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Abstract. MHD natural convection flow of an electrically conductingifltalong a
vertical flat plate with temperature dependent thermal gotidty and conduction effects
is analyzed. The governing equations with associated tayndonditions for this
phenomenon are converted to dimensionless forms usingabkutransformation. The
transformed non-linear equations are then solved usingntipéicit finite difference
method with Keller-box scheme. Numerical results of theowiy, temperature, skin
friction coefficient and surface temperature for differesities of the magnetic parameter,
thermal conductivity variation parameter, Prandtl numbad conjugate conduction
parameter are presented graphically. Detailed discussigiven for the effects of the
aforementioned parameters.

Keywords: magnetohydrodynamic, free convection, thermal conditgtivariation,
conduction, finite difference method.

Nomenclature

b plate thickness M magnetic parameter
Cy,  local skin friction coefficient n  thermal conductivity variation
Cp specific heat at constant pressure parameter
f dimensionless stream function p  conjugate conduction parameter
g acceleration due to gravity Pr Prandtl number
h dimensionless temperature T, temperature at outside surface of
kf, ks fluid and solid thermal the plate
conductivities, respectively Ty temperature of the fluid
l length of the plate To fluid asymptotic temperature
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u,v velocity components N dimensionless similarity variable
u,v dimensionless velocity components 7,,  shearing stress

z,y Cartesian coordinates u, v dynamic and kinematic viscosities,
x,y dimensionless Cartesian coordinates respectively

I} co-efficient of thermal expansion P density of the fluid

0 dimensionless temperature ) dimensionless stream function

1 Introduction

Flow of electrically conducting fluid in presence of transeemagnetic field is impor-
tant from the technical point of view and such types of protdeéhave received much
attention by many researchers. Experimental and theateatiorks on MHD free and
forced convection flows have been done extensively but a fieestigations were done
on the conjugate effects of convection and conduction prabl On the otherhand,
the conduction within and convection along (conjugate liemtsfer) the plate have a
significant importance in many practical problems such ashiation or perspiration
cooling problems as well as in the heterogeneous chemiaatiom situations. In these
case the information on the interfacial temperature anad@omation distribution is es-
sential because the transfer characteristics are maitgyrdmed by the temperature and
concentration differences between the bulk flow and thefaxte. Cheng Long Chang [1]
analyzed the conjugate heat transfer of a micropolar fluid feertical flat plate. The same
problem over a vertical surface in absence of micropolad fivas studied by Merkin and
Pop [2] and Pozzi and Lupo [3]. On the other hand, the axiat beaduction effect
in a vertical flat plate over a free convection was studiedrivito et al. [4]. Pop et
al. [5] then extended the analysis to conjugate mixed cdioweon a vertical surface in
porous medium. Moreover, the thermal interaction betweaemdar film condensation
and forced convection along a conducting wall was invetgdjdy Chen Chang [6].
Shu and Pop [7] analyzed the thermal interaction between domvection and forced
convection along a vertical conducting wall. Hossain [8ids¢d the effect of viscous
and Joule heating on the flow of an electrically conductingdfluast a semi infinite
plate of which temperature varies linearly with the disefrom the leading edge and
in the presence of uniformly transverse magnetic field. spaper, using Keller box [9]
scheme the equations governing the flow were solved and timenical solutions were
obtained for small Prandtl numbers, appropriate for cadignid metal, in the presence
of a large magnetic field. Moreover, laminar free convecflow from an isothermal
sphere immersed in a fluid with thermal conductivity profmoval to linear function of
temperature has been studied by Molla et al. [10].

This article describes the effect of magnetic field and tewrupee dependent thermal
conductivity on the coupling of convection flow along and doction inside a vertical flat
plate. The governing boundary layer equations are tramgfdrinto a non dimensional
form and the resulting non linear system of partial difféi@requations are solved numer-
ically using the implicit finite difference method togethveith the Keller box technique
[9,11]. The velocity profiles, temperature distributioskin friction coefficient as well
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as surface temperature distributions are presented gajyhiIn the following section
detailed derivations of the governing equations for the feovd heat transfer and the
method of solutions along with the results and discussiompsented.

