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Abstract. MHD natural convection flow of an electrically conducting fluid along a
vertical flat plate with temperature dependent thermal conductivity and conduction effects
is analyzed. The governing equations with associated boundary conditions for this
phenomenon are converted to dimensionless forms using a suitable transformation. The
transformed non-linear equations are then solved using theimplicit finite difference
method with Keller-box scheme. Numerical results of the velocity, temperature, skin
friction coefficient and surface temperature for differentvalues of the magnetic parameter,
thermal conductivity variation parameter, Prandtl numberand conjugate conduction
parameter are presented graphically. Detailed discussionis given for the effects of the
aforementioned parameters.

Keywords: magnetohydrodynamic, free convection, thermal conductivity variation,
conduction, finite difference method.

Nomenclature

b plate thickness M magnetic parameter
Cfx local skin friction coefficient n thermal conductivity variation
cp specific heat at constant pressure parameter
f dimensionless stream function p conjugate conduction parameter
g acceleration due to gravity Pr Prandtl number
h dimensionless temperature Tb temperature at outside surface of
κf , κs fluid and solid thermal the plate

conductivities, respectively Tf temperature of the fluid
l length of the plate T∞ fluid asymptotic temperature
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ū, v̄ velocity components η dimensionless similarity variable
u, v dimensionless velocity components τw shearing stress
x̄, ȳ Cartesian coordinates µ, ν dynamic and kinematic viscosities,
x, y dimensionless Cartesian coordinates respectively
β co-efficient of thermal expansion ρ density of the fluid
θ dimensionless temperature ψ dimensionless stream function

1 Introduction

Flow of electrically conducting fluid in presence of transverse magnetic field is impor-
tant from the technical point of view and such types of problems have received much
attention by many researchers. Experimental and theoretical works on MHD free and
forced convection flows have been done extensively but a few investigations were done
on the conjugate effects of convection and conduction problems. On the otherhand,
the conduction within and convection along (conjugate heattransfer) the plate have a
significant importance in many practical problems such as inablation or perspiration
cooling problems as well as in the heterogeneous chemical reaction situations. In these
case the information on the interfacial temperature and concentration distribution is es-
sential because the transfer characteristics are mainly determined by the temperature and
concentration differences between the bulk flow and the interface. Cheng Long Chang [1]
analyzed the conjugate heat transfer of a micropolar fluid for a vertical flat plate. The same
problem over a vertical surface in absence of micropolar fluid was studied by Merkin and
Pop [2] and Pozzi and Lupo [3]. On the other hand, the axial heat conduction effect
in a vertical flat plate over a free convection was studied Miamoto et al. [4]. Pop et
al. [5] then extended the analysis to conjugate mixed convection on a vertical surface in
porous medium. Moreover, the thermal interaction between laminar film condensation
and forced convection along a conducting wall was investigated by Chen Chang [6].
Shu and Pop [7] analyzed the thermal interaction between free convection and forced
convection along a vertical conducting wall. Hossain [8] studied the effect of viscous
and Joule heating on the flow of an electrically conducting fluid past a semi infinite
plate of which temperature varies linearly with the distance from the leading edge and
in the presence of uniformly transverse magnetic field. In his paper, using Keller box [9]
scheme the equations governing the flow were solved and the numerical solutions were
obtained for small Prandtl numbers, appropriate for coolant liquid metal, in the presence
of a large magnetic field. Moreover, laminar free convectionflow from an isothermal
sphere immersed in a fluid with thermal conductivity proportional to linear function of
temperature has been studied by Molla et al. [10].

This article describes the effect of magnetic field and temperature dependent thermal
conductivity on the coupling of convection flow along and conduction inside a vertical flat
plate. The governing boundary layer equations are transformed into a non dimensional
form and the resulting non linear system of partial differential equations are solved numer-
ically using the implicit finite difference method togetherwith the Keller box technique
[9, 11]. The velocity profiles, temperature distributions,skin friction coefficient as well
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as surface temperature distributions are presented graphically. In the following section
detailed derivations of the governing equations for the flowand heat transfer and the
method of solutions along with the results and discussions are presented.

