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Abstract. We consider two mathematical models which describe theplang shear
deformation of a piezoelectric cylinder in adhesive conteith a rigid foundation. The
material is assumed to be electro-viscoelastic in the fistlehand electro-elastic in
the second one. In both models the process is quasistatiptindation is electrically
conductive and the adhesion is described with a surfacahlarithe bonding field. We
derive a variational formulation of the models which is givgy a system coupling two
variational equations for the displacement and the etepwiential fields, respectively,
and a differential equation for the bonding field. Then wevprthe existence of a unique
weak solution to each model. We also investigate the behafithe solution of the
electro-viscoelastic problem as the viscosity convergegto and prove that it converges
to the solution of the corresponding electro-elastic pobl

Keywords: antiplane shear, quasistatic process, electro-elastiteriak electro-
viscoelastic material, contact process, adhesion, fixéed,pseak solution.

1 Introduction

The present paper is devoted to the study of quasistatipland contact problems with
adhesion for piezoelectric cylinders. Our interest is tespnt two problems in which
both antiplane shear, contact, adhesion and piezoeleffdct are involved, to prove
their unique solvability, and to study their link by prowigia convergence result.
Antiplane shear deformations are one of the simplest exesrgfldeformations that
solids can undergo: in antiplane shear of a cylindrical bty displacement is parallel
to the generators of the cylinder and is independent of th& awordinate. For this
reason, considerable attention has been paid to the mugleflisuch kind of problems,
see for instance [1-3]. Antiplane frictional contact pehk were used in geophysics
in order to describe pre-earthquake evolution of the regioihhight tectonic activity,
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see for instance [4, 5] and the references therein. The mmaitieal analysis of various
models for antiplane frictional contact problems can bentbin [6—8] and in the recent
monograph [9].

Piezoelectric materials are characterized by the couplgtgveen the mechanical
and electrical properties, see [10-12] and the refereegein. This coupling leads to
the appearance of electric potential when mechanicalssisegresent and, conversely,
mechanical stress is generated when electric potentiplieal. Piezoelectric materials
for which the mechanical properties are elastic are calledt®-elastic materials and
those for which the mechanical properties are viscoelasiccalled electro-viscoelastic
materials. Antiplane contact problems for piezoelectriatenials were considered in
[13-16]. In [13, 15, 16] the contact was assumed to be frieiand in [14] is was
assumed to be adhesive.

Processes of adhesion are important in many industriéhgstivhere parts, usually
nonmetallic, are glued together. For this reason the adhesintact between bodies
has recently received increased attention in the liteeat@eneral models can be found
in [17, 18] and the mathematical analysis of various adlgesontact problems can be
found in [19-23]. Existence and uniqueness results in thdysof mathematical models
which describes the adhesive contact of piezoelectric niaggevere obtained recently
in [24, 25], in the three-dimensional framework.

The present paper represents a continuation of [14]. Tlaeneathematical model
which describes the antiplane shear deformation of a pleeti cylinder in adhesive
contact with a rigid foundation was considered. The matergs assumed to be electro-
viscoelastic and the process was assumed to be mechardgalynic. An existence
and uniqueness result of the solution to the model was adaddily using arguments of
evolution equations with monotone operators and fixed p&intike [14], in the present
paper we model the material’s behavior by an electro-visstie constitutive law or by
an electro-elastic constitutive law; also, we neglect trertial term in the equation of
motion and, therefore, we assume that the process is mesliigigjuasistatic. This leads
to consider two mathematical models, different from thadiitd in [14], which represents
the first trait of novelty of this paper. We derive the vanatil formulation of the models
and then we prove the existence of a unique weak solutioredon model. In addition,
we study the link of the two models and provide a convergeltiestich consists the
second trait of novelty of this paper.

The rest of the paper is structured as follows. In Section prgeent the models for
the antiplane adhesive contact of piezoelectric cylindBngn we introduce the notation,
list the assumptions on problem’s data and derive the vanialt formulation of each
model. In Section 3 we study the electro-viscoelastic pobfor which we state and
prove an existence and uniqueness result, Theorem 1. linBdcive state and prove an
existence and uniqueness result for the electro-elasildgam, Theorem 2. The proof of
both theorems are carried out in several steps by constgiictiermediate problems for
the displacement field, the electric potential and the bapéleld. We prove the unique
solvability of the intermediate problems, then we consaleontraction mapping whose
unique fixed point leads us to construct the solution of thgimal problem. Finally, in
Section 5 we provide a convergence result, Theorem 3. ksstagt the solution of the
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electro-viscoelastic problem converges to the solutiothefelectro-elastic problem as
the viscosity converges to zero.

