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Abstract. Let m, r ∈ N. We will show, that the recurrent sequencesxn = xn
r

n−1 + 1
(mod g), xn = xn!

n−1 + 1 (mod g) and xn = xr
n

n−1 + 1 (mod g) are periodic
modulom, wherem ∈ N, and we will find some estimations of periods and pre-periodic
parts. Later we will give an algorithm sophisticated enoughfor finding periods length in
polynomial time.
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1 Introduction

The study of recurrent sequences (in particular, the sequence given byxn+1 = x
f(n)
n +1,

wherelimn→∞ f(n) = ∞) was motivated by the construction of some special transcen-
dental numbersζ for which the sequences of their integral parts[ζn], n = 1, 2, 3, . . . ,
have some divisibility properties [1], [2]. The reader may consult [3] for the latest
developments in this problem.

It was proved in [4] that the sequence given byx1 ∈ N and

xn+1 = xn+1
n + P (n) for n ≥ 1,

whereP (z) is an arbitrary polynomial with integer coefficients, is ultimately periodic
modulog for everyg ≥ 2.

It was proved in [5] that the sequence given byx1 ∈ N and

xn+1 = F (xn, . . . , xn−d+1)
f(n) + P (n) for n ≥ 1,

whereF (z0, . . . , zd−1)∈Z[z0, . . . , zd−1], is ultimately periodic modulog for everyg≥2.

One of the problems of computer science is algorithmic efficiency. Searching for the
smallest period of a given sequence we can use “brute force” method which belongs to
NP (nondeterministic polynomial time) class. Can we find smallest period in polynomial
time? In this paper we will give some answers to this question.
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We show, that the recurrent sequences

xn = xnr

n−1 + 1 (mod g), (1)

xn = xn!
n−1 + 1 (mod g), (2)

xn = x2n

n−1 + 1 (mod g), (3)

are periodic with periodsT1 ≤ gφ(g), T2 ≤ 2, T3 ≤ gφ(φ(g)), respectively, whereφ
stands for Euler’s totient function. Then we use this information to build the algorithm
and find its estimation.

2 Periodicity

Theorem 1. The sequencexn defined by (1) is periodic with the periodT ≤ gφ(g) and
pre-periodic partt ≤ [ r

√

log2(g)] + 1 + g.

Theorem 2. The sequencexn defined by (2) is periodic with the periodT ≤ 2 and
pre-periodic partt ≤ φ(g).

Theorem 3. The sequencexn defined by (3) is periodic with the periodT ≤ gφ(φ(g))
and pre-periodic partt ≤ [log2 log2(g)] + 1 + gφ(φ(g)).

3 Proofs

Euler’s theorem says thataφ(g) ≡ 1 (mod g) if a andg are coprime. We can immediately
remove the assumption thata andg are coprime by saying that ifu := u(g) is the maximal
exponent at which a primep appears in the prime factorization ofg, thenaφ(g)+u ≡ au

(mod g)) and this is true for alla regardless of whether they are coprime tog or not. In
particular, the sequence(am)m≥u is periodic modulog with periodφ(g). Now assume
that(f(n))n≥1 is some increasing sequence of positive integers which is periodic modulo
φ(g) with periodTf . Let mf be some positive integer such thatf(mf) ≥ u. Then it is
immediate that the sequence(af(n))n≥mf

is periodic modulog with periodTf , because
for m ≥ mf , we have bothf(m) ≥ u andφ(g) | f(m + Tf )− f(m), thereforeaf(m) ≡
af(m+Tf ) (mod g). In particular, for the sequences mentioned above, there are such
n > m ≥ mf that both congruencesn ≡ m (mod Tf ) andxn ≡ xm (mod g) are true.
Writing a for the value of the above class, we have that

xm+1 ≡ af(m+1) + 1 (mod g) and xn+1 ≡ af(n+1) + 1 (mod g),

soxn+1 ≡ xm+1 (mod g), which by induction on the integer parameterk ≥ 0 implies
xn+k ≡ xm+k (mod g); thus, periodicity of periodn − m. Clearly, two suchm andn
can be found on a scale ofgTf ; i.e.,n − m ≤ gTf .

