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Abstract. Letm, r € N. We will show, that the recurrent sequenags = a4+ 1
(mod ¢), zn = z'; + 1 (mod g) andz, = z|,_; + 1 (mod g) are periodic
modulom, wherem € N, and we will find some estimations of periods and pre-peciodi
parts. Later we will give an algorithm sophisticated enotatfinding periods length in
polynomial time.
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1 Introduction

The study of recurrent sequences (in particular, the sexuginen byz,, 1, = :cﬁ(”) +1,
wherelim,, .., f(n) = oo) was motivated by the construction of some special transcen
dental numbersg for which the sequences of their integral pdd®], n = 1,2,3,...,
have some divisibility properties [1], [2]. The reader magnsult [3] for the latest
developments in this problem.

It was proved in [4] that the sequence givenihye N and

Tpp1 =22 4 P(n) for n>1,

where P(z) is an arbitrary polynomial with integer coefficients, isimlately periodic
modulog for everyg > 2.
It was proved in [5] that the sequence givernahye N and

Tyl = Flxn, ..., xn_d+1)f(”) + P(n) for n>1,

whereF(zo, ..., z4-1) €Z|z0, - .., z4—1], IS ultimately periodic modulg for everyg > 2.

One of the problems of computer science is algorithmic eificy. Searching for the
smallest period of a given sequence we can use “brute foregfiod which belongs to
NP (nondeterministic polynomial time) class. Can we find liesaperiod in polynomial
time? In this paper we will give some answers to this question
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We show, that the recurrent sequences

Ty = :cﬁr_l +1 (mod g), Q)
Ty = :czl,l +1 (mod g), (2)
Ty = :c%n_l +1 (mod g), 3)

are periodic with perioddy < g¢(g), T < 2, T3 < gé(¢(g)), respectively, where
stands for Euler’s totient function. Then we use this infation to build the algorithm
and find its estimation.

2 Periodicity

Theorem 1. The sequence, defined by (1) is periodic with the peridd < g¢(g) and
pre-periodic partt < [{/log,(g)] + 1 + g.

Theorem 2. The sequence,, defined by (2) is periodic with the peridd < 2 and
pre-periodic partt < ¢(g).

Theorem 3. The sequence,, defined by (3) is periodic with the peridd < go(é(g))
and pre-periodic part < [log, log,(g)] + 1 4+ go(é(g))-

3 Proofs

Euler's theorem says that(¥) = 1 (mod g) if « andg are coprime. We can immediately
remove the assumption thaandg are coprime by saying thatif := u(g) is the maximal
exponent at which a prime appears in the prime factorization g@fthena?@+* = g
(mod g)) and this is true for alk regardless of whether they are coprimetor not. In
particular, the sequende™ )., >, is periodic modulgy with period¢(g). Now assume
that(f(n)),>1 is some increasing sequence of positive integers whictrisgie modulo
¢(g) with periodT. Letm; be some positive integer such thydtn ) > u. Thenitis
immediate that the sequen(zef(@)nsz is periodic modulgy with periodT’, because
form > m, we have botty (m) > v andg(g) | f(m +Ty) — f(m), thereforea? (™) =
af(m*T5) (mod g). In particular, for the sequences mentioned above, theresiach
n > m > my that both congruences= m (mod Ty) andz,, = x,, (mod g) are true.
Writing « for the value of the above class, we have that

Tm+1 = af(erl) +1 (mOd g) and Tn+l = af(n+1) +1 (mOd g)a

SO0 Zpt1 = Tm+1 (mod g), which by induction on the integer parameter> 0 implies
Tntk = Tm+k (mod g); thus, periodicity of periodh — m. Clearly, two suchn andn
can be found on a scale gf; i.e.,n — m < g77.

Proof of the Theorer.. Let f(n) to be any polynomial im. Then we can tak&; =
¢(g) because for polynomials we hayén + m) = f(n) (mod m) for all positive
integersm andn. In the particular case of(n) = n”, we have that we can take; =
[{/logs(g)] + 1, becauser < log,(g). O
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Proof of the Theorer. Let n be sufficiently large such that! > ¢g. Letz, = ab,
where all primes dividing divide alsog and all primes dividing are coprime tg;. Let
g = g192, Whereg; is made out of the primes dividingandg- is coprime tox,,. Then
a™ = 0 (mod g1), b = 1 (mod g2), s0z™" = ¢ (mod g), wherec is by the Chinese
Remainder Lemma the unique class modghwhich is0 modulog; and1 modulogs.
Soz,4+1 = ¢+ 1 (mod g) is that unique class which ismodulog; and2 modulogs.
Assume first that, is odd. Thenr,,; is coprime tog. Replacingn by n + 1, we can
nowtakea = 1, b = c+1, S0z,42 = 2 (mod g). If g is odd, then again,, > is coprime
to g SOz, 3 = 2 (mod ¢g) and we gefl’ = 1. Assume now still thay- is odd but thay
is even. Then changingto n + 2 we can writex,, 12 = ab (mod g), wherea = 2 and
b =1 (mod g/2) is a class coprime tg. Thus, we replace by n + 2, takeg; to be the
power of2 diving g andgs = g/g:1. Note that indeeg- is odd. We then get that, ;5 is
that class modulg which is1 modulog; and2 modulogs, S0z, +4 = 2 (mod g). So,
T = 2in this case. Finally, let us return to the case whgrés even. Thery; is odd
andz, 11 = 2((c+1)/2) (mod g), and we now put = 2 andb = (¢ + 1)/2 is a class
which is coprime tgj; (because it is the inverse Bfmodulog;) and also tqy; (because
it is 1 modulog-), sob is coprime tog. We now replace. by n + 1, ¢g; by the power of
2 dividing g andg2 = g/g1, and note that we are in the preceding case wheas even
but go was odd, so the period ends up beihg

