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Abstract. In this paper, we analyze the model of business cycle witk tielay set forth

by A. Krawiec and M. Szydtowski [1]. Our goal in this model @ introduce the time

delay into capital stock and gross product in capital acdatian equation. The dynamics
are studied in terms of local stability and of the descriptd the Hopf bifurcation, that

is proven to exist as the delay (taken as a parameter of biforg cross some critical
value. Additionally we conclude with an application.

Keywords: Kaldor-Kalecki business cycle, delayed differential edpres, Hopf bifur-
cation, periodic solutions.

1 Introduction and mathematical models

Great attention has been paid to equations with delay, wiagke significant economical
and biological background (see for example [2-9]). In mostiaation of delay differen-
tial equations in investment processes, the need of incatipo of a time delay is often
the result of the time interval required between investnusaision and installation of
investment capital [10, 11]. In general, delay differeingiquations exhibit much more
complicated dynamics than ordinary differential equatisimce time delay could cause a
stable equilibrium to become unstable and cause the systélottuate.

In this paper, we consider the Kaldor-Kalecki model of basscycle with time
delay as follows:

A Ay, K®) - S (), K1),
éiIt( (1)
o =LYt =7). K(t - 7)) —0K(),

whereY is the gross producty is the capital stocke is the adjustment coefficient in
the goods marketj is the depreciation rate of capital stodkY, K) is the investment
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function, S(Y, K) is the saving and is the time delay needed for new capital to be
installed.

Clearly, introducing time delay into capital stock and grpsoduct in capital accu-
mulation equation is more reasonable, because the charige gapital stock is due to
the past investment decisions (see [12, p. 103]).

The first model in this optic is proposed by Kalecki (in 193®]j1 The main
characteristic feature of his model is the distinction esw investment decisions and
implementation, i.e. there is a time delay after which a@guipment is available for
production.

Besides the influence of Keynes (in 1936 [13]) and Kaleckil@37 [14]), Kaldor
(in 1940 [15]) presented a nonlinear model of business dyglan ordinary differential
equations as follows:

% =a[I(Y(t),K(t) —S(Y(t),K())],

(2)
dK
o~ (Y0, K(®).

In this model the nonlinearity of investment and saving fiorcleads to limit cycle
solution (see also [16—-18] for more information).

Based on the Kaldor model of business cycle and the Kaleitiea on time delay,
Krawiec and Szydtowski (in 1999, [1]) proposed the follogikaldor-Kalecki model of
business cycle:

% =a[I(Y(t),K(t) = S(Y (1), K(1))],

3)
% — (Y (t— 1), K(t) — 6K(t).

The fundamental characteristics of this model is the neualiity of investment function
and the inclusion of time delay into the gross product in piccumulation equation.

In ([1] and [6], 2000), Krawiec and Szydtowski investigatbé stability and Hopf
bifurcation of a positive equilibriunk* of system (3) in the special case of small time
delay. In ( [12], 2001), they showed that for a small time gigdarameter the Kaldor-
Kalecki model assumes the form of the Lienard equation. 18],[2005), they investigate
the stability of limit cycle. Zhang and Wei ( [9], 2004) intemted local and global
existence of Hopf bifurcation for (3).

In this work, the dynamics of the system (1) are studied imgeof local stability
and of the description of the Hopf bifurcation, that is pnove exist as the delay (taken
as a parameter of bifurcation) cross some critical valueuderical illustrations is given
to compare our results and the ones (3) of Krawiec-Szydiomsklel [1].
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2 Steady state and stability analysis

As in [6], we consider some assumptions on the investmensavidg functions:
I(Y.K) = I(Y) - BK,

and
S(Y,K) =AY,

where > 0 and~y € (0,1). For economic justification of this simple mathematical
formulation, see [20-23].
Then system (1) becomes:

% = a[I(Y(1)) - BE(t) =Y (1],

(4)
% = I(Y(t— 7)) — BK(t — 7) — 0K (1),

2.1 Steady state

In the following proposition, we give a sufficient condit®for the existence and unique-
ness of positive equilibriun* of the system (4).

Proposition 1. Supposethat

(i) thereexistsaconstant L > 0 suchthat [I(Y)| < L forall Y € R;
(i) 1(0) > 0;
(iii)y I'(Y) -y <2 forall Y eR.