2 Mathematical analysis

Let us consider a steady laminar natural convection flow stails, incompressible and
electrically conducting fluid having temperature dependegrmal conductivity along a
vertical flat plate of lengtti and thicknes$ (Fig. 1). It is assumed that the temperature
at the outside surface of the plate is maintained at a constarperaturel,, where
T, > Tw, the ambient temperature of the fluid. A uniform magnetidfiet strength
Hy is imposed along thg-axis.

The governing equations of such flow under the usual bouridgey and the Boussi-
nesq approximations can be written as
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Here we will consider the form of the temperature dependwrhtal conductivity which
is proposed by Charraudeau [12], as follows

Kf = Koo[l + 5(Tf - Too)] 4)

wherek, is the thermal conductivity of the ambient fluid afiés a constant.
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These governing equations have to be solved along with thewiog boundary
conditions [1, 13-15]

a=0, =0,

Ty _ ks
) oy  bky
u—0, Ty =T as y—oo, T>0.

on =0, >0,

T, = T(3, (Ty —T4) (5)

=}

The non-dimensional governing equations and boundaryitonsl can be obtained from
equations (1)—(5) using the following non-dimensionalmitges:

:C:% Gr1/4, u = ﬂ—lGr_l/Q, vzﬂ—lGr_l/‘l,
3 Y (6)
Tb T ’ v? ’

wherel is the length of the platei7r is the Grashof numbeg, is the non-dimensional
temperature.

Substituting the relations (6) into the equation (1) to (88, get the following non
dimensional equations.

Oou  Ov
ou ou 0%u
%?k@+M a2+9 (8)
00 89 1 %0 ol
aH

where Pr = ’;ﬁ is the Prandtl numbe/ = G —=077 is the magnetic parameter, =

0(Ty — Two) is the thermal conductivity variatlon parameter.
The corresponding boundary conditions (5) then take tHeviirhg form

00
u=0 v=0, 0—1=(1+nfp— on =0, >0,
( M?ay y (10)
u—0, -0 as y— oo, x>0,
wherep = ("”“°° )Gr'/* is the conjugate conduction parameter.The present prolsiem
governed by the magnitude phs magnetic parameter and thermal conductivity variation
parameter. This coupling parameter plays an importantoalietermine the significance
of the wall conduction resistance within the wall.
To solve the equations (8) and (9) subject to the boundarglitions (10), the
following transformations are introduced:
) =aP (L) f(a,m),
n= ym_1/5(1 + x)—1/207 (11)
0 =2z"°(1+z)" Y% h(x,n).
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heren is the similarity variable andy is the non-dimensional stream function which
satisfies the equation of continuity and is related to theait components in the usual

way asu = 9v/dy andv = —0y/dx. Moreover,h(z,n) represents the dimensionless
temperature. Thus we get
o5 - 3L, 12)
Pirh” P <1 i m>1/2hﬂ+ P <1 i m)1/2,2+ 21(?(1+i5j) W =5a 1+ o/
x<f’%h’%), (13)

where prime denotes partial differentiation with respect.tThe boundary conditions as
mentioned in equation (10) then take the following form:

f(I,O) = f’(m,O) =0,

1/5
[(1+m)_1/4+mc1/5(1+x)_9/20h(x, 0)] ph'(z,0)= (li—x) h(z,0) -1, (14)

f(r,00) =0, h(z,00) — 0.

The set of equations (12) and (13) together with the boundanglitions (14) are
solved numerically by applying implicit finite differenceetiod with Keller box [9]
scheme. Since a good description of this method and its Ggijah to the boundary
layer flow problems are given in the book by Cebeci and Bradgha], the details of the
method have not been presented in this paper. From the grofbesmerical computation,
in practical point of view, it is important to calculate thalues of the surface shear stress
in terms of the skin friction coefficient. This can be writi@the non-dimensional form
as

—3/472
Oy = MTM (15)
nv
wherer,, (1, = 1 (014/0%)5=0) is the shearing stress. Using the new variables described
in (6), the local skin friction co-efficient can be written as

Cpa =227 (1+2)7% f"(2,0), (16)
The numerical values of the surface temperature are olot&iom the relation
0(z,0) = z/°(1 4+ z)~ Y h(z,0). (17)

We have also discussed the velocity profiles and the temperdistributions for differ-
ent values of the magnetic parameter, thermal conductidtiation parameter, Prandtl
number and conjugate conduction parameter.
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3 Results

The main objective of the present work is to analyze the efiéthermal conductivity
variation due to temperature on MHD free convection flow gl@nvertical flat plate
in presence of heat conduction. In the simulation the vatfdhe Prandtl number are
considered to b8.733,1.73,2.97 and4.24 that correspond to air, water, methyl chloride
and sulfur dioxide, respectively.