Proof of the Theorem1. Let f(n) to be any polynomial inn. Then we can takeTf =
φ(g) because for polynomials we havef(n + m) ≡ f(n) (mod m) for all positive
integersm andn. In the particular case off(n) = nr, we have that we can takemf =

[ r
√

log2(g)] + 1, becauseu ≤ log2(g).
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Proof of the Theorem2. Let n be sufficiently large such thatn! ≥ g. Let xn = ab,
where all primes dividinga divide alsog and all primes dividingb are coprime tog. Let
g = g1g2, whereg1 is made out of the primes dividinga andg2 is coprime toxn. Then
an! ≡ 0 (mod g1), bn! ≡ 1 (mod g2), soxn!

n ≡ c (mod g), wherec is by the Chinese
Remainder Lemma the unique class modulog which is 0 modulog1 and1 modulog2.
Soxn+1 ≡ c + 1 (mod g) is that unique class which is1 modulog1 and2 modulog2.
Assume first thatg2 is odd. Thenxn+1 is coprime tog. Replacingn by n + 1, we can
now takea = 1, b = c+1, soxn+2 ≡ 2 (mod g). If g is odd, then againxn+2 is coprime
to g soxn+3 ≡ 2 (mod g) and we getT = 1. Assume now still thatg2 is odd but thatg
is even. Then changingn to n + 2 we can writexn+2 ≡ ab (mod g), wherea = 2 and
b ≡ 1 (mod g/2) is a class coprime tog. Thus, we replacen by n + 2, takeg1 to be the
power of2 diving g andg2 = g/g1. Note that indeedg2 is odd. We then get thatxn+3 is
that class modulog which is1 modulog1 and2 modulog2, soxn+4 ≡ 2 (mod g). So,
T = 2 in this case. Finally, let us return to the case whereg2 is even. Theng1 is odd
andxn+1 ≡ 2((c + 1)/2) (mod g), and we now puta = 2 andb = (c + 1)/2 is a class
which is coprime tog1 (because it is the inverse of2 modulog1) and also tog2 (because
it is 1 modulog2), sob is coprime tog. We now replacen by n + 1, g1 by the power of
2 dividing g andg2 = g/g1, and note that we are in the preceding case wheng was even
butg2 was odd, so the period ends up being2.

Proof of the Theorem3. With f(n) = rn, we can takeTf = φ(φ(g)) sinceru1+φ(g) ≡
ru1 (mod φ(φ(g))), whereu1 is the maximal exponent in the factorization ofφ(g).
Clearly, one can takemf to be any positive integer larger than or equal tolog2(u).

4 Algorithm

The algorithm’s problem to calculate period’s length is similar to “Cycle detection al-
gorithm’s problem”. However, it is slightly different, because we have the function that
depends on parametersx0, . . . , xd−1, n. Thus, algorithms like “Tortoise and hare” or
“Brent’s algorithm” will not work here. The main problem is not to find suchxi = xj but
to find two equal subsets. We could build “Brute force” algorithm, which can check every
possibility. But the calculation might take too much time. So, we will build an algorithm,
which will work in a reasonable amount of time.

From [5] and [4] we can find common estimation for period and pre-periodic parts.

T ≤ gd+1M,

t ≤ g + [log2(g)] + 1,

whereM is the least common multiple of the numbers{φ(j) : j > 1, j|g}, andd is the
dimension of the vector in the Main Theorem of [5].

