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Abstract. We present a one-sex age-structured population dynamics deterministic model
with a discrete set of offsprings, child care, environmental pressure, and spatial migration.
All individuals have pre-reproductive, reproductive, andpost-reproductive age intervals.
Individuals of reproductive age are divided into fertile single and taking child care groups.
All individuals of pre-reproductive age are divided into young (under maternal care) and
juvenile (offspring who can live without maternal care) classes. It is assumed that all
young offsprings move together with their mother and that after the death of mother all her
young offsprings are killed. The model consists of integro-partial differential equations
subject to the conditions of the integral type. Number of these equations depends on
a biologically possible maximal newborns number of the samegeneration produced by
an individual. The existence and uniqueness theorem is proved, separable solutions are
studied, and the long time behavior is examined for the solution with general type of
initial distributions in the case of non-dispersing population. Separable and more general
(nonseparable) solutions, their large time behavior, and steady-state solutions are studied
for the population with spatial dispersal, too.

Keywords: population dynamics, age–structured population, child care.

1 Introduction

Many species of animals care of their offsprings. This phenomenon is native for many
species of mammals and birds andforms the main difference between the behavior of the
population taking care of offsprings and that without maternal (or parental) duties.But
child care for every species is different. Offsprings of mammals and birds spend some
time with their mother or both parents, while young offsprings of fishes, reptilia, and
amphibia are left to one’s fate. Mammals and birds feed, warm, and defend their young
offsprings from enemies. If one of these native duties is notrealized, young offsprings
die and the population vanishes. For many species of mammals[1], e.g. bear (Thalarctos
maritimus and Ursus arctos horribilis), whale (Balaenoptera musculus), and panther
(Pannthera onca), only a female takes care of her young offsprings. For some species

525



V. Skakauskas

of mammals and birds, e.g. red fox (Vulpes vulpes), gnawer (Dolichotis patagonium),
penquin (Pygoscelis adeliae), heron (Ardea purpurea), falcon (Falco ciolumbarius), and
tawny owl (Strix aluco), both parents take care of their young offsprings.

The Sharpe-Lotka-McKendrick-von Foerster (see, e.g., [2]) and Fredrickson-Hop-
pensteadt-Staroverov [3–5] models are well known in mathematical biology. In the case
when information about sex ratio is not important the Sharpe-Lotka-McKendrick-von
Foerster one sex model (or its Gurtin-MacCamy generalization [6]) is usually used to
describe dynamics of age-structured population. The otherone (or its Hadeler [7] mo-
dification involving a maturation period) describes the evolution of populations forming
permanent pairs. All these models do not include a female gestation period.

Models involving a gestation period were first proposed and analyzed in papers
[8–11]. However, all these models do not treat the child carephenomenon. Therefore,
all models mentioned above have to be applied for the population which does non care its
young offsprings, e.g. some species of fishes, reptilia, andamphibia. In papers [12–16]
we proposed and examined four population dynamics models with child care: two for
one-sex and the other two for two-sex population. The main requirement in these papers
is that all offsprings under maternal (or parental) care arekilled if their mother (or any
of their parents) dies. These models are based on the notion of the density of young
(under maternal or parental care) offsprings which has to beaC1-function at least on the
characteristic lines of the equation for this density. However,the differentiability assump-
tion of this density is questionable for many species of mammals and birds.There exists
the other essential requirement in the case of the population with the spatial diffusion.
In this case,all young offsprings have to move together with their mother(or pair of
parents).To describe the diffusion of young offsprings and their mothers the Ficke law
for fluxes of young offsprings and their mothers with the samediffusion coefficient is
used in models [14] and [15]. In the case of the homogeneous Neumann problem, each
of these fluxes have to be zeroth on the boundary of the living area. But such the model
does not ensure that young offsprings and their mothers movetogether. If we assume that
diffusion flux of young offsprings is proportional to that oftheir mothers, then in the case
of homogeneous Neumann problem at the same time these both fluxes will be zeroth on
the boundary of their living region. But the gradient of the young offsprings density on
this boundary may not be equal to zero and we have a loss or gainof youngs through the
boundary. This shows that this model is biologically incorrect, too. Therefore, there arises
the problem of the construction of a biologically correct model in the case of a population
with the spatial diffusion.

This problem can be solved by usinga notion of the complex (family) which consists
of mother (or both parents) and a discrete set of her (their) young offsprings.In [17], we
proposed a model for two-sex population taking into accounttemporal pairs, a discrete
set of offsprings, and child care and examined its separablesolutions. In [9], a model
of two-sex population is studied taking into account permanent pairs, child care, and a
discrete set of offsprings.