Then there exists a unique equilibrium E* = (Y*, K*) of system (4), where Y* is the
positive solution of

I(Y) - WTMY =0 ®)

and K™ is determined by

w _ Yyrx
K=Y~ 6
. ©)

Proof. (Y, K) is a steady-state of (4) if
dy dK
dt At
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that is
I(Y)—-BK —~Y =0,
(7)
IY)—(B+ 6K =0.
Let us assume thaf > 0 and K > 0 satisfy (7). Then
K="y 8)
1)
and
)
) — @Y —0. @)
In view of hypotheses (i), (ii) and (iii) of Proposition 1;sitclear that equation (9) has a
unique solutiort”™* > 0. This concludes the proof. O

2.2 Local stability analysis

Lety =Y — Y*andk = K — K*. Then by linearizing system (4) aroufd*, K*) we
have

W () = 7)y(t) — aBk(z),

g}i (10)
i I(Y*)y(t — 1) — Bk(t — 1) — 0k(t).
The characteristic equation associated to system (10) is
A2 4 aX + bhexp(—AT) + ¢+ dexp(—A71) =0, (12)
where
a=0—o(I'(Y") =),
b=7,
c=—ad(I'(Y*) =),
and
d = afy.

The local stability of the steady stat&" is a result of the localization of the roots of the
characteristic equation (11). In order to investigate tual stability of the steady state,
we begin by considering the case without detay= 0. In this case the characteristic
equation (11) reads as

M4 (a+bX+c+d=0, (12)

hence, according to the Hurwitz criterion, we have the feilg lemma.
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Lemmal. For 7 = 0, the equilibrium E* is locally asymptotically stable if and only if
I'(Y*) —y < min(22, 248,

07 «a
We now return to the study of equation (11) with> 0.
Theorem 1. Let the hypotheses
(HY) [I'(Y") =9 < ¥
and
(H2) I'(Y*) —y < 28,
Then there exists 7o > 0 such that, when 7 € [0, 7) the steady state E* is locally
asymptotically stable, when 7 > 7y, E* is unstable and when 7 = 7, equation (11) has
a pair of purely imaginary roots +iwg, with
W= 5 (@2 (T(V) = 2)* 48 = %) + L [(@2(I'(V*) =)+ 5 — 57’
—4(a2(I'(Y*) —7)° = B24%)] /2 (13)
and

O = L arctan a[vé — (ay —9) (II(Y*) - 7)]‘*’0 + i
o (al'(Y*) = 0)wd + a2y5(I'(Y*) —7)

(14)

Proof. From the hypotheses (H1) and (H2), the characteristic @quét1) has negative
real parts forr = 0 (see Lemma 1). By Rouché’s theorem [24, p. 248], it follotet if
instability occurs for a particular value of the delaya characteristic root of (11) must
intersect the imaginary axis. Suppose that (11) has a piredginary rootiw, with

w > 0. Then, by separating real and imaginary parts in (11), we hav

{w2 —ad(I'(Y*) =) + fwsin(wr) + afy cos(wr) =0, (15)
(0 —a(I'(Y") = 7))w + fw cos(wT) — afysin(wr) = 0.
Hence,

W (@ (I'(Y*) =) 482 = B2)w? +a? (82 (I'(Y*) =)~ 824%) =0. (16)
It's roots are

Wt = 5 (@) =) 482 =) £ S [P (1 () =) 402 5 a7

o 4(0(252(II(Y*)—’Y)Q—ﬁQ’)/Q)]l/Q

Clearly, the hypothesis (H1) implies thay = w, makes sense.
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From equation (15), we obtain the following set of values dbr which there are
imaginary roots:

91 2nm
Tn,l = ——— +—,

W4 W4
where0 < 6; < 27, and

(I’ (Y*) = 8)wi + a®v5 (I'(Y*) — )
Bwh + a?y?)

a6 — (ay = 6)(I'(Y*) — )] wo + wi
Bw§ + a?y?)

cosf; =

)

sin 91 = )
wheren =0,1,2,....

We setry = 79,1. Thus, from (H1) and (H2), we have:

Forr € [0, 79), E* is locally asymptotically stable.

Fort > 7y, E* is unstable.

For 7 = 73, equation (11) has a purely imaginary rodis = +iwy wherewy is
given by (13).

Theorem 2. Assume that
(H3) I'(Y*) v < min(~ 52, 25,

o2

Then E* islocally asymptotically stable for all 7 > 0.

Proof. From Lemma 1, (H3) implies that the characteristic equafidl) has all roots
with negative real parts for = 0 and no purely imaginary roots for > 0. Thus,E* is
locally asymptotically stable for aft > 0. |

3 Hopf bifurcation occurrence

According to the Hopf bifurcation theorem [25], we estabksifficient conditions for the
local existence of periodic solutions.

Theorem 3. Under hypotheses (H1) and (H2) of Theorem 1, a Hopf bifurcation of peri-
odic solutions of system (4) occursat E* when = 7.