2 Statement of the problems

We consider a piezoelectric body which occupies a redforc R3, in a fixed and
undistorted reference configuration. We assume tha a cylinder with generators
parallel to thexs-axes with a cross-section which is a regular donfaim the z;, x5
plane, Oz z2x3 being a cartesian coordinate system. The cylinder is assumée
sufficiently long so that the end effects in the axial directare negligible. Thus3 =

Q x (—o0,+00). The cylinder is acted upon by body forces and electric cardt is
also constrained mechanically and electrically on the damn To describe the boundary
conditions we denote by} = I the boundary of) and we assume a partition of
I" into three open disjoint parts;, I's andI's, on the one hand, and a partition of
I'y U Ty into two open part$', andl', on the other hand, such that the one-dimensional
measure of'; andT’',, denoted bymeas I’y andmeasT,, are positive. The cylinder is
clamped ol'; x (—o0,+00) and therefore the displacement field vanishes there. We
assume that surface tractions acfionx (—oo, +00), the electrical potential vanishes on
I, x (—oo, +00) and a surface electrical charge is prescribeffpr (—oo, +00). Also,

the cylinder is in contact ovét; x (—oo, +00) with a conductive obstacle, the so called
foundation; the contact is adhesive and it is modelled wihréace internal variable, the
bonding field. We assume that the process is mechanicallsisjatc, i.e. we neglect
the inertial term in the equation of motion; moreover, wesidar the antiplane context
described in [14], in which the evolution of the cylindertate does not depend on the
axial coordinate and is described by functions defined om:the, plane.

We denote byl" > 0 the time interval of interest; everywhere in this paper the d
above represents the derivative with respect to the tiraeqi—= %, and the index that
follows a comma represents the partial derivative with eeso the corresponding spatial
variable, i.ex ; = 597“ i =1, 2. We denote by, v, the components of the unit normal
onI" and we use the notation

divr =71+ 1 for r= (Tl(ml,mg,t),Tg(ml,mg,t)),
Vv =(v1,v2), Ov=v1v1+vory for v=uv(x1,xs,t).

For the first problem we assume that the material is eledsoeelastic. Then,
following the arguments in [14], it follows that the probleran be formulated as follows.

Problem P. Find a displacement field: 2 x [0,7] — R, an electric potentialy:
Q x [0,T] — R and a bonding fielgs: I's x [0, 7] — R such that

div(0Vu + pVu+eVe) + fo =0 in Qx (0,7), (1)
div(eVu — aVp) = ¢ in Qx(0,7) 2
u=0 on I'y x (0,T), 3)
=0 on Ty, x (0,7). 4)
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00,u + pdy,u + edy,p = fo on I'y x (0,7), (5)
ed,u — ady,p = qp on I'y, x (0,7, (6)
— (00,4 + pdyu + edyp) = p(B)R(u) on I's x (0,T), )
edyu — adyp = k(p — pr) on I'; x (0,7), (8)
B=—(vBR(u)* —ea) on Tz x (0,7), ©)
u(0) = ug in Q, (10)
3(0) = Bo on Ts;. (11)

We now describe problem (1)—(11) and provide a brief exglanaf the equations
and the boundary conditions. More details can be found iivb#ére the dynamic version
of ProblemP was considered.

Equations (1) and (2) represent the balance equations inhwhis a viscosity
coefficient, i is the the Lamé coefficienty is the electric permittivity constant and
is a piezoelectric coefficient. Hepfy andg, represent the axial component of the body
force and the electric charge density, respectively. We timdt equation (1) is obtained
from the equation of motion by neglecting the inertial temmd ave use it since the process
is assumed to be mechanically quasistatic. Conditionsn(@)4) represent the boundary
conditions for the displacement and the electrical potéfigld and prescribe that these
variables vanish o'y andT’,, respectively, during the process. Conditions (5) and (6)
represent the traction and electrical conditionIgnandI',, respectively, in whichf;
andg, represent the densities of the axial component of the tnaétirce and the electric
charge, respectively.

Condition (7) represents the traction condition on the aoinsurfacd’s and we use
it since the contact is adhesive. Heris a given function and is the real valued function
defined by

—L fuv<L,
R(v) = v if |v| <L, (12)
L if v>L.

with L > 0 being a characteristic length of the bonds, see e.g. [18blldws from (7)
that the shear of the contact surface depends on the bondldgafid on the tangential
displacement, but only up to the bond lendgih The frictional tangential traction is
assumed to be much smaller than the adhesive one and, tteei@fatted.

Condition (8) represents the electrical conductivity oa ttontact surface, where
pr represents the electric potential of the foundation ansl the electric conductivity
coefficient. This condition shows that the normal compomwéitte electric displacement
field is proportional to the difference between the potémiathe foundation and the
body’s surface. We use it since the foundation is electyicainductive and the shear is
antiplane, which implies that there is no loss of the cordacing the process.

The differential equation (9) describes the evolution & Honding field in which
~ ande, are given adhesion coefficient8,is defined by (12) and; = max {r,0}. In
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(9) and below we use the simplified notatifitu)? for the square of2(u), i.e. R(u)? =
(R(u))?. We note that the adhesive process described by (9) is isible; indeed, once
debonding occurs, bonding cannot be reestablished, 8ircé. Considering a condition
which allows the adhesive process for rebonding would erean important extension
of the results in this paper.

Finally, (10) and (11) represent the initial conditions ihieh uq and 3, are the
prescribed initial displacement and bonding fields, retpaly.

For the second problem we assume that the material is elefetstic, i.e. the visco-
sity coefficient vanishes. Therefore, we remove the in@g@idition for the displacement
field and taked = 0 in ProblemP, to obtain the following problem.