In the present paper we present and examine a one-sex age-structured population
dynamics deterministic model with child care and a discreteset of offsprings of the same
generation produced by an individual. A preprint version ofthis paper has been used
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in [18] (see literature cited there) for numerical solving of the model discussed in the
present paper. This model could be used to describe the evolution of the population for
which only one mother takes care (see above) of her young offsprings. We consider
the population dynamics both with and without spatial diffusion ant take into account
an environmental influence (pressure) which depends on population overcrowding. All
individuals have pre-reproductive, reproductive, and post-reproductive age intervals. All
individuals of reproductive age are divided into fertile single (without offsprings under
maternal care at the given time) and individuals taking child care groups. Individuals of
pre-reproductive age are divided into young and juvenile (offsprings who can live without
maternal care) classes. We assume that the ecological pressure does not influence the
dynamics of the young offsprings directly, that youngs movetogether with their mother,
and that after the death of mother all her young offsprings are killed. The model consists
of a system of integro-partial differential equations subject to conditions of the integral
type. The number of these equations depends on a biologically possible maximal number
of newborns of the same generation produced by an individual.

The paper is organized as follows. In Section 3, we present and examine the model
for a non-dispersing population. In Section 3.1, separablesolutions are studied for the
general type of stationary vital rates. In Section 3.2, the existence and uniqueness the-
orem is proved for the unlimited population. Section 3.3 is devoted to the analysis of
the long time behavior of the solution to the model without spatial diffusion and with
general type of the initial distributions. In Section 4, we consider the model with spatial
dispersal. Separable and more general solutions and their long time behavior are studied
in Sections 4.1 and 4.2, respectively. The structure of steady-state solutions is examined
in Section 4.3. Remarks in Section 5 conclude the paper.

2 Notation

The following notation is used for the analysis of the population dynamics.
R

m: the Euclidean space of dimensionm with x = (x1, . . . , xm),

κ: the diffusion modulus,
(0, T ) and(T1, T3) (T < T1 < T3): the child care and reproductive age intervals,

respectively,
u(t, τ1, x): the age-space-density of individuals agedτ1 at timet at the positionx

who are of juvenile (τ1 ∈ (T, T1)), fertile single (τ1 ∈ (T1, T3)), or post-reproductive
(τ1 > T3) age,

uk(t, τ1, τ2, x): the age-space-density of individuals agedτ1 at timet at the position
x who take care of theirk offsprings agedτ2 at the same time,

ν(t, τ1, x): the natural death rate of individuals agedτ1 at timet at the positionx
who are of juvenile or adult age,

νk(t, τ1, τ2, x): the natural death rate of individuals agedτ1 at timet at the position
x who take care of theirk offsprings agedτ2,

νks(t, τ1, τ2, x): the natural death rate ofk − s young offsprings agedτ2 at timet at
the positionx whose mother is agedτ1 at the same time,
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αk(t, τ1, x) dt: the probability to producek offsprings in the time interval[t, t + dt]
at the locationx for an individual agedτ1,

N : sum of spatial densities of juvenile and adult individuals,

ρ(N): the death rate conditioned by ecological causes (overcrowding of the popula-
tion), ρ(0) = 0,

u0(τ1, x), uk0(τ1, τ2, x): the initial age distributions,

[u|τ1=τ ]: the jump discontinuity ofu at the pointτ1 = τ,

α =
n∑

k=1

αk, γ1(τ1) = max(0, τ1 − T3), γ2(τ1) = min(τ1 − T1, T ),

ν̃k = νk +
k−1∑
s=0

νks,

T2 = T1 + T : the minimal age of an individual finishing care of offsprings of the
first generation,

T4 = T3 + T : the maximal age of an individual finishing care of offsprings of the
last generation,

σ1 = (T1, T3), σ2 = (T1, T4), σ3 = (T2, T4),

σ∗
1 = (T,∞) \ σ1, σ∗

2 = (T,∞) \ σ2, σ∗
3 = (T,∞) \ σ3,

Q = {(τ1, τ2) : τ1 ∈ (T1 + τ2, T3 + τ2), τ2 ∈ (0, T )}.

In what followsκ, T, T1, andT3 are assumed to be positive constants. In the case of
non-dispersing populations all functionsu, uk, ν, νk, νks, αk, u0, anduk0 do not depend
on the spatial positionx.