The velocity and the temperature fields obtained from thetgwis of the equations
(12) and (13) are depicted in Fig. 2 to 5. The magnetic fielthgailong the horizontal
direction retards the fluid velocity as shown in Fig. 2(a).oarFig. 2(b), it can be
observed that the temperature within the boundary layereases for the increasing
M. The magnetic filed decreases the temperature gradiens atah and increases the
temperature in the flow region. It is also observed that theperature at the interface
varies due to the conduction within the plate.
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Fig. 2. (a) Variation of velocity profiles and (b) variatiohtemperature profiles against
n for varying of M with n = 0.01, Pr = 0.733 andp = 0.25.

The effect of thermal conductivity variation parameter be velocity and tem-
perature within the boundary layer withh = 0.10, Pr = 0.733 andp = 0.25 are
shown in Fig. 3(a) and Fig. 3(b), respectively. It is seenrfrbig. 3(a) and Fig. 3(b)
that the velocity and temperature increase within the bagnthyer with the increasing
value ofn. It means that the velocity boundary layer and the thermahbdary layer
thickness increase for large valuesrofMoreover, the maximum values of the velocity
are1.1166,1.1466,1.1768 and 1.2073 for n = 0.01,0.03,0.05 and0.07, respectively
and each of which occurs gt = 0.9423. It is observed that the velocity increases by
7.513 % whenn increases fronf.01 to 0.07. Furthermore, the maximum values of the
temperature areé.1430,4.2533,4.3632 and4.4725 for n = 0.01, 0.03,0.05 and0.07,
respectively and each of which occurs at the surface. Itseided that the temperature
increases bg.593 % whenn increases fron.01 to 0.07.

Fig. 4(a) and Fig. 4(b) illustrate the velocity and temperatprofiles for different
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values of Prandtl numbd?r with A/ = 0.10, n» = 0.01 andp = 0.25. From Fig. 4(a),
it can be observed that the velocity decreases as well agitom of the peak velocity
moves toward the interface with the increasiRg. From Fig. 4(b), it is seen that the
temperature profiles shift downward with the increasiig It is also observed that
the maximum values of the velocity atel184,0.7830,0.6187 and 0.5274 for Pr =
0.733,1.73,2.97 and4.24, respectively which occurs gt= 0.9423,0.8881,0.8353 and
0.8353, respectively. It is seen that the velocity decrease®B3 % whenPr increases
from 0.733 to 4.24. Furthermore, the maximum values of the temperature arerobd to
be4.1464, 3.5023, 3.1633 and2.9645 for Pr = 0.733,1.73,2.97 and4.24, respectively
and each of which occurs at the surface. It is shown that tingeeature decreases by
6.285 % when Pr increases from.733 to 4.24.
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Fig. 3. (a) Variation of velocity profiles and (b) variatiohtemperature profiles against
n for varying ofn with M = 0.10, Pr = 0.733 andp = 0.25.
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Fig. 4. (a) Variation of velocity profiles and (b) variatiohtemperature profiles against
7 for varying of Pr with M = 0.10, n = 0.01 andp = 0.25.
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The effect of conjugate conduction parametefor M = 0.10, » = 0.01 and
Pr = 0.733 on the velocity and temperature profiles are shown in Fig.&td Fig. 5(b),
respectively. From Fig. 5(a) it can be noted that the vejoisitretarded and the peak
velocity moves away from the interface for the higher valoé®.From Fig. 5(b), it
can be seen that the temperature of the fluid within the baynldsier decreases for
the increasing. A lower wall conductance or higher convective cooling effect due
to greaterk., and Gr increases the value gf as well as causes greater temperature
difference between the two surfaces of the plate. The temtper at the solid-fluid
interface is reduced since the temperature at the outsidacsuof the plate is kept
constant. As a result the temperature profile shifts dowdsver the fluid and eventually
the velocity of the fluid within the boundary layer decreases
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Fig. 5. (a) Variation of velocity profiles and (b) variatiohtemperature profiles against
n for varying ofp with M = 0.10, n = 0.01 and Pr = 0.733.