O

Proof of the TheorerB. With f(n) = 7", we can takel’; = ¢(¢(g)) sincert:+¢()
% (mod ¢(é(g))), wherewu; is the maximal exponent in the factorization éfg
Clearly, one can take: ;s to be any positive integer larger than or equabig, ().

D\_/

4  Algorithm

The algorithm’s problem to calculate period’s length is ifamto “Cycle detection al-
gorithm’s problem”. However, it is slightly different, bagse we have the function that
depends on parametets, ..., z4_1,n. Thus, algorithms like “Tortoise and hare” or
“Brent’s algorithm” will not work here. The main problem istto find suchr; = z; but
to find two equal subsets. We could build “Brute force” al¢fum, which can check every
possibility. But the calculation might take too much time, &e will build an algorithm,
which will work in a reasonable amount of time.

From [5] and [4] we can find common estimation for period aretperiodic parts.

T § gd+1M7
t < g+ [logy(9)] + 1,

where M is the least common multiple of the numbéesj): j > 1,j|g}, andd is the
dimension of the vector in the Main Theorem of [5].

In the Algorithm 17T, te stands for evaluations df,¢ and IV is the size of the
sequence. Notice that if the length of the sequenck jghen the smaller period (if
exists):T|T.. According to this, we will Algorithm 2 to search for the srealperiod.
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Algorithm 1 Calculates the length of the period and the length of the
pre-period

Require: recurrent function f(zy, ..., 2,_4+1,n) and value d, modulo g and
values xg, ..., Tq
Ensure: T and ¢t or ERROR message
M — lem(¢p(Dy,))
T, — g™« M
te — g+ [logag] + 1
N —2xT, +t,
sequence X
10
b — true
Z—{)
while b = true do
if xy_;= TN—-T,—i AND i <Te then
i—1+1
else if i =T, then
ZCX
b« false
else if Te > 0 then
Te—Te—1
i+ 0
else
b« false
end if
end while
if Z <> {} then
T « findSmaller Period(Z)
t — findPreperiod()
print Tt
else
print ERROR
end if

Algorithm 2 findSmaller Period(Z)
if Z consist from one element then
T+—1
else
T —Te
for all j such that 1 < j < T, and j|Te downto 1 do
check for smaller period Z’
if FOUND then
if Z' consists from one element then
STOP
else
T |Z|
end if
end if
end for
end if
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Algorithm 3 findPreperiod()
N —te+2xT
10
while i <te+T + 1 and z[N —i] =[N — T —i] do
i—1+1
end while

Now we will give an improved algorithm. But first we will make@w remarks:

e According to our theorema/ = ¢(g) for the first two theorems antlf = ¢(¢(g))
for Theorem 3.

e According to practical researdre < 2g?M.

e We notice, that the real peridl: T'|M or M|T. Thus, it is sufficient for finding a
smaller period thaf| M or M |j.

Algorithm 4 Improved Algorithm 1

Require: recurrent function f(xy, ..., Zn—d+1,n), function from estimation
H, value d, modulo g and values xy, ..., zq
Ensure: T and ¢t or ERROR message
M — H(g)
T, —2%g%s« M
te — g+ [logag] + 1
N «—2xT, +t,.
sequence X
10
b — true
while b = true do
if ony_; =xN_7e—i AND i < Te then
i—1+1
else if i =T, then
ZCX
b« false
else if Te > 0 then
Te—Te— M
10
else
b «— false
end if
end while
if Z <> {} then
improovedFindSmaller Period(Z)
finddPreperiod()
print Tt
else
print ERROR
end if
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Algorithm 5 improvedFindSmaller Period(Z)
if Z consists from one element then
T—1
else
T—Te
for all j such that j|T, and j < T, and (§|M or M|j) from biggest j
do
check for smaller period Z’
if FOUND then
if Z’ consists from one element then
STOP
else
T — |Z|
end if
end if
end for
end if

Now we will estimate this period’s complexity and time usage

e For calculating the sequence we ng€dcount of elements) operations. In Maple
there is intelligent algorithm for modulo computation. dbk just 0.03 seconds to
calculate10005455265461 + 65465 (mod 564654). So, lets say, that for calculating
sequence overall we ne@d operations.

e While cycle in the worst-case scenario will néEelx 2¢? operations, in average-case
it should beTe.

e For the extraction of the subsequence we will n€edperations.
e Searching for the smaller period we will ne€d « \/T'e operations.
e For the calculation of the pre-period we neBd+ te operations.