Proof. For the proof of this theorem we apply the Hopf bifurcatioeadrem introduced in
[25]. From Lemma 1, the characteristic equation (11) hasraop@maginary rootstiw
atT = 7. In the first, lets show thatu, is simple: Consider the branch of characteristic
rootsA(r) = v(7)+iw(r), of equation (11) bifurcating fromw, atT = 7. By derivation

of (11) with respect to the delay we obtain

{2 4+ 6 —a(I'(Y*) =7) + [B—7(BA + aBy)] exp(—AT)}ﬂ

dr (18)
= (BA + afy)exp(—A7).
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If we suppose, by contradiction, that, is not simple, the right hand side of (18) gives
oy +iwg = 0,

and leads a contradiction with the fact tihaand~y are positive.

Lastly we need to verify the transversally condition,
dRe(\)

dr

From (18), we have

£0.

AT @A —a(I'(Y) =) exp(A) + 8 T
dr N A(BA + aBy) A
As,
. dRe(N)| . !
Sign a |, = Sign Re< dT) .
Then
. dRe(N)| . (= 2iwo+ B+ 6+ a(I'(Y*) — 7)) exp(iwoTo)
Sign a |, = SignRe Bl (Y ey .

From (11), we have

B B+ afy
M4d—all'(Y*)—y)A—ad(I'(Y*) =)

So, by (H1) and (13) we obtain

dRe(\)

T

exp(A1) = (19)

Sign

= Sign([(@*(I'(v*) =9)" + 02 = 8)" — 4(a28*(I'(Y") = 7)" = 5%9%)]/*).
Consequently,

dRe())
dr

(TO) > 0.

4 Application

4.1 Effect of additional delay

Let's compare the principal results of systems (3) (see kaen@zydtowski model in
[1]) and (4) by a numerical illustration. Consider the faliog Kaldor-type investment
function:

~exp(Y)
I = Ty

Theorems 1 and 3 implie:
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Proposition 2. If
a=3; [#=02 §6=01, y=0.2

Then systems (3) and (4) have the following positive equilibrium
E* = (1.31346,2.62699).

Furthermore, the critical delay and the period of oscillations corresponding to (4) (resp.
(3)) are g = 2.9929 and Py = 48.2646 (resp. 7. = 5.3312 and P, = 38.0053) (see

Zhang [9] for more details).

The following numerical simulations are given for systemfet - = 2, andr = 3
and for system (3) for = 3.

2.8

2.6

K@®

2.4

2.2

2

1 12 14 16
Y(0) Y(1)

g. 1. The steady stat8™ of (4)is  Fig. 2. The steady state” of (4) is
stable wherr = 2. unstable wherm = 3.

Ei

2.8

2.4

K(®

2.2

2
1 15 2
Y(©

Fig. 3. The steady state™ of the
Krawiec-Szydtowski model [1] is
stable whenr = 3.

As 19 < 7., we think that it's more interesting to introduce the defainto both
gross product and capital stock (see also [12, p. 103]).
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4.2 Effect of changing parameters

Now, let’s show how the critical delay, and the period of oscillations, change as the
model parameters move.

In Fig. 4, we construct the family of curveg(a, 8,~, ) assuming that three of
parametersy, 3, v andd are fixed. For values of which are less than a critical value
7. = 0.004, the condition of existence of equilibrium is violated (seg.F4(a)). For
values ofg (resp.d) which are less (resp. greater) than a critical vaiue= 0.07 (resp.
0. = 0.28), the system will not exhibit a Hopf bifurcation (see Figb¥((resp. (see
Fig. 4(d))). Additionally the family of curve®; («, 5, v, 0) are presented in Fig. 5.

<] o 15 3U
6 4 10 20
30 30 30 30
8 8 i) 8
4 2 5 10
0 0 0
0 0.5 1 0 0.5 1 0 2 4 0 0.2 0.
gamma beta alpha delta
(a) (b) (c) (d)

Fig. 4. The dependence of the critical value of detayon the model parameters:

@a=3, =02 6 =01andy € (0.004,1]; (b)a =3, v =02, § = 0.1

andg € (0.07,1]; (¢) 8 = 0.2, v = 0.2, § = 0.1 anda € (0,4]; (d) @ = 3,
£=02, v=02ands € [0,0.28).

150 100 300 600
80
100 200 400
° ° 60 ° ko]
o il Rl 2
(7] [} [ [7]
) s 40 = 100 = 200
20
0 0 0
0 0.5 1 0 0.5 ] 0 2 4 0 0.2 0.
gamma beta alpha delta
(a) (b) (c) (d)

Fig. 5. The dependence of the period of oscillatidiison the model parameters:

@a =3 8 =02 6 =01andy € (0.004,1]; (b) « = 3, v = 0.2,

6 =01landg € (0.07,1]; (c) B8 = 0.2, v = 0.2, § = 0.1 anda € (0,4];
(da=3,3=02 v=0.2ands € [0,0.28).
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