2 Mathematical analysis

Let us consider a steady laminar natural convection flow of viscous, incompressible and
electrically conducting fluid having temperature dependent thermal conductivity along a
vertical flat plate of lengthl and thicknessb (Fig. 1). It is assumed that the temperature
at the outside surface of the plate is maintained at a constant temperatureTb, where
Tb > T∞, the ambient temperature of the fluid. A uniform magnetic field of strength
H0 is imposed along thēy-axis.

The governing equations of such flow under the usual boundarylayer and the Boussi-
nesq approximations can be written as

Fig. 1. Physical model and coordinate system
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∂ū

∂x̄
+ v̄

∂ū
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Here we will consider the form of the temperature dependent thermal conductivity which
is proposed by Charraudeau [12], as follows

κf = κ∞[1 + δ(Tf − T∞)] (4)

whereκ∞ is the thermal conductivity of the ambient fluid andδ is a constant.
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These governing equations have to be solved along with the following boundary
conditions [1,13–15]

ū = 0, v̄ = 0,

Tf = T (x̄, 0),
∂Tf

∂ȳ
=

ks

bkf
(Tf − Tb)







on ȳ = 0, x̄ > 0,

ū→ 0, Tf → T∞ as ȳ → ∞, x̄ > 0.

(5)

The non-dimensional governing equations and boundary conditions can be obtained from
equations (1)–(5) using the following non-dimensional quantities:

x =
x̄

l
, y =

ȳ

l
Gr1/4, u =

ūl

ν
Gr−1/2, v =

v̄l

ν
Gr−1/4,

θ =
Tf − T∞
Tb − T∞

, Gr =
gβl3 (Tb − T∞)

ν2
,

(6)

wherel is the length of the plate,Gr is the Grashof number,θ is the non-dimensional
temperature.

Substituting the relations (6) into the equation (1) to (3),we get the following non
dimensional equations.
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= 0, (7)
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wherePr =
µcp

κ∞
is the Prandtl number,M =

σH2

0
l2

µGr1/2
is the magnetic parameter,n =

δ(Tb − T∞) is the thermal conductivity variation parameter.
The corresponding boundary conditions (5) then take the following form

u = 0, v = 0, θ − 1 = (1 + n θ)p
∂θ

∂y
on y = 0, x > 0,

u→ 0, θ → 0 as y → ∞, x > 0,

(10)

wherep = (κ∞b
κsl )Gr1/4 is the conjugate conduction parameter.The present problemis

governed by the magnitude ofp as magnetic parameter and thermal conductivity variation
parameter. This coupling parameter plays an important roleto determine the significance
of the wall conduction resistance within the wall.

To solve the equations (8) and (9) subject to the boundary conditions (10), the
following transformations are introduced:

ψ = x4/5(1 + x)−1/20f(x, η),

η = y x−1/5(1 + x)−1/20,

θ = x1/5(1 + x)−1/5 h(x, η).

(11)
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hereη is the similarity variable andψ is the non-dimensional stream function which
satisfies the equation of continuity and is related to the velocity components in the usual
way asu = ∂ψ/∂y andv = −∂ψ/∂x. Moreover,h(x, η) represents the dimensionless
temperature. Thus we get
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where prime denotes partial differentiation with respect to η. The boundary conditions as
mentioned in equation (10) then take the following form:

f(x, 0) = f ′(x, 0) = 0,

[

(1+x)−1/4+nx1/5(1+x)−9/20h(x, 0)
]

p h′(x, 0)=

(

x

1+x

)1/5

h(x, 0) − 1,

f ′(x,∞) → 0, h(x,∞) → 0.

(14)

The set of equations (12) and (13) together with the boundaryconditions (14) are
solved numerically by applying implicit finite difference method with Keller box [9]
scheme. Since a good description of this method and its application to the boundary
layer flow problems are given in the book by Cebeci and Bradshaw [11], the details of the
method have not been presented in this paper. From the process of numerical computation,
in practical point of view, it is important to calculate the values of the surface shear stress
in terms of the skin friction coefficient. This can be writtenin the non-dimensional form
as

Cf =
Gr−3/4l2

µ ν
τw, (15)

whereτw (τw = µ (∂ū/∂ȳ)ȳ=0) is the shearing stress. Using the new variables described
in (6), the local skin friction co-efficient can be written as

Cfx = x2/5 (1 + x)−3/20 f ′′(x, 0). (16)

The numerical values of the surface temperature are obtained from the relation

θ(x, 0) = x1/5(1 + x)−1/5h(x, 0). (17)

We have also discussed the velocity profiles and the temperature distributions for differ-
ent values of the magnetic parameter, thermal conductivityvariation parameter, Prandtl
number and conjugate conduction parameter.
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3 Results

The main objective of the present work is to analyze the effect of thermal conductivity
variation due to temperature on MHD free convection flow along a vertical flat plate
in presence of heat conduction. In the simulation the valuesof the Prandtl number are
considered to be0.733, 1.73, 2.97 and4.24 that correspond to air, water, methyl chloride
and sulfur dioxide, respectively.