3 The non-dispersing population dynamics model

In this section, we present a deterministic model for a non-dispersing age-structured
population with discrete set of offsprings of the same generation produced by an indi-
vidual and prove the existence and uniqueness theorem. In the case of stationary vital
rates, we examine separable solutions and find the long time behavior of the solution
to this model with initial distributions of the general type. We take into account the
environmental pressure by letting the death rates of juvenile and adult individuals depend
on the sum of their spatial densities,N, and assume that young offsprings are subject to
natural mortality and are protected from density related increases of mortality dependent
on N directly. Note that in more general case the environmental pressure depends on
N, x, t, and age of the individuals. At ageτ1 = T all young offsprings go to the
juvenile group and at ageτ1 = T1 all juveniles become adult individuals. Letn be
the biologically possible maximal number of newborns of thesame generation produced
by an individual. Using the balance law, we derive the density-dependent population
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dynamics model which consists of the equations

∂tu + ∂τ1
u +

(
ν + ρ(N)

)
u = −

{
0, τ1 ∈ σ∗

1 ,

αu, τ1 ∈ σ1

+






0, τ1 ∈ σ∗
2 ,

γ2(τ1)∫

γ1(τ1)

n∑
k=1

νk0uk dτ2, τ1 ∈ σ2
+






0, τ1 ∈ σ∗
3 ,

n∑
k=1

uk|τ2=T , τ1 ∈ σ3,
t > 0,

(1)

∂tuk + ∂τ1
uk + ∂τ2

uk +

(
νk +

k−1∑

s=0

νks + ρ(N)

)
uk

=






0, k = n,
n∑

s=k+1

νskus, 1 ≤ k ≤ n − 1,
(τ1, τ2) ∈ Q, t > 0,

(2)

N =

∞∫

T

u dτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

uk dτ1 (3)

subject to the conditions






u|τ1=T =
∫
σ3

n∑
k=1

kuk|τ2=T dτ1,

uk|τ2=0 = αku,

u|t=0 = u0, uk|t=0 = uk0,

[u|τ1=τ ] = 0, τ = T1, T2, T3, T4.

(4)

Here∂t and∂τk
signify partial derivatives. The first term on the right-hand side

in equation (1) means the part of individuals who produces offsprings, the second and
third terms describe the part of individuals whose all youngoffsprings die and who

finish child care, respectively. The transition term
k−1∑
s=0

νksuk on the lefth-hand side in

equation (2) describes the part of individuals agedτ1 at timet who take child care ofk
young offsprings and whose at least one young offspring dies. Similarly, the term on the
right-hand side in this equation describes a part of individuals agedτ1 at timet who take
care of more thank, 1 ≤ k ≤ n − 1, young offsprings agedτ2 whose number after the
death of the other offsprings is equal tok. The condition[u|τ1=τ ] = 0, τ = T1, T2, T3, T4

means that functionu must be continuous at the point,τ1 = τ, discontinuity of the right-
hand side of equation (1).

As follows from the foregoing, the given functionsν, νk, νks, αk, u0, anduk0 and
the unknown onesu anduk are to be positively valued, otherwise they have no biological
significance. The positive constantsT and Ts are to be given, too. The assumption
T < T1 given in Section 2 is natural.
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In order that conditions (4) would be consistent we formulate the following compat-
ibility conditions:






u0|τ1=T =
∫
σ3

n∑
k=1

kuk0|τ2=T dτ1,

uk0|τ2=0 = αk|t=0u0,

[u0|τ1=τ ] = 0, τ = T1, T2, T3, T4.

(5)

Inserting

u(t, τ1) = f(t)U(t, τ1), uk(t, τ1, τ2) = f(t)Uk(t, τ1, τ2), f(0) = 1 (6)

into (1)–(4), we split this system into the problem forU andUk,

∂tU + ∂τ1
U + νU = −

{
0, τ1 ∈ σ∗

1 ,

αU, τ1 ∈ σ1

+






0, τ1 ∈ σ∗
2 ,

γ2(τ1)∫

γ1(τ1)

n∑
k=1

νk0Uk dτ2, τ1 ∈ σ2
+






0, τ1 ∈ σ∗
3 ,

n∑
k=1

Uk|τ2=T , τ1 ∈ σ3,
t > 0,

(7)

∂tUk + ∂τ1
Uk + ∂τ2

Uk + ν̃kUk

=






0, k = n,
n∑

s=k+1

νskUs, 1 ≤ k ≤ n − 1,
(τ1, τ2) ∈ Q, t > 0

(8)

subject to the conditions





U |τ1=T =
∫
σ3

n∑
k=1

kUk|τ2=T dτ1,

Uk|τ2=0 = αkU,

U |t=0 = u0, Uk|t=0 = uk0,

[U |τ1=τ ] = 0, τ = T1, T2, T3, T4,

(9)

and the equations forf andN,

f ′ = −ρ(fβ)f, f(0) = 1, (10)