Now we will summarize all operations. We can estiméfe< ¢(g) < g — 1 for the
worst-case and estimating the entire algorithm in®igotation we get:

e For the worst-cas@ (g% 1),
e For the average-cag((g?*+1)3/2).

The code of the algorithm was written in “Maple 9” and the ierpkentation was done on
a PC with Pentium(R) 4 CPU 2.00 GHz processotr.

5 Conclusions

Our main goal was to find algorithm, which operation time vabog better than exponen-
tial. We found one with polynomial time.

Some samples and graphs of calculations are given in themieln the graphs
gray line represents table data, dot line — average-casdasidline — worst-case scena-
rios. We can notice that the trends are matching.
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According to the data, time consumption grows rapidly famgnumbers and grow-
ing is much slower for composite numbers, especially thg) is very small compared
tog.

Appendix

Table 1. Calculations for (1o = 1,d=1,r =1

g ¢lg) T logyg ¢t s g ¢lg) T logyg t s

50 20 20 5.643856 0.29000p68 32 16 6.087463 8 0.811000
51 32 16 5.672425 0.65100069 44 44 6.108524 4 1.973000
52 24 12 5.700440 0.41100070 24 12 6.129283 3 0.901000
53 52 52 5727920 24 1.01100071 70 70 6.149747 15 3.645000
54 18 36 5.754888 0 0.26100072 24 12 6.169925 4 0.851000
55 40 20 5.781360 10 1.05100073 72 72 6.189825 12 4.857000
56 24 6 5.807355 4 0.47100p74 36 36 6.209453 9 1.513000
57 36 36 5.832890 6 0.97100075 40 20 6.228819 3 2.463000
58 28 28 5.857981 14 0.55100076 36 18 6.247928 6 1.692000
59 58 58 5.882643 48 1.33200077 60 30 6.266787 10 5.839000
60 16 4 5.906891 2 0.31000078 24 12 6.285402 6 0.941000
61 60 60 5.930737 12 2.71400079 78 78 6.303781 13 5.769000
62 30 30 5.954196 6 0.83200p80 32 4 6.321928 4 1.311000
63 36 12 5977280 3 1.41200081 54 108 6.339850 1 3.125000
64 32 2 6.000000 6 0.63100082 40 40 6.357552 10 1.843000
65 48 12 6.022368 6 2.57300p83 82 82 6.375039 82 4.446000
66 20 20 6.044394 10 0.56100084 24 12 6.392317 3 1.172000
67 66 66 6.066089 24 3.13500085 64 16 6.409391 8 5.508000

o 00 W

Table 2. Calculations for (1o = 1,d=1,r =1

g ¢(g) T logog ¢t s g #(g) T logog 't s
10 4 2 3.321928 4 0.080000 20 8 2 4321928 4 1.211000
11 10 1 3.459432 5 0.48100021 12 1 4.392317 3  4.477000
12 4 2 3584962 1 0.06000() 22 10 2 4.459432 5  3.024000
13 12 1 3.700440 5 1.07100023 22 1 4523562 11 35.672000
14 6 2 3.807355 3 0.23000024 8 2 4584962 3  2.093000
15 8 1 3.906891 4 0.53100()25 20 1 4.643856 4 34.639000
16 8 2 4.000000 4 0.33100026 12 2 4.700440 5 8.523000
17 16 1 4.087463 6 5.45800027 18 1 4.754888 6 31.835000
18 6 2 4169925 3 0.46000() 28 12 2 4.807355 3 10.456000
19 18 1 4.247928 6 10.74600D029 28 1 4.857981 7 159.449000
30 8 2 4906891 4  3.966000
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Table 3. Calculations for (1)xo =1, d=1,r =1

g #(lg) T logg 't s g #(lg) T logog t s
10 2 2 3.321928 1 0.02000p20 4 2 4321928 1 0.031000
11 4 12 3.459432 1 0.01000p21 4 4 4.392317 2 0.030000
12 2 2 3584962 1 0.01000022 4 12 4.459432 1 0.040000
13 4 4 3.700440 2 0.01000023 10 10 4.523562 15 0.180000
14 2 4 3.807355 2 0.01000024 4 2 4584962 1 0.040000
15 4 1 3906891 1 0.02000025 8 4 4.643856 1 0.150000
16 4 2 4.000000 0 0.01000p26 4 4 4.700440 2 0.070000
17 8 1 4.087463 4 0.06000027 6 12 4.754888 1 0.100000
18 2 2 4169925 1 0.02000028 4 4 4807355 2 0.061000
19 6 4 4.247928 12 0.05000P29 12 3 4.857981 6 0.430000
30 4 2 4906891 1 0.060000
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Fig. 1. Graph for Table 1.
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