The velocity and the temperature fields obtained from the solutions of the equations
(12) and (13) are depicted in Fig. 2 to 5. The magnetic field acting along the horizontal
direction retards the fluid velocity as shown in Fig. 2(a). From Fig. 2(b), it can be
observed that the temperature within the boundary layer increases for the increasing
M . The magnetic filed decreases the temperature gradient at the wall and increases the
temperature in the flow region. It is also observed that the temperature at the interface
varies due to the conduction within the plate.

Fig. 2. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying ofM with n = 0.01, Pr = 0.733 andp = 0.25.

The effect of thermal conductivity variation parameter on the velocity and tem-
perature within the boundary layer withM = 0.10, Pr = 0.733 and p = 0.25 are
shown in Fig. 3(a) and Fig. 3(b), respectively. It is seen from Fig. 3(a) and Fig. 3(b)
that the velocity and temperature increase within the boundary layer with the increasing
value ofn. It means that the velocity boundary layer and the thermal boundary layer
thickness increase for large values ofn. Moreover, the maximum values of the velocity
are1.1166, 1.1466, 1.1768 and1.2073 for n = 0.01, 0.03, 0.05 and0.07, respectively
and each of which occurs atη = 0.9423. It is observed that the velocity increases by
7.513 % whenn increases from0.01 to 0.07. Furthermore, the maximum values of the
temperature are4.1430, 4.2533, 4.3632 and4.4725 for n = 0.01, 0.03, 0.05 and0.07,
respectively and each of which occurs at the surface. It is observed that the temperature
increases by2.593 % whenn increases from0.01 to 0.07.

Fig. 4(a) and Fig. 4(b) illustrate the velocity and temperature profiles for different
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values of Prandtl numberPr with M = 0.10, n = 0.01 andp = 0.25. From Fig. 4(a),
it can be observed that the velocity decreases as well as the position of the peak velocity
moves toward the interface with the increasingPr. From Fig. 4(b), it is seen that the
temperature profiles shift downward with the increasingPr. It is also observed that
the maximum values of the velocity are1.1184, 0.7830, 0.6187 and0.5274 for Pr =
0.733, 1.73, 2.97 and4.24, respectively which occurs atη = 0.9423, 0.8881, 0.8353 and
0.8353, respectively. It is seen that the velocity decreases by52.843 % whenPr increases
from 0.733 to 4.24. Furthermore, the maximum values of the temperature are observed to
be4.1464, 3.5023, 3.1633 and2.9645 for Pr = 0.733, 1.73, 2.97 and4.24, respectively
and each of which occurs at the surface. It is shown that the temperature decreases by
6.285 % whenPr increases from0.733 to 4.24.

Fig. 3. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying ofn with M = 0.10, Pr = 0.733 andp = 0.25.

Fig. 4. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying ofPr with M = 0.10, n = 0.01 andp = 0.25.
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The effect of conjugate conduction parameterp for M = 0.10, n = 0.01 and
Pr = 0.733 on the velocity and temperature profiles are shown in Fig. 5(a) and Fig. 5(b),
respectively. From Fig. 5(a) it can be noted that the velocity is retarded and the peak
velocity moves away from the interface for the higher valuesof p.From Fig. 5(b), it
can be seen that the temperature of the fluid within the boundary layer decreases for
the increasingp. A lower wall conductanceκs or higher convective cooling effect due
to greaterκ∞ andGr increases the value ofp as well as causes greater temperature
difference between the two surfaces of the plate. The temperature at the solid-fluid
interface is reduced since the temperature at the outside surface of the plate is kept
constant. As a result the temperature profile shifts downwards in the fluid and eventually
the velocity of the fluid within the boundary layer decreases.