The variation of the local skin friction coefficie@t;, and surface temperatutér, 0)
for different values of\/ with Pr = 0.733, n = 0.01 andp = 0.25 at different positions
of x are illustrated in Fig. 6(a) and Fig. 6(b), respectivelyislibbserved from Fig. 6(a)
that the increase value of the Magnetic parama@teteads to a decrease in the skin
friction factor. Again Fig. 6(b) shows that the surface temgturef(z, 0) increases due
to the increased value of the magnetic paramaferit can also be seen that the surface
temperature increases in a certain region and then desrakmsey the upward direction
of the plate for a particulal/. The magnetic field acting against the flow reduces the skin
friction and produces the temperature at the interface.

Fig. 7(a) and Fig. 7(b) illustrate the effect of the thermahductivity variation
parameter on the skin friction coefficient and surface teawrpiee distribution against
with M = 0.10, Pr = 0.733 andp = 0.25. From Fig. 7(a) it is seen that the skin friction
coefficient increases monotonically along the upward dima®f the plate for a particular
value ofn. Itis also seen that the skin friction factor increasestierincreasing.. From
Fig. 7(b) it is seen that the surface temperature increasethé increasing.. This is
to be expected because the higher value of the thermal ctivithugariation parameter
accelerates the fluid flow and increases the temperaturergsomed in Fig. 3(a) and 3(b),
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respectively.
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Fig. 6. (a) Variation of skin friction coefficients and (b)riation of surface temperature
distributions against for varying of M with n = 0.01, Pr = 0.733 andp = 0.25.
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Fig. 7. (a) Variation of skin friction coefficients and (b)riation of surface temperature
distributions against for varying ofn with M = 0.10, Pr = 0.733 andp = 0.25.

Fig. 8(a) and Fig. 8(b) deal with the effect of Prandtl numberthe skin friction
coefficient and surface temperature distribution agatnsith A/ = 0.10, n» = 0.01 and
p = 0.25. It can be observed from Fig. 8(a) that the skin friction fio&fnt increases
monotonically for a particular value dPr. It can also be noted that the skin friction
coefficient decreases for the increasitg From Fig. 8(b), it can be seen that the surface
temperature distributions decrease owing to the increfgbe @randtl number. Moreover,
the surface temperature increases in a certain region andigcreases along the positive
x-direction for a particulaPr.

Fig. 9(a) and Fig. 9(b) deal with the effect of the conjugaiaduction parameter
on the local skin friction factor and the surface tempeetuith M/ = 0.10, n = 0.01
and Pr = 0.733. From Fig. 9(a) it is observed that the skin friction decesafor the
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increasingp. Moreover, the skin friction co-efficient increases for atjgalar value

of p along the upward direction of the plate. Again from Fig. 9itbls seen that the
surface temperature decreases for the increasifgirthermore, the surface temperature
increases in a certain region and then decreases along sites@a-direction. This is
because the higher value pfreduces the fluid flow and decreases the temperature as
mentioned in Fig. 5(a) and Fig. 5(b), respectively.
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Fig. 8. (a) Variation of skin friction coefficients and (b)riation of surface temperature
distributions against for varying of Pr with M = 0.10, n = 0.01 andp = 0.25.
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Fig. 9. (a) Variation of skin friction coefficients and (b)riation of surface temperature
distributions against for varying of p with M = 0.10, n = 0.01 and Pr = 0.733.

4 Conclusion
The effect of thermal conductivity variation due to tempera on MHD free convection

flow along a vertical flat plate with wall conduction resistarhas been studied. Nu-
merical results of the equations governing the flow are abthby using implicit finite
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difference method together with Keller-box technique. Aorease in the values of the
thermal conductivity variation parametermagnetic parametér leads to an increase in
the surface temperature. Moreover, the surface temperdagareases for the increasing
Pr and conjugate conduction parameger The velocity within the boundary layer in-
creases for decreasind, Pr andp and increasing. On the other hand, the temperature
within the boundary layer increases for the increasifigandn and decreasing’r and

p. Moreover, the skin friction coefficient decreases for theréasingl/, Pr andp and
decreasing.
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