Problem Q. Find a displacement field: © x [0,7] — R, an electric potentialp:
Q x [0,T] — R and a bonding fielgs: T's x [0, 7] — R such that

div(uVu+eVp)+ fo =0 in Qx(0,7), (13)
div (eVu — aVy) = qo in Qx(0,7), (14)
w=0 on I'y x (0,7), (15)
=0 on T', x (0,7), (16)
1yu+ ey = fo on I'y x (0,7), (17)
Ayt — adyp = qp on I'y x (0,T), (18)
— (u0yu + edyp) = p(B)R(u) on Tz x (0,7), (19)
edyu — adyp = k(p — @r) on I'z x (0,7), (20)
B=—(vBR(u)® — €a)+ on I'z x (0,7) (21)
B(0) = Bo on I's. (22)

We turn now to the variational formulation of the ProblebfhandQ. To this end we
introduce the function spaces

V={veH'(Q): v=00nTi}, W={ypeH (Q): »=0onT,}
where, here and below, we write for the trace ol of a functionw € H'(Q2). Since

meas'y > 0 andmeasT', > 0, it is well known thatl” andW are real Hilbert spaces
with the inner products

(u,v)V:/Vu-Vvdx Yu,v €V,
Q

(%¢)W:/Vg0-vwdm Yo, € W.
Q

Moreover, the associated norms

[ollv = [[VullL2 @2 Yo eV, ldllw = IVYllz2 @2 V¢ € W (23)
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are equivalentwith the usual noiifvi| ;1 (. Also, by Sobolev’s trace theorem we deduce
that there exists positive constants > 0, ¢y > 0 such that

[vll2(rgy < evllollv Yo eV, [¥llLars) < cwllvllw Vi e W. (24)
For a real Banach spadeX, || - ||x) we use the usual notation for the spaces
LP(0,T; X) andWkP(0,T; X) wherel < p < oo, k = 1,2,...; we also denote by

C([0,T); X) andC*([0, T]; X ) the spaces of continuous and continuously differentiable
functions on[0, T'] with values inX, respectively, with the norms

lulleqo,m;x) = max [[u(t)]x,

te[0,T]
1 X)) = t 1(t .
lullenomixy = mase u(®)lx + e [a(0)]1x

Finally, we use the set
Z={0eC([0,T;L*(T3)): 0<0(t)<1Vtel0,T], a.e.onls}

and we recall that ifX is reflexive, therV1:°°(0,T; X) is the space of Lipschitz con-
tinuous functions defined df, T'] with values inX.

We list now the assumptions on the problem'’s data. We asshatette viscosity
coefficient and the electric permittivity coefficient sétis

6 € L*(2) and there exist®* > 0 suchthatf(z) > 6* ae.x e, (25)
a € L*™°(Q2) and there existsy® > 0 such thata(z) > o* a.e.x € Q. (26)

We also assume that the Lamé coefficient and the piezoieleogfficient satisfy

pweL>®(Q) and p(x) >0 ae.x e (27)
e € L>®(Q). (28)

The tangential functiop is such that

@ p: T's xR — Ry.
(b) There existd.,, > 0 such that

Ip(x, B1) — p(x, B2)| < Lp|B1 — B2| VB1,B2 €R, ae.xels. (29)
(c) There existsM > 0 suchthat|p(z,5)| < M VG €eR, ae.xcTls;.
(d) The mappingz — p(x,3) is measurable oi’s V3 € R.

The adhesion coefficientsande, satisfy the conditions

v € L>*T3) and ~(x) >0 a.e.x e, (30)
€ € L2(T'3) and e,(x) >0 ae.x €T3 (31)
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The forces, tractions, volume and surface free chargestaaisave the regularity

fo e WHe(0,T;L*(2)), fo € WH™(0,T; L*(I'2)), (32)
q € W (0,T5L%(Q)), @ € WH™(0,T; L*(Iy)), (33)

and the electric conductivity coefficient satisfies
ke L*(T3) and k(x)>0 ae.xcl;. (34)

Finally, we assume that the electric potential of the fodiodeand the initial data
are such that

PF € WLOO (Oa Ta L2(Fd>)a (35)
ug €V, (36)
Bo € L*(T'3), 0<fo(x) <1 ae.xcTs. (37)

Next, we define bilinear formsy: VxV — R,a,: VxV = R,a.: VxW — R,
al: W xV —Randay,: W x W — R by equalities

ag(u,v) = /HVU-VU dz, (38)
Q

au(u,v) = /uVu~Vvd:r, (39)
Q

au9) = [ Vu- Vpds = ai(pun), (40)
Q

aa(p, ) = [ aVe - Vipde + [ keydz, (41)
[emerme]

forall u, v € V, p, vbp € W. Assumptions (25)—(28) and (34) imply that the integrals
above are well defined and, using (23) and (24), it follows tha formsay, a,, a., a}

€

anda,, are continuous; moreover, the forms a,, anda,, are symmetric and, in addition,
the formay is V-elliptic and the forma,, is W-elliptic, i.e.

ap(v,v) > 00|} Yo eV, (42)
aa(V) = a"[[Ylliy Vo e W. (43)

We also define the mappings

f:00,T) =V, ¢[0,T]—W and j:L*T3)xV xV —R,
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respectively, by

(f@),v), = [ fo)vdz+ [ f2(t)vda, (44)

(00, 9), = [ awde— [aywdat [keorpda, (45)
o= [woie= [otvins |

J(8,v,w) = / p(B)R(w)w da, (46)

forallv, w € V, ¢y € W, 8 € L?(I'3) andt € [0, T]. The definition off andgq is based
on Riesz’s representation theorem; moreover, it followaf(32)—(35) that

fewh=(0,T;V), (47)
q € Whe(0,T;W). (48)

Next, we perform integrals par parts and use notation (38)-(44)—(46) to obtain
the following variational formulation of the electro-viselastic Problen®.