Fig. 5. (a) Variation of velocity profiles and (b) variation of temperature profiles against
η for varying ofp with M = 0.10, n = 0.01 andPr = 0.733.

The variation of the local skin friction coefficientCfx and surface temperatureθ(x, 0)
for different values ofM with Pr = 0.733, n = 0.01 andp = 0.25 at different positions
of x are illustrated in Fig. 6(a) and Fig. 6(b), respectively. Itis observed from Fig. 6(a)
that the increase value of the Magnetic parameterM leads to a decrease in the skin
friction factor. Again Fig. 6(b) shows that the surface temperatureθ(x, 0) increases due
to the increased value of the magnetic parameterM . It can also be seen that the surface
temperature increases in a certain region and then decreases along the upward direction
of the plate for a particularM . The magnetic field acting against the flow reduces the skin
friction and produces the temperature at the interface.

Fig. 7(a) and Fig. 7(b) illustrate the effect of the thermal conductivity variation
parameter on the skin friction coefficient and surface temperature distribution againstx
with M = 0.10,Pr = 0.733 andp = 0.25. From Fig. 7(a) it is seen that the skin friction
coefficient increases monotonically along the upward direction of the plate for a particular
value ofn. It is also seen that the skin friction factor increases for the increasingn. From
Fig. 7(b) it is seen that the surface temperature increases for the increasingn. This is
to be expected because the higher value of the thermal conductivity variation parameter
accelerates the fluid flow and increases the temperature as mentioned in Fig. 3(a) and 3(b),
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respectively.

Fig. 6. (a) Variation of skin friction coefficients and (b) variation of surface temperature
distributions againstx for varying ofM with n = 0.01, Pr = 0.733 andp = 0.25.

Fig. 7. (a) Variation of skin friction coefficients and (b) variation of surface temperature
distributions againstx for varying ofn with M = 0.10, Pr = 0.733 andp = 0.25.

Fig. 8(a) and Fig. 8(b) deal with the effect of Prandtl numberon the skin friction
coefficient and surface temperature distribution againstx with M = 0.10, n = 0.01 and
p = 0.25. It can be observed from Fig. 8(a) that the skin friction coefficient increases
monotonically for a particular value ofPr. It can also be noted that the skin friction
coefficient decreases for the increasingPr. From Fig. 8(b), it can be seen that the surface
temperature distributions decrease owing to the increase of the Prandtl number. Moreover,
the surface temperature increases in a certain region and then decreases along the positive
x-direction for a particularPr.

Fig. 9(a) and Fig. 9(b) deal with the effect of the conjugate conduction parameter
on the local skin friction factor and the surface temperature withM = 0.10, n = 0.01
andPr = 0.733. From Fig. 9(a) it is observed that the skin friction decreases for the
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increasingp. Moreover, the skin friction co-efficient increases for a particular value
of p along the upward direction of the plate. Again from Fig. 9(b)it is seen that the
surface temperature decreases for the increasingp. Furthermore, the surface temperature
increases in a certain region and then decreases along the positive x-direction. This is
because the higher value ofp reduces the fluid flow and decreases the temperature as
mentioned in Fig. 5(a) and Fig. 5(b), respectively.

Fig. 8. (a) Variation of skin friction coefficients and (b) variation of surface temperature
distributions againstx for varying ofPr with M = 0.10, n = 0.01 andp = 0.25.

Fig. 9. (a) Variation of skin friction coefficients and (b) variation of surface temperature
distributions againstx for varying ofp with M = 0.10, n = 0.01 andPr = 0.733.

4 Conclusion

The effect of thermal conductivity variation due to temperature on MHD free convection
flow along a vertical flat plate with wall conduction resistance has been studied. Nu-
merical results of the equations governing the flow are obtained by using implicit finite
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difference method together with Keller-box technique. An increase in the values of the
thermal conductivity variation parametern, magnetic parameterM leads to an increase in
the surface temperature. Moreover, the surface temperature decreases for the increasing
Pr and conjugate conduction parameterp. The velocity within the boundary layer in-
creases for decreasingM , Pr andp and increasingn. On the other hand, the temperature
within the boundary layer increases for the increasingM andn and decreasingPr and
p. Moreover, the skin friction coefficient decreases for the increasingM , Pr andp and
decreasingn.
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