difference eigenvalue problem (4)–(6)is equivalent to the eigenvalue
problem

AU = λU (9)

for the matrixA.
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S. Sajavičius, M. Sapagovas

3 Numerical results and discussion

3.1 Technical details of numerical analysis

In order to analyze the qualitative structure of the spectrum of the differential eigenvalue
problem (1)–(3) numerically, the eigenvalue problem (9) for the matrixA was solved. For
numerical analysis MATLAB (The MathWorks, Inc.) software package [9] was used.

Numerical experiments were executed with different types of coefficientp(x) and
various values of parametersγ0, γ1. We executed series of numerical solution procedures
for problem (9) with concrete coefficientsp(x) and points(γ0, γ1) from discrete set
selected in the rectangle with restrictions

γ∗

0 < γ0 < γ∗∗

0 , γ∗

1 < γ1 < γ∗∗

1 .

In order to ensure the validity of inequality (8), in all numerical experiments we used

N = 500, γ∗

0 = γ∗

1 = −500, γ∗∗

0 = γ∗∗

1 = 500.

Note that opportunities of symbolic calculations give us quite efficient way to avoid
some undesirable effects of numerical calculations when observing the behaviour of the
function

P (λ; γ0, γ1) = det (A − λE),

whereE is the identity matrix.
Now let us analyze a couple of cases of the coefficientp(x).

3.2 Case 1:p(x) = α(x − 1)x +
(

1 + α
4

)

, α > −4

In this casep(x) are concave (−4 < α < 0) or convex (α > 0) and symmetrical in
respect of the linex = 1/2 quadratic functions. Whenα = 0, we have the well-known
casep(x) ≡ 1 (see [7]).

The results of numerical analysis of the problem in Case 1 with α = −7/2,−3,
−2,−1,−1/2, 1/2, 1, 2, 3, 5, 10, 50, 100, 500, 1000 allow us to formulate the following
generalization:

All the eigenvalues in Case 1 of the considered problem are real numbers. If γ0 + γ1 < 2,
then all eigenvalues are positive. When γ0 + γ1 = 2, the number λ = 0 is an eigenvalue
of the problem. Lastly, there exists only one negative eigenvalue, when γ0 + γ1 > 2.

These results coincide with analytical results in casep(x) ≡ 1 (see [7]).
Note that whenλ = 0, the general solution of equation (1) in Case 1 is

u(x) = c1 + c2 arctan
(

(x − 1/2)
√

α
)

(10)

and the conditionγ0 + γ1 = 2 for λ = 0 being an eigenvalue of the differential problem
can be easily derived analytically. Indeed, by substituting solution (10) into boundary
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conditions (2) and (3), we get the system of two linear algebraic equations with unknowns
c1 andc2:

{

(1 − γ1)c1 + arctan
(

−
√

α/2
)

c2 = 0,

(1 − γ2)c1 + arctan
(√

α/2
)

c2 = 0.

Thus, this system has a unique solution if its determinant isequal to zero, i.e.γ1+γ2 = 2.

3.3 Case 2:p(x) = αx +
(

1 − α
2

)

, −2 < α < 2, α 6= 0

We have monotonically decreasing (−2 < α < 0) or increasing (0 < α < 2) linear
functionsp(x) in this case.

We numerically analyzed problem withα = −3/2,−1,−1/2, 1/2, 1, 3/2. The
results of analysis are presented in Fig. 1.

Whenλ = 0, the general solution of equation (1) in Case 2 is

u(x) = c1 + c2 ln

(

x +
2 − α

2α

)

.

As marked in all graphs of Fig. 1, in this case the problem has eigenvalueλ = 0 when
parametersγ0 andγ1 belongs to the straight line, which is denoted as dashed line. Using
the same technique as in Case 1, it is easy to make sure, that for everyα, −2 < α < 2,
α 6= 0, the equation of the certain straight line is

(

(α − 2) ln
2 − α

2 + α
− 2α

)

γ0 +

(

(α + 2) ln
2 − α

2 + α
+ 2α

)

γ1 = 2α ln
2 − α

2 + α
. (11)

Whenγ0 andγ1 are located somewhere above the straight line in the northeast direction
from the origin of coordinates, the considered problem has exactly one negative eigen-
value.

The parametersγ0 andγ1 when exists non-negative multiple eigenvalue are located
on the hyperbola-like curves. As we can see from Fig. 1, the directions of branches
of hyperbolas are different in cases of decreasing and increasing functionsp(x). Each
hyperbola divide the coordinate plane(γ0, γ1) into three unbounded regions. All the
eigenvalues are real, when point(γ0, γ1) belongs to the region between two branches
of the hyperbola. However, when(γ0, γ1) belongs to one of two other regions, the
considered problem has complex eigenvalue.

The structure of the spectrum is rather complicated when theparametersγ0 andγ1

are located near one of the half-branches of the hyperbola (see quadrants in the southeast
and the northwest directions from the origin of coordinatesin graphs Fig. 1(a), 1(b), 1(c)
and Fig. 1(d), 1(e), 1(f), respectively). When(γ0, γ1) belongs to the region between the
dashed straight line and the ray which start point lies in that straight line and which is
denoted as dash-dot line with circles in the graphs of Fig. 1,there exist two negative
eigenvalues. Moreover, whenγ0 andγ1 are located somewhere between two rays which
are denoted as dotted line with crosses and dash-dot line with circles, the considered
problem has conjugate complex eigenvalues with negative real parts.
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Fig. 1. The structure of the spectrum of the problem in Case 2:(a) α = −3/2;
(b) α = −1; (c) α = −1/2; (d) α = 1/2; (e) α = 1; (f) α = 3/2.
The considered problem has complex eigenvalues with real parts equal to zero, two
negative eigenvalues, non-negative multiple eigenvalue or eigenvalue equal to zero
when parametersγ0 andγ1 are located on dotted curves with crosses (· · · · + · · · ·),
dashed-dot curves with circles (− · − ◦ − · −), solid curves with asterisks (—–∗—–)

and dashed curves (– – – – –), respectively.
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Now let us generalize the results of numerical analysis of the problem in Case 2:

Subject to nonlocal boundary conditions parameters γ0 and γ1, both real and complex
numbers can be eigenvalues of the problem in Case 2. The problem has multiple non-
negative eigenvalues when γ0 and γ1 belongs to the hyperbola-like curves. Parameters
γ0 and γ1, when λ = 0 is an eigenvalue of the problem, are located on the straight line
(see equation (11)). In addition, there exist such values of γ0 and γ1 that considered
problem has one or two negative eigenvalues or complex eigenvalues with non-positive
real parts.

4 Conclusions

The results of numerical analysis allow us to make the following conclusions:

• We can investigate the general problem (9) in particular cases and formulate hypo-
thesis about the qualitative structure of the spectrum of this problem when using the
technique of numerical analysis.

• Despite the fact that in particular cases the qualitative structure of the spectrum
is simple, in general case this structure can be rather complicated as well as the
qualitative behaviour of eigenvalues: depending on the parametersγ0 andγ1 both
real numbers (positive or non-positive) and complex numbers (with positive or non-
positive real parts) can be eigenvalues of the problem.
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