Problem Py . Find a displacement field: [0,7] — V, an electric potential fieldo:
[0, 7] — W and a bonding fielgd: [0, 7] — L?(I'3) such that, for all € [0, 77,

agy (ﬁ(t), w) +a, (u(t), w) +al (cp(t), w) Jrj(ﬂ(t),u(t), w)

(49)
= (f(t),w),, YweV,
ao (1), ¥) = ae(u(t), ) = (q(t),¥),, VYW, (50)
B(t) = — (VB R(u®)” — )., (51)
and
w(0) = ug, B(0) = fo. (52)

Similar arguments lead to the following variational fortibn of the electro-elastic
ProblemQ.

Problem Qy. Find a displacement field: [0,7] — V, an electric potential fieldp:
[0,T] — W and a bonding fielgs: [0, 7] — L?(T'3) such that, for alk € [0, T7,

ap (u(t), w) +al(p(t), w) + 5 (B(t), u(t), w) = (f(t),w),, YweV, (53)

aa (p(t), ) — ac(u(t), ) = (¢(t),¥),, Y eW, (54)

B(t) = — (VB R(u(t)” — ca) , (55)
and

B(0) = Bo. (56)

Well-posedness of the variational Probleidg and Qy will be proved in Theo-
rems 1 and 2 below. We conclude by these theorems the exéstdre uniqueweak
solutionto Problems andQ), respectively.
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3 Study of the electro-viscoelastic problem

Our main existence and uniqueness result in the study Rndbjeis the following.

Theorem 1. Assume tha{25)(37) hold. Then, there exists a unique solution of
Problem(49)-52). Moreover, the solution satisfies

ue Wr>(0,T;V), (57)
p € Wh(0,T; W), (58)
BewWh>(0,T;L*(T3)) N Z. (59)

The proof of Theorem 1 will be carried out in several stepsiabdsed on arguments
similar to those used in [14]. The modifications arise mainlthe treatment of the vari-
ational equation (49) since, unlike [14], here the processsumed to be mechanically
guasistatic. The treatment of the variational equatioh §sQvell as that of the differential
equation (51) is similar to that in [14] and, for this reasasm, omit the corresponding
details. We assume in what follows that (25)—(37) hold anldvwen this section we
denote by a generic positive constant which may dependivy, I's, I's, Ty, T, 0, 1,

e, a p, L andT, but does not depend on the time, nor on the rest of the infat dad
whose value may change from place to place.

Letn € C([0,T]; V) be given. The first step of the proof is given by the following
existence and unigueness result for the displacement field.

Lemma 1. There exists a unique functiar, € C*([0,77]; V) such that
ag (iy(t), w) + (n(t),w),, = (f(t),w),, YweV, te[0,T], (60)
Uy (0) = Uug. (61)

Proof. We use the properties of the bilinear forg and the Lax-Milgram lemma to see
that, for all¢ € [0, T'], there exists a unique elemenf(t) € V such that

ag (vn(t), w) + (n(t),w),, = (f(t),w),, YweV. (62)
Consider nowt, t2 € [0, T]; using (62) and (42) we find that
0% [log(t1) — vn(t2)llv < lIn(tr) = n(t2)llv +[1f(t1) = f(t2)llv- (63)

We note that regularity of andn combined with (63) imply that,, € C'([0,T]; V). Let
uy: [0,T] — V be the function defined by

wy(t) = / vn(s) ds +uo Vit € [0,T). (64)
0

It follows from (62) and (64) that,, is a solution of the problem (60)—(61) and it satisfies
u, € C'([0,T);V). This concludes the existence part of Lemma 1. The uniqsenes
part follows from the uniqueness of the solution of the \tiizal equation (62), at any

t €10,T]. O
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In the next two steps we use the displacement figJdobtained in Lemma 1 to
obtain the following existence and uniqueness result feetbctric potential field and the
bonding field, respectively.

Lemma 2. There exists a unique functign, € W':>°(0, T"; W) such that
aa(pn(t),¥) — ac(uy(t),¥) = (a(t).¥)y, Vo € W, t€[0,T]. (65)
Lemma 3. There exists a unique functigh, € W'->°(0,T; L*(I's)) N Z such that

Ba(t) = = (VBy (R (uy (1)) — ), ¥t € [0, T, (66)
B,(0) = fo. (67)

The proof of Lemma 2 is based on arguments similar to those inséhe proof of
Lemma 1, see also [14]. The proof of Lemma 3 can be found in; [14§ based on a
version of the Cauchy-Lipschitz theorem, see for insta@8epp. 48] .