β =

∞∫

T

U dτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

Uk dτ1, (11)

N = fβ. (12)

Functionf means the ratio of the total limited (under ecological pressure) population
N and the total unlimited populationβ.
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3.1 Separable solutions to problem(7)–(9)

In this section we restrict ourselves by the case whereν, νk, νks, andαk do not depend on
t and are positive supported functions. Moreover, we assume thatν is continuous, while
αk, νk, andνks areC1-functions. We seek solutions of the form

U = Ũvλ(τ1) exp{λt}, u0 = Ũvλ(τ1), vλ(T ) = 1,

Uk = Ũvλ(τ1 − τ2)v
λ
k (τ1, τ2) exp{λt}, uk0 = Ũvλ(τ1 − τ2)v

λ
k (τ1, τ2),

vλ
k |τ2=0 = αk,

(13)

whereŨ > 0 is an arbitrary constant while the constantλ and positive functionsvλ and
vλ

k are to be determined. Note that separable solutions to the Gurtin-MacCamy model and
their application to genetics were first studied in [19] and [20], respectively, (see also [21]
and [2]). Inserting (13) into equations (7)–(9) gives the equations forvλ andvλ

k ,

vλ′

+ (ν + λ)vλ = −

{
0, τ1 ∈ σ∗

1 ,

αvλ, τ1 ∈ σ1

+






0, τ1 ∈ σ∗
2 ,

γ2(τ1)∫

γ1(τ1)

n∑
k=1

νk0v
λ
k (τ1, τ2)v

λ(τ1 − τ2) dτ2, τ1 ∈ σ2

+






0, τ1 ∈ σ∗
3 ,

n∑
k=1

vλ
k (τ1, T )vλ(τ1 − T ), τ1 ∈ σ3

(14)

with the conditions

vλ(T ) = 1, [vλ(τ)] = 0, τ = T1, T2, T3, T4,

∂τ1
vλ

k + ∂τ2
vλ

k + (ν̃k + λ)vλ
k =






0, k = n,
n∑

s=k+1

νskvλ
s , 1 ≤ k ≤ n − 1 in Q

(15)

with the condition

vλ
k |τ2=0 = αk,

and the characteristic equation forλ,

1 =

∫

σ3

n∑

k=1

kvλ
k (τ1, T )vλ(τ1 − T ) dτ1. (16)

Here and in what follows the prime indicates differentiation. Equations (15) can be
solved in the recurrent way starting withk = n and have a unique positiveC1-solution.
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Equations (14) can be solved explicitly forτ1 ∈ [T, T1] ∪ [T3,∞), while, for τ1 ∈
(T1, T3), they can be reduced into Volterra type integral equations with the delayT and,
therefore, have a unique positive solution. Obviously, this solution is aC1-function except
the pointsτ1 = T1, T2, T3, andT4. From (14) and (15) it is easy to see that

vλ = v0(τ1) exp{−λ(τ1 − T )}, vλ
k = v0

k(τ1, τ2) exp{−λτ2} (17)

wherev0 andv0
k satisfies equations (14) and (15) forλ = 0. From equations (16) and (17)

we get the characteristic equation forλ,

1 = I(λ), I(λ) =

∫

σ1

exp{−xλ}v0(x)
n∑

k=1

kv0
k(x + T, T ) dx. (18)

The distribution of roots of this equation is well known. It has a unique real rootλ0

and a discrete set of complex conjugate roots. The real part of complex roots is less than
λ0. As a result we formulate

Theorem 1. Let ν, νk, νks, and αk be positive functions andν ∈ C0([T,∞)), αk ∈
C0(σ̄1) ∩ C1(σ1), νk and νks ∈ C0(Q̄) ∩ C1(Q). Then problem(7)–(9) has a one-
parameter class of separable solutions of type(13)with the properties

U ∈ C0
(
[T,∞)

)
∩ C1

(
(T,∞) \ {τ1 = T1, T2, T3, T4}

)
,

Uk ∈

{
C0(Q̄) ∩ C1(Q \ {τ1 = τ2 + T2}) if T3 − T1 > T,

Uk ∈ C0(Q̄) ∩ C1(Q) if T3 − T1 ≤ T.

From the biological point of view death rates increase with age increasing and need
not stay bounded.