In the Algorithm 1Te, te stands for evaluations ofT, t andN is the size of the
sequence. Notice that if the length of the sequence isTe, then the smaller periodT (if
exists):T |Te. According to this, we will Algorithm 2 to search for the smaller period.
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Algorithm 1 Calculates the length of the period and the length of the
pre-period

Require: recurrent function f(xn, ..., xn−d+1, n) and value d, modulo g and
values x0, ..., xd

Ensure: T and t or ERROR message
M ← lcm(φ(Dm))
Te ← gd+1 ∗M

te ← g + [log2g] + 1
N ← 2 ∗ Te + te
sequence X

i← 0
b← true

Z ← {}
while b = true do

if xN−i = xN−Te−i AND i < Te then

i← i + 1
else if i = Te then

Z ⊂ X

b← false

else if Te > 0 then

Te← Te− 1
i← 0

else

b← false

end if

end while

if Z <> {} then

T ← findSmallerPeriod(Z)
t← findPreperiod()
print T, t

else

print ERROR

end if

Algorithm 2 findSmallerPeriod(Z)

if Z consist from one element then

T ← 1
else

T ← Te

for all j such that 1 < j < Te and j|Te downto 1 do

check for smaller period Z ′

if FOUND then

if Z ′ consists from one element then

STOP
else

T ← |Z ′|
end if

end if

end for

end if
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Algorithm 3 findPreperiod()

N ← te + 2 ∗ T

i← 0
while i < te + T + 1 and x[N − i] = x[N − T − i] do

i← i + 1
end while

Now we will give an improved algorithm. But first we will make afew remarks:

• According to our theoremsM = φ(g) for the first two theorems andM = φ(φ(g))
for Theorem 3.

• According to practical researchTe ≤ 2gdM .

• We notice, that the real periodT : T |M or M |T . Thus, it is sufficient for finding a
smaller period thatj|M or M |j.

Algorithm 4 Improved Algorithm 1

Require: recurrent function f(xn, ..., xn−d+1, n), function from estimation
H, value d, modulo g and values x0, ..., xd

Ensure: T and t or ERROR message
M ← H(g)
Te ← 2 ∗ gd ∗M

te ← g + [log2g] + 1
N ← 2 ∗ Te + te
sequence X

i← 0
b← true

while b = true do

if xN−i = xN−Te−i AND i < Te then

i← i + 1
else if i = Te then

Z ⊂ X

b← false

else if Te > 0 then

Te← Te−M

i← 0
else

b← false

end if

end while

if Z <> {} then

improovedF indSmallerPeriod(Z)
finddPreperiod()
print T, t

else

print ERROR

end if
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Algorithm 5 improvedF indSmallerPeriod(Z)

if Z consists from one element then

T ← 1
else

T ← Te

for all j such that j|Te and j < Te and (j|M or M |j) from biggest j

do

check for smaller period Z ′

if FOUND then

if Z ′ consists from one element then

STOP
else

T ← |Z ′|
end if

end if

end for

end if

Now we will estimate this period’s complexity and time usage.

• For calculating the sequence we needN (count of elements) operations. In Maple
there is intelligent algorithm for modulo computation. It took just 0.03 seconds to
calculate10005456265461 + 65465 (mod 564654). So, lets say, that for calculating
sequence overall we needN operations.

• While cycle in the worst-case scenario will needTe∗2gd operations, in average-case
it should beTe.

• For the extraction of the subsequence we will needTe operations.
• Searching for the smaller period we will needTe ∗

√
Te operations.

• For the calculation of the pre-period we needTe + te operations.

Now we will summarize all operations. We can estimateM ≤ φ(g) ≤ g − 1 for the
worst-case and estimating the entire algorithm in bigO notation we get:

• For the worst-caseO(g2d+1),
• For the average-caseO((gd+1)3/2).

The code of the algorithm was written in “Maple 9” and the implementation was done on
a PC with Pentium(R) 4 CPU 2.00 GHz processor.

5 Conclusions

Our main goal was to find algorithm, which operation time would be better than exponen-
tial. We found one with polynomial time.

Some samples and graphs of calculations are given in the Appendix. In the graphs
gray line represents table data, dot line – average-case anddash line – worst-case scena-
rios. We can notice that the trends are matching.
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According to the data, time consumption grows rapidly for prime numbers and grow-
ing is much slower for composite numbers, especially thenφ(g) is very small compared
to g.