Now, forn € C([0,T];V) we denote by, ¢, andg, the functions obtained in
Lemmas 1, 2 and 3, respectively. We use Riesz’s represemtidteorem to define the
functionAn: [0,T] — V by

(An(t), w)v =ay (“n(t)v w) +ag (‘P'n(t)v w) + j(ﬁn (), un(t), w) (68)

forallw € V andt € [0, T]. We have the following result.

Lemma 4. For all n € C([0,T]; V) the functionAn belongs toW>°(0, T’; V). More-
over, there exists a unique elemeite W1°>°(0,7T; V) such thatAn* = n*.

Proof. Letp € C([0,T];V) and lettq, t2 € [0,T]. Using (68), the continuity of the
bilinear formsa,, anda and (46), we obtain
[An(ty) —An(t2)llv < e ([lug(tr) —un () lv + llen (t1) — @y (t2) llw
+||p(6n(t1))R(un(t1)) *p(ﬂn(tQ))R(un(b))HL?(F;,))'

Now, keeping in mind (24), assumptions on the funcjipthe inequality) < 3, <1 and
the properties of the operat&we find that
[An(t:) — An(t2)llv < e (|lug(t) — un(t2)llv
+ llon(tr) — en(t2)llw + 1Ba(t1) — By(t2)llL2(ry))-

Sinceu,, € CY([0,T);V), ¢, € WHe(0,T; W) and3, € Wh>(0,T; L*(T3)), we
deduce from inequality (69) thatn € W1>°(0,T; V).

Let nown,, 2 € C([0,T]; V) and lett € [0, T]. In what follows we use the notation
Ui = Up,, Vi = Uy, = Uy, ;i = @y, andf; = Gy, fori =1, 2. Using arguments similar
to those in the proof of (69) we find that

1A (8) = Anz(B)]lv < e (|lua(t) — ua(t) v
+lle1(t) = e2(B)llw + 181(8) = B2 () L2(ry))-

(69)

(70)
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On the other hand, from (65), (66) and (67), it was proved 4] fhat

le1(t) = 2(B)llw < cllua(t) —ua(t)v, (71)
181(t) = B2 (D)l 2(rs) < C/ l[u1(s) = ua(s)|lv ds. (72)
0

We combine now the inequalities (70), (71) and (72) to obtain
t
[An(8) — Ana(8)[lv < cllua(t) —ua(t)|lv + c/ l[u1(s) — ua(s)llv ds.
0
Also, sinceu; andus have the same initial value it follows that
t
[[ur(t) —uz(t)|lv < / l[v1(s) — va(s)lv ds.
0

We use now the last two inequalities to obtain

[Am(t) — Ana()[|lv < C/ l[v1(s) — va(s)|lv ds. (73)

Next, (62) and the properties of the foun yield

[v1(s) = v2(s)llv < cllm(s) = ma(s)llv Vs €[0,T]

and, using this inequality in (73), we deduce that

[Am(2) — A (@)]|v < C/ m1(s) = ma2(s)|lv ds. (74)
0

Reiterating this inequalityn times yields

mm

n KL C T
[A™ 01 — A" 2|l o, 71:v) < - lm —n2lleqo,r1:v)s

which implies that forn sufficiently large a poweh™ of A is a contraction in the Banach
spaceC([0,T]; V). Therefore, there exists a unique elemghte C([0,T]; V) such
that andAn* = n*. The regularityn* € W1°°(0,T;V) follows from the regularity
An* € Whe°(0,T; V), which concludes the proof. a

Now, we have all the ingredients necessary to prove Theorem 1
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Proof of Theorem 1. Existencketn* € W1>°(0,T; V) be the fixed point of the oper-
ator A and letu, ¢, 8 be the functions defined in Lemmas 1, 2 and 3, respectively, fo
n =n* e u = upx, ¢ = @, B = By-. Clearly, equalities (50)—(52) hold from
Lemmas 1-3. Moreover, singg = An* it follows from (60) and (68) that (49) holds,
too. The regularity of the solution expressed in (58) and {8%ws from Lemmas 2 and

3, respectively. Also, it follows form (63), (47) and (64)ath; € W1>(0,T;V), i.e.

u satisfies (57). We conclude th@t, ¢, §) is a solution of Problen®y and it satisfies
(57)—(59).

Uniqueness.The uniqueness of the solution follows from the uniquendgb® fixed
point of A and the uniqueness part in Lemmas 1-3. O

4  Study of the electro-elastic problem

The proof of the unique solvability of the electro-elastiolflemQy could be obtained
by using arguments similar to those used in the proof of Témmokt. However, since
the viscosity term is missing, in this case the correspandiequality (74) would not
contain an integral term. As a consequence, the use of thadBdixed point arguments
would require a smallness assumption on the problem’s dataheerefore would restrict
the solvability of the problem. To avoid this restriction, the study of electro-elastic
ProblemQ we shall use a method which is different from that used in thdysof the

electro-viscoelastic Probleiy, . We start by reinforcing assumption (27) as follows:

w € L*°(Q) and there existg.* > 0 such thatu(xz) > p* a.e.x € Q. (75)
We note that in this case the bilinear foanis V-elliptic, since it safisfies
au(v,v) > plfi, Vv eV (76)

Our main result concerning the unique solvability of Probl@y is the following.