3.2 The existence and uniqueness theorem to system(7)–(9)

In this section, we consider the caseT3 − T1 > 2T (the opposite case can be examined
similarly) and prove the existence and uniqueness theorem to system (7)–(9) with vital
rates independent oft. We assume that conditions of Theorem 1 are satisfied andu0 and
uk0 are positiveC1-functions. Integrating of equation (8), fort < τ2, yields

Un(t, τ1, τ2) = un0(τ1−t, τ2−t) exp

{
−

τ1∫

τ1−t

ν̃n(ξ, ξ+τ2−τ1) dξ

}
,

Uk(t, τ1, τ2) = uk0(τ1−t, τ2−t) exp

{
−

τ1∫

τ1−t

ν̃k(ξ, ξ+τ2−τ1) dξ

}

+

τ1∫

τ1−t

exp

{
−

τ1∫

η

ν̃k(ξ, ξ+τ2−τ1) dξ

}
n∑

s=k+1

(νskUs)|(η+t−τ1,η,η+τ2−τ1) dη

(19)
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with 1 ≤ k ≤ n − 1. Equation (19) can be solved in the recurrent way starting with
k = n − 1.

If t > τ2, we have

Uk(t, τ1, τ2) = U(t − τ2, τ1 − τ2)v
0
k(τ1, τ2) (20)

with v0
k defined in Section 1. It remains to determineU(t, τ1).

Let t < τ1 − T. Set

Π(a, b; ν + α) = exp

{
−

b∫

a

(
ν(x) + α(x)

)
dx

}
,

A(τ1, τ2) =

n∑

k=1

(
νk0v

0
k

)∣∣
(τ1,τ2)

,

B(t, τ1, τ2) =

n∑

k=1

νk0(τ1, τ2)Uk(t, τ1, τ2),

C(t, τ1) =

n∑

k=1

Uk(t, τ1, T ),

D(τ1) =

n∑

k=1

v0
k(τ1, T ).

Integrating equation (7), we get

U(t, τ1) = u0(τ1 − t)Π(τ1 − t, τ1; ν), τ1 ∈ [T, T1] (21)

and

U(t, τ1) =

{
u0(τ1 − t)Π(τ1 − t, τ1; ν), t ≤ τ1 − T4,

U(T4 + t − τ1, T4)Π(T4, τ1; ν), t > τ1 − T4

(22)

for τ1 > T4. We write two last terms of the right hand side of equations (7)and sets
[0, τ1 − T ) × [T1, T2], [0, τ1 − T )× [T2, T3], and[0, τ1 − T )× [T3, T4] in the form

γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0Uk dτ2 =






γ2(τ1)∫

γ1(τ1)

B(t, τ1, τ2) dτ2, 0<t≤γ1(τ1),

t∫

γ1(τ1)

U(t−τ2, τ1−τ2)A(τ1, τ2) dτ2

+
γ2(τ1)∫

t

B(t, τ1, τ2) dτ2, γ1(τ1)<t≤γ2(τ1),

γ2(τ1)∫

γ1(τ1)

U(t−τ2, τ1−τ2)A(τ1, τ2) dτ2, t≥γ2(τ1),
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n∑

k=1

Uk|τ2=T =

{
C(t, τ1), 0 < t < T,

D(τ1)U(t − T, τ1 − T ), t ≥ T

[0, τ1 − T ) × [T1, T2] = {0 ≤ t ≤ τ1 − T1, τ1 ∈ [T1, T2]}

∪ {τ1 − T1 ≤ t < τ1 − T, τ1 ∈ [T1, T2]},

[0, τ1 − T ) × [T2, T3] = {0 ≤ t ≤ min(τ1 − T2, T ), τ1 ∈ [T2, T3]}

∪ {T ≤ t ≤ τ1 − T2, τ1 ∈ [T2 + T, T3]}

∪ {τ1 − T2 ≤ t ≤ T, τ1 ∈ [T2, T2 + T ]}

∪ {max(T, τ1 − T2) ≤ t < τ1 − (T2 − T ), τ1 ∈ [T2, T3]}

∪ {τ1 − (T2 − T ) ≤ t < τ1 − T, τ1 ∈ [T2, T3]},
and

[0, τ1 − T ) × [T3, T4] = {0 ≤ t ≤ τ1 − T3, τ1 ∈ [T3, T4]}

∪ {τ1 − T3 ≤ t ≤ T, τ1 ∈ [T3, T4]}

∪ {T ≤ t ≤ τ1 − (T3 − T ), τ1 ∈ [T3, T4]}

∪ {τ1 − (T3 − T ) ≤ t < τ1 − T, τ1 ∈ [T3, T4]}.