Appendix

Table 1. Calculations for (1).x0 = 1, d = 1, r = 1

g φ(g) T log2 g t s g φ(g) T log2 g t s

50 20 20 5.643856 3 0.29000068 32 16 6.087463 8 0.811000
51 32 16 5.672425 8 0.65100069 44 44 6.108524 4 1.973000
52 24 12 5.700440 6 0.41100070 24 12 6.129283 3 0.901000
53 52 52 5.727920 24 1.01100071 70 70 6.149747 15 3.645000
54 18 36 5.754888 0 0.26100072 24 12 6.169925 4 0.851000
55 40 20 5.781360 10 1.05100073 72 72 6.189825 12 4.857000
56 24 6 5.807355 4 0.47100074 36 36 6.209453 9 1.513000
57 36 36 5.832890 6 0.97100075 40 20 6.228819 3 2.463000
58 28 28 5.857981 14 0.55100076 36 18 6.247928 6 1.692000
59 58 58 5.882643 48 1.33200077 60 30 6.266787 10 5.839000
60 16 4 5.906891 2 0.31000078 24 12 6.285402 6 0.941000
61 60 60 5.930737 12 2.71400079 78 78 6.303781 13 5.769000
62 30 30 5.954196 6 0.83200080 32 4 6.321928 4 1.311000
63 36 12 5.977280 3 1.41200081 54 108 6.339850 1 3.125000
64 32 2 6.000000 6 0.63100082 40 40 6.357552 10 1.843000
65 48 12 6.022368 6 2.57300083 82 82 6.375039 82 4.446000
66 20 20 6.044394 10 0.56100084 24 12 6.392317 3 1.172000
67 66 66 6.066089 24 3.13500085 64 16 6.409391 8 5.508000

Table 2. Calculations for (1).x0 = 1, d = 1, r = 1

g φ(g) T log2 g t s g φ(g) T log2 g t s

10 4 2 3.321928 4 0.080000 20 8 2 4.321928 4 1.211000
11 10 1 3.459432 5 0.481000 21 12 1 4.392317 3 4.477000
12 4 2 3.584962 1 0.060000 22 10 2 4.459432 5 3.024000
13 12 1 3.700440 5 1.071000 23 22 1 4.523562 11 35.672000
14 6 2 3.807355 3 0.230000 24 8 2 4.584962 3 2.093000
15 8 1 3.906891 4 0.531000 25 20 1 4.643856 4 34.639000
16 8 2 4.000000 4 0.331000 26 12 2 4.700440 5 8.523000
17 16 1 4.087463 6 5.458000 27 18 1 4.754888 6 31.835000
18 6 2 4.169925 3 0.460000 28 12 2 4.807355 3 10.456000
19 18 1 4.247928 6 10.74600029 28 1 4.857981 7 159.449000

30 8 2 4.906891 4 3.966000
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Table 3. Calculations for (1).x0 = 1, d = 1, r = 1

g φ(φ(g)) T log2 g t s g φ(φ(g)) T log2 g t s

10 2 2 3.321928 1 0.02000020 4 2 4.321928 1 0.031000
11 4 12 3.459432 1 0.01000021 4 4 4.392317 2 0.030000
12 2 2 3.584962 1 0.01000022 4 12 4.459432 1 0.040000
13 4 4 3.700440 2 0.01000023 10 10 4.523562 15 0.180000
14 2 4 3.807355 2 0.01000024 4 2 4.584962 1 0.040000
15 4 1 3.906891 1 0.02000025 8 4 4.643856 1 0.150000
16 4 2 4.000000 0 0.01000026 4 4 4.700440 2 0.070000
17 8 1 4.087463 4 0.06000027 6 12 4.754888 1 0.100000
18 2 2 4.169925 1 0.02000028 4 4 4.807355 2 0.061000
19 6 4 4.247928 12 0.05000029 12 3 4.857981 6 0.430000

30 4 2 4.906891 1 0.060000

Fig. 1. Graph for Table 1. Fig. 2. Graph for Table 2.

Fig. 3. Graph for Table 3.
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