Theorem 2. Assume tha26)-(37)and(75) hold. Then, there exists a unique solution of
Problem(53)(56). Moreover, the solution satisfies

ue Wh>(0,T;V), (77)
p € WH(0,T; W), (78)
Bewh=(0,T; L*(T'3)) N 2. (79)

The proof of Theorem 2 will be carried out in several steps. a&sume in what
follows that (26)—(37) and75) hold; below in this section will denote a generic positive
constant which may depend 6n I'y, I's, I's, Ty, 'y, 1, e, « p, L andT’, but does not
depend ort, nor on the rest of the input data, and whose value may chaogefflace to
place.

Let 8 € Z be given. The first step of the proof is given by the followingséence
and uniqueness result.
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Lemma5. There exists a unique couples, v3) € C([0,T]; V x W) such that, for all
t € 10,77,

au (ug(t), w) + aZ(ps(t),w) + 5 (B(t), u(t),w) = (f(t),w), YweV, (80)

aa (p(1), ) — ac(us(t), ¥) = (a(t),¥),, V€W (81)
Proof. We consider the product spage= V' x W together with the inner product
(T, y)x = (w,w)y + (¢, P)w Vo =(u,p) € X, Vy = (w,9) € X (82)

and the associated norjin || x. Let¢ € [0, T] be given; we define the operatdgp(¢):
X — X and the elemenit(t) € X by

(Ap(t) 2. y) x = au(u,w) + aa(p,¥) + al(p, w) — ac(u, ¥) + j(B(t), u, w)
Vo = (u, ), Vy=(w,9) € X, (83)

(h(t),y) = (f(),w), + (a(t),¥),, Yy = (w,) € X. (84)

It is easy to see that equalities (80) and (81) hold if and drthye elementzs(t) =
(ug(t), ps(t)) € X satisfies the following equation iN:

Ap(t) xp(t) = h(t). (85)

In order to solve (85), we investigate the properties of theratorAs(t). First, we
use (46), (29) and (12) to see that

J(B(t), w1, uz — ur) + j(B(t), uz,ur — ug) <0,

‘](ﬂ(t)v Ui, U) - ](ﬂ(t)v uz, ’U) | <c Hul - u2||VHU||Va
for all uy, us, v € V. Next, we use the previous two inequalities, (83), (76), @3
(82) to find thatdz(¢) satisfies

(Ap(t) a1 — Ap(t) 2,21 — x2) > cllar — 22| %,

[Ap(t) z1 — Ap(t) 22 x < cllz1 — 22| x,
forall z1, 2 € X. We conclude thati5(t) is a strongly monotone Lipschitz continuous
operator and therefore, using a standard existence andamegs result, we obtain the
existence of a unique elemeng(t) € X which solves (85). We conclude from above
that there exists a unique couple of functidng(¢), ¢5(t)) which solve (80) and (81), at
anyt € [0, 7.

Next, we lett1, t2 € [0, 7] and use the notatioms(t;) = u;, wa(t;) = @i, B(t;) =
Gi, f(t;) = fi, q(t;) = q; fori = 1, 2. We use standard arguments in (80) and (81) to
find

au(ur — ug, u1 — u2) + az (1 — g2, u1 — ua)

+ (B, ur, ur — uz) — §(B2, ug, u1 — uz) = (f1 — f2,u1 — u2)v,
aa (1 — 2,01 — @2) — ac(ur — uz, 1 — ¥2) = (q1 — g2, 1 — P2)w-
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Then, we add these equalities and use (76) and (43) to obtain
w lur = w2y + @ [lor — o2y
< (f1 — fo,ur —u2)v + (q1 — @2, 01 — 92)w (86)
+j(61,U1,U2 - ul) +](62a Uz, Uy — uQ)'
We use again (46), (29) and (12) to see that
J(Brs w1, uz —ur) + j(B2, uz, ur — ug) < cl|fr — BallLz(ry)llur — uzllv (87)
and therefore, combining (86) and (87), after some algeleréind
[lur = wallv + llo1 — @aflw
<c(Ifs = fellv + lar — @2llw + 181 — Ballz2rs)) -

This inequality and the regularity of the functiofisy and3 show that.g € C([0,T]; V)
andeg € C([0,T]; W). Thus, we conclude the existence part in Lemma 5 and we note
that the uniqueness of the solution follows from of the urigalvability of (80) and (81),
atanyt € [0, 7. O

(88)

In the next step we use the displacement figldobtained in Lemma 5 and the
arguments used in the proof of Lemma 3 to obtain the folloveixigtence and uniqueness
result for the bonding field.

Lemma 6. There exists a unique functigp € W (0,T; L?(T'3)) N Z such that

£5(t) = — (s () R(us(t)” —ea), VEE[0,T], (89)
£3(0) = Bo. (90)

It follows from Lemma 6 that for al3 € Z the solutionég of problem (89)—(90)
belongs taZ. Therefore, we may define the operator Z — Z by

AB = €. (91)
Moreover, we have the following result.
Lemma 7. There exists a unique elemesit € Z such thatAg* = g*.