Then, by integrating, reduce equation (7) with conditions (9)3,4 into the integral equations
obtaining:

U(t, τ1) =

τ1∫

τ1−t

Π(ξ, τ1; ν + α) dξ

ξ∫

τ1−t

U(η + t − τ1, η)A(ξ, ξ − η) dη+f(t, τ1) (23)

with

f(t, τ1) =

τ1∫

τ1−t

Π(ξ, τ1; ν + α) dξ

ξ−T1∫

ξ+t−τ1

B(ξ + t − τ1, ξ, τ2) dτ2

+ u0(τ1 − t)Π(τ1 − t, τ1; ν + α)

in {0 ≤ t ≤ τ1 − T1, for τ1 ∈ [T1, T2]},

U(t, τ1) = U(T1 + t − τ1, T1)Π(T1, τ1; ν + α)

+

τ1∫

T1

Π(ξ, τ1; ν + α) dξ

ξ∫

T1

U(η + t − τ1, η)A(ξ, ξ − η) dη
(24)

in {τ1 − T1 ≤ t < τ1 − T for τ1 ∈ [T1, T2]},

U(t, τ1) =

τ1∫

τ1−t

Π(ξ, τ1; ν+α) dξ

ξ∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη + f(t, τ1) (25)
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with

f(t, τ1) = u0(τ1 − t)Π(τ1 − t, τ1; ν + α)

+

τ1∫

τ1−t

Π(ξ, τ1; ν + α) dξ

T∫

ξ+t−τ1

B(ξ + t − τ1, ξ, τ2) dτ2

+

τ1∫

τ1−t

Π(ξ, τ1; ν + α)C(ξ + t − τ1, ξ) dξ

in {0 ≤ t ≤ min(τ1 − T2, T ) for τ1 ∈ [T2, T3]},

U(t, τ1) =

τ1∫

T+τ1−t

Π(ξ, τ1; ν+α) dξ

ξ∫

ξ−T

U(η+t−τ1, η)A(ξ, ξ−η) dη + f(t, τ1) (26)

with

f(t, τ1) = u0(τ1 − t)Π(τ1 − t, τ1; ν + α)

+

T+τ1−t∫

τ1−t

Π(ξ, τ1; ν+α) dξ

{ ξ∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη

+

T∫

ξ+t−τ1

B(ξ+t−τ1, ξ, τ2) dτ2+C(ξ+t−τ1, ξ)

}

+

τ1∫

T+τ1−t

Π(ξ, τ1; ν+α)D(ξ)U(ξ+t−τ1−T, ξ−T } dξ

in {T ≤ t ≤ τ1 − T2 for τ1 ∈ [T2 + T, T3]},

U(t, τ1) =

τ1∫

T2

Π(ξ, τ1; ν+α) dξ

ξ∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη+f(t, τ1) (27)

with

f(t, τ1) = U(T2+t−τ1, T2)Π(T2, τ1; ν+α)

+

τ1∫

T2

Π(ξ, τ1; ν+α) dξ

{ T∫

ξ+t−τ1

B(ξ+t−τ1, ξ, τ2)dτ2 + C(ξ+t−τ1, ξ)

}
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in {τ1 − T2 ≤ t ≤ T for τ1 ∈ [T2, T2 + T ]},

U(t, τ1) =

τ1∫

T+τ1−t

Π(ξ, τ1; ν+α) dξ

ξ∫

ξ−T

U(η+t−τ1, η)A(ξ, ξ−η) dη+f(t, τ1) (28)

with

f(t, τ1) = U(T2+t−τ1, T2)Π(T2, τ1; ν+α)

+

T+τ1−t∫

T2

Π(ξ, τ1; ν+α) dξ

{ ξ∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη

+

T∫

ξ+t−τ1

B(ξ+t−τ1, ξ, τ2) dτ2 + C(ξ+t−τ1, ξ)

}

+

τ1∫

T+τ1−t

Π(ξ, τ1; ν+α)D(ξ)U(ξ+t−τ1−T, ξ−T ) dξ

in {max(T, τ1 − T2) ≤ t ≤ τ1 − (T2 − T ) for τ1 ∈ [T2, T3]}, and

U(t, τ1) =

τ1∫

T2

Π(ξ, τ1; ν + α) dξ

ξ∫

ξ−T

U(η + t − τ1, η)A(ξ, ξ − η) dη + f(t, τ1) (29)

with

f(t, τ1) = U(T2 + t − τ1, T2)Π(T2, τ1; ν + α)

+

τ1∫

T2

Π(ξ, τ1; ν + α)D(ξ)U(ξ + t − τ1 − T, ξ − T ) dξ

in {τ1 − (T2 − T ) ≤ t < τ1 − T for τ1 ∈ [T2, T3]},

U(t, τ1) = u0(τ1 − t)Π(τ1 − t, τ1; ν)

+

τ1∫

τ1−t

Π(η, τ1; ν) dη

{ T∫

η−T3

B(η+t−τ1, η, τ2) dτ2 + C(η+t−τ1, η)

}
(30)
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in {0 ≤ t < τ1 − T3 for τ1 ∈ [T3, T4]},

U(t, τ1) = U(T3+t−τ1, T3)Π(T3, τ1; ν)

+

τ1∫

T3

Π(ξ, τ1; ν) dξ

{ T3∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη

+

T∫

ξ+t−τ1

B(ξ+t−τ1, ξ, τ2) dτ2 + C(ξ+t−τ1, ξ)

}
(31)

in {τ1 − T3 < t ≤ T for τ1 ∈ [T3, T4]},

U(t, τ1) =U(T3+t−τ1, T3)Π(T3, τ1, ν)

+

T+τ1−t∫

T3

Π(ξ, τ1; ν) dξ

{ T3∫

τ1−t

U(η+t−τ1, η)A(ξ, ξ−η) dη

+

T∫

ξ+t−τ1

B(ξ+t−τ1, ξ, τ2) dτ2+C(ξ+t−τ1, ξ)

}

+

τ1∫

T+τ1−t

Π(ξ, τ1; ν) dξ

{ T3∫

ξ−T

U(η+t−τ1, η)A(ξ, ξ−η) dη

+ D(ξ)U(ξ+t−τ1−T, ξ−T )

}

(32)

in {T ≤ t ≤ τ1 − (T3 − T ) for τ1 ∈ [T3, T4]}, and

U(t, τ1) = U(T3 + t − τ1, T3)Π(T3, τ1; ν)

+

τ1∫

T3

Π(ξ, τ1; ν) dξ

{ T3∫

ξ−T

U(η + t − τ1, η)A(ξ, ξ − η) dη

+ D(ξ)U(ξ + t − τ1 − T, ξ − T )

}
(33)

in {τ1 − (T3 − T ) ≤ t < τ1 − T for τ1 ∈ [T3, T4]}.
By changing variables equations (23)–(29) can be written ina form of Volterra type

integral equations with kernels independent oft and therefore have a unique positive
C0-solutions. Once equations (23)–(29) are solved, formulas(30)–(33), (21), and (22)
determine functionU which is continuous in{(t, τ1) : 0 ≤ t ≤ τ1 − T, τ1 ∈ [T, T1] ∪
[T3,∞)}. It is evident that functionU is not differentiable at the pointsτ1 = T1, . . . , T4

and it is aC1-function along the characteristic lines except the pointsτ1 = T1, . . . , T4.
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If u0 is a positiveC1-function, then under the conditions of Theorem 1 on differentiation
equations (23)–(29) with respect tot, we derive integral equations of Volterra type for∂tU
written on the characteristic lines. These equations show that∂tU is continuous function
except linesτ1 = T2, t + Ts, s = 1, 2. ThusU is aC1-function for t < τ1 − T, τ1 ∈
(T1, T3) except linesτ1 = T2, t + Ts, t > 0, s = 1, 2. Similarly, by using (30)–(33) and
(22) we prove thatU is not differentiable at the linesτ1 = T4 andt = τ1 − Ts, τ1 ∈
(T3, T4), s = 1, . . . , 4.

If t > τ1 − T, we have

U(t, τ1) = U(T + t − τ1, T )v0(τ1) (34)

with v0 determined in Section 1. By definition (see (9)1) we get the equation forU(t, T ),

U(t, T )=






∫
σ3

n∑
k=1

kUk|τ2=T dτ1, 0 ≤ t ≤ T1,

t+T∫

T2

U(T +t−τ1, T )v0(τ1−T )
n∑

k=1

kv0
k(τ1, T ) dτ1

+
T4∫

t+T

n∑
k=1

kUk|τ2=T dτ1, T1 ≤ t ≤ T3,

∫
σ3

U(T +t−τ1, T )v0(τ1−T )
n∑

k=1

kv0
k(τ1, T ) dτ1, t > T3,

(35)

which has a retarded structure with the delayT1 and has a unique positive solution. It is
easy to see thatU(t, T ) ∈ C0([0,∞))∩C1((0, T )∪(T,∞)). Thus, we have the following
result:

Theorem 2. Letu0 anduk0 be positive,u0 ∈ C0([T,∞))∩C1((T,∞)), uk0 ∈ C0(Q̄)∩
C1(Q), andT3 − T1 > 2T . Then under the conditions of Theorem1 problem(7)–(9) has
a unique positive solution with the properties

U ∈ C0
(
[0,∞) × [T,∞)

)
∩ C1

(
([0,∞) × [T,∞))

\ {τ1 = T1, T2, T3, T4; τ1 = t + T, t + T1, t + T2, t + T3, t + T4}
)
,

Uk ∈ C0
(
[0,∞) × Q̄

)
∩ C1

(
(0,∞) × Q)

\ {τ2 = t; τ1 = T2, T3, t + T, t + T1, t + T2, t + T3}
)
.