Proof. Suppose tha; andg; are two functions inZ and denote by.;, ¢; and¢; the
functions obtained in Lemmas 5 and 6 fér= 3;, ¢ = 1,2. Lett € [0,7]. We use
arguments similar to those used in the proof of (88) to dethae

[ur(t) —u2(®)llv + le1(t) — p2()llv < ellBi(t) — B2()llL2(rs)- (92)

On the other hand, (91) and the estimate (72) obtained faC#uehy problem (89)—(90)
leads to

[ABL(8) = ABa(t)l| L2(rs) < € / [ur(s) — ua(s)|lv ds. (93)
0
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We now combine (93) and (92) to see that

t
[ABL(t) = AB2(t)|l2(ry) < /||51(5) — Ba(s)l|L2(ry) ds
0

and, by reiterating this last inequality times, we obtain

mm

7 T ¢
[A™B1 — A™ Ballc(o,17;2(rs)) <

o 181 — Ballc (o, 1):22(rs))- (94)
Recall thatZ is a nonempty closed set in the Banach spa¢®, 7'); L?(I's)) and note
that (94) shows that fom sufficiently large the operataY™ : Z — Z is a contraction.
Then we use the Banach fixed point theorem to conclude thd.proo

Now, we have all the ingredients needed to prove Theorem 2.

Proof of Theorem 2. Existencéet * € Z be the fixed point of\ and let(u*, ¢*) be
the functions of obtained in Lemma 5 for = 3%, i.e.,u* = ug« andp* = pg-. It
follows from (80) and (81) that the functions, ¢*, 5* satisfy (53) and (54), respectively.
Moreover, since\5* = g* it follows from (89) and (90) that* and3* satisfy (55) and
(56), too. Next, sincgd* = AB* = £g- € WH>(0,T, L*(T'3)), using (47), (48) and
(88) it follows that the functions* and ¢* have the regularity expressed in (77) and
(78), respectively, and Lemma 6 shows tf¥athas the regularity expressed in (79). We
conclude thafu*, ¢*, 8*) is a solution of Problen)y, and it satisfies (77)—(79).

Uniqueness.The uniqueness of the solution follows from the uniquendst® fixed
point of A and the uniqueness part in Lemmas 5-3. O

5 A convergence result

In this section we investigate the behavior of the weak swiutf the electro-viscoelastic
ProblemPy, as the viscosity converges to zero. In order to outline thieddence on the
viscosity coefficient), we reformulate Problef, as follows.

Problem P¢,. Find a displacement fieldis: [0,7] — V, an electric potential field
wp: [0,T] — W and a bonding field, : [0, 7] — L?(T'3) such that, for alk € [0, T,

ag (tg(t), w) + ay, (ug(t), w) + al(wo(t), w) + 5 (Ba(t), ua(t), w)

(95)
= (f(t),w),, YweV,
G, (509 (t)ﬂ/)) — Qe (UO(t)vw) = (q(t)vw)w Vi € W, (96)
Bo(t) = —(vBo(t) R(ua(1)” — a) , (97)
and
up(0) = uo, [(0) = So. (98)
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Also, we assume in this section that the functiotioes not depend on the bonding
field and therefore we replace (29) by assumption

p:Ts =R and pe L*®(T;). (99)

Assume in what follows that (25)—(28), (30)—(37), (75) af@)(hold. Then, it fol-
lows from Theorem 1 that Problem (95)—(98) has a unique isml(t:q, g, Gg) with the
regularity expressed in (57)—(59). Also, it follows fromddrem 2 that Problem (53)—(56)
has a unique solutiotu, ¢, 5) which satisfies (77)—(79). Consider now the additional
assumptions

16[17 o0 (2) — O, (100)
1
7 101l () = 0, (101)

It is easy to see that (101) implies (100) but the conversetigrne.

The convergence of the soluti¢ny, g, 3y) of ProblemP?, to the solution(u, ¢, 3)
of ProblemQy is given by the following result.

Theorem 3. Assume thaf25)28), (30)«37), (75)and(99) hold.
() If (100) holds, then

lug — ul| 200,757y — 0, (103)
lleo = @llL20,75w) = 0, (104)
186 — Bllwr.2(0,1:22(rs)) — 0 (105)
(i) If (101)and(102)hold, then

luo = wlleqo.ryv) = 0, (106)
e — @lleqo,mw) — 0, (107)
186 — Bllw1.(0,1:02(rs)) — 0. (108)

Proof. (i) Lett € [0,T]. We use (95) and (53) to obtain
ag (o (t), ug(t) — u(t)) + au (ug(t) — u(t), ug(t) — u(t))
+az (o (t) — p(t), ug(t) — u(t)) (109)
+ 7 (Bo(t), ua(t), ug(t) —u(t)) — j(B(t), ult), ug(t) — u(t)) = 0.
Next, it follows from (46), (99) and (12) that
7(Bo(t), ug(t),uo(t) — u(t)) — 7 (B(t), ult), ug(t) — u(t))
- /p(R(ue(t)) ~ R(u(t))) (uo(t) — u(t)) da > 0

I's
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and, using this inequality in (109) yields
ag (g (t), ug(t) — u(t)) + ay(ug(t) — u(t), uo(t) — u(t))
+a;(po(t) — o(t), ua(t) —u(t)) <0.
On the other hand, (96) and (54) imply that
aa(po(t) — (1), po(t) — (1)) — ae(uo(t) — u(t), po(t) — ¢(t)) = 0. (111)
We add now equality (111) and inequality (110) to see that
ag (o (t) — a(t), ug(t) — u(t)) + au (ua(t) — u(t), ug(t) — u(t))
+aa(po(t) — ¢(t), po(t) — o(t)) < ag(a(t), u(t) — uo(t)).

Lets € [0,7]. We integrate (112) of0, s] and use (42), (43), (76) and the initial
conditionug(0) = ug to obtain

(110)

(112)

9* S S
% Nto(s) — w(s) s + / o (t) — u(®)| d + o* / loo(t) — o(t)13 dt
. 0 0 (113)

< [an a(®)u(0) = uo(0) de + 3 1611 0(0) ~ ol
0

We use now the inequality

ag (a(t), u(t) — ug(t)) < 110l L=(o la(t)llv[lus(t) — u(®)]lv

1 . w*
<o 1611% = o [ #IT + T o (t) = w (@

to see that

/ae (a(t), u(t) — ug(t)) dt
0 (114)

1 S - M* s
< g 100 oy [ 1O e+ 55 [ un(®) — u(o)-a.
0 0

Then, we combine (113) and (114) to obtain

9* M* S . S
5 o) = ()% + 5 Tuo®) ~ w(o) e+ a* [ oatt) = ot0) oy e
s 0 0 (115)
1 . 1
S o 1611 (@) [ 1(®)II5 At + 5 11| o=@ [u(0) = wol[5-

0
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Inequality (115) yields

%*/I\Ue(t)*U(t)llzvdHa*/H@e(t)*so(t)lliv dt
0 . 0 (116)

<

1 ) 1
5 H9||%oo<m/|\u(t)||2v dt + 5 (101 Lo<(e [1(0) = uoll}-
o
0

The convergences (103) and (104) are a direct consequelit&g)fand (100).
Also, arguments similar to those used to obtain (72), base®9), (98), (55) and
(56), lead to inequalities

160(s) — B(3)lz2qrs) < / lug(t) —u(®) v dt Vs € [0,7), (117)

186() = B(t)l| 2(ry) < 2(Ilﬁe(t) = B®)lz>(rs)

(118)
+ luo(t) —u(t)||v) ae.te(0,T).

The convergence (105) is now a consequence of inequalitie§ ((118) combined with
the convergence result (103).

(i) Assume now that (101) and (102) hold. Then, inequalityg) combined with
(102) imply that

1 ro
[ug(s) —u(s)|3 < o ||9H%oo(m/|\u(t)||%/ dt Vs e [0,T]
0

o
and, using assumption (101), we obtain (106). On the othaed ,{&6) and (54) yield
aa(po(t) — @(t), ) — ac(ua(t) —u(t),v) =0 Yy e W, t €[0,T]
which implies that
aa (o (t) — (1), 00(t) — ¢(t)) = ac(us(t) —u(t),po(t) — ¢(t)) Vt€[0,T].
We use now inequality (43) to see that
a*lloa(t) = p@)llw < llell@llus(t) —u(®)llvy Vvt €[0,T]

and, combining this last inequality with (106) we obtain {LOFinally, note that (108) is
a consequence of (117), (118) and (106), which completesrtiad. O

We end this section with some comments on Theorem 3. Firts,that the meaning
of the convergences (103)—(105) is the following: for evessguence of func-
tions {6,,} which satisfy (25) for alln € N, if |0, <@ — 0asn — oo, then
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l[ug, —ullL20,m5v) = 0, llps, —llL2(0,m5w) — 0@and|| B, — Bllwr.20,7;02(rs)) — 0
asn — oo. A similar explanation can be made for the convergences){(068).

Next, note that Theorem 3 shows that the convergences ((@&H)-hold under the
assumption (100), whatever is the choice of the initial ldispment of the electro-visco-
elastic ProbIenP@. It also shows that, if the initial displacememg is chosen to be
the displacement of the corresponding electro-elastiblEBnoQ at¢ = 0 and (100) is
replaced by the stronger assumption (101), then the coemees (103)—(105) can be
reinforced by the convergences (106)—(108).

Finally, consider the case of homogeneous viscosity, he.case when assumption
(25) is replaced by the assumption

O(z)=0>0 ae xeq,

whered is given. In this cas¢ld| .~) = 0, 0* = 0 and therefore the convergences
(100) and (101) are equivalentio— 0. Therefore, by Theorem 3 we conclude that the
solution to the electro-viscoelastic Problém may be approached by the weak solution
to the electro-elastic Proble®y, as the viscosity is small enough. In addition to the
mathematical interest of this result, it is important frone tmechanical point of view,
since it shows that the electro-elasticity with adhesiam lzsa considered as a limit case
of electro-viscoelasticity with adhesion as the viscodigreases.
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