If in additionu0 ∈ L1(T,∞), thenβ ∈ C0([0,∞)) ∩ C1(0,∞).

The proof of the solvability of equation (10) is evident.
Note that the similar result can be obtained for the caseT3 − T1 ≤ 2T, too.
As a result we formulate

Theorem 3. Assume thatρ ∈ C1([0,∞)), ρ(0) = 0 and ρ′ > 0. Then under the
conditions of Theorem2 equations(10) and (12) have a unique positive global solution
such thatf andN ∈ C1((0,∞)).
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3.3 The long time behavior of the solution to system(7)–(11)

In this section, we find the asymptotic behavior of the solution to system (7)–(11). We
first find an upper bound forU(t, T ). It follows from equation (20) and (32) that

U(t, T ) ≤ ξ

t−T1∫

t−T3

u(x, t) dx, ξ = max
σ̄1

v0(x)

n∑

k=1

kv0
k(x + T, T ), t ≥ T3.

Now

U(t, T ) ≤ ηξ, η =

T3∫

0

U(x, T ) dx, t ∈ [T3, T3 + T1],

then

U(t, T ) ≤ ξ

T3+T1∫

T1

≤ ξ

T3∫

T1

U(x, T ) dx + ξ

T3+T1∫

T3

U(x, T ) dx ≤ ηξ(1 + ξT1)

and
T3+T1∫

T1

U(x, T ) dx ≤ η(1 + ξT1), t ∈ (T3 + T1, T3 + 2T1],

and, by induction,

U(t, T ) ≤ ξ

T3+mT1∫

mT1

U(x, T ) dx ≤ ξη(1 + ξT1)
m, t ∈ (T3 + mT1, T3 + (m + 1)T1].

Therefore, there exists the Laplace transformÛ(λ, T ) of U(t, T ),

Û(λ, T ) =

∫

σ3

dτ1

∞∫

0

n∑

k=1

kUk|τ2=T exp{−tλ} dt

=

∫

σ3

dτ1

τ1−T∫

0

exp{−tλ}

n∑

k=1

kUk|τ2=T dt

+

∫

σ3

v0(τ1 − T ) dτ1

∞∫

τ1−T

exp{−tλ}

n∑

k=1

kv0
k(τ1, T )U(T + t − τ1, T ) dt

= I1(λ) + Û(λ, T )I(λ)

with

I1(λ) =

∫

σ3

dτ1

τ1−T∫

0

exp{−tλ}
n∑

k=1

kUk|τ2=T dt
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andI(λ) defined by equation (18). Hence,

Û(λ, T ) = I1(λ)/
(
1 − I(λ)

)
.

Roots ofI(λ) are discussed in Section 1. FunctionI1(λ) is analytic and, using the method
of a rectangle contour integral [22], we evaluate the inverse Laplace transform obtaining

U(t, T ) = η exp{tλ0} + O(exp{tµ}), η = −I1(λ0)/I ′(λ0) > 0 (36)

whereµ < λ0 is the real part of the first pair of conjugate complex roots. Then by
equations (20) and (32), for large time (t > τ1 − T ), we get the following formulas:

{
U(t, τ1) = v0(τ1)U(T + t − τ1, T ),

Uk(t, τ1, τ2) = v0
k(τ1, τ2)v

0(τ1 − τ2)U(T + t − τ1, T )
(37)

with U(t, T ) defined by equation (36).
The asymptotic behavior ofβ defined by equation (11) will now be studied. We

assume that conditions of Theorem 2 foru0 hold, while ν satisfies conditions of The-
orem 1 and does not decrease asτ1 → ∞. Functionβ can be written in the form

β =
4∑

s=1
Js whereJ1 =

∫ t+T

T
U dτ1, J2 =

∫ t+T4

t+T
U dτ1, J3 =

∫ ∞

t+T4

U dτ1, J4 =

T∫

0

dτ2

∫ T3+τ2

T1+τ2

∑n
k=1 Uk dτ1.

By equation (36) we getJ1 = J11 + J12 with

J11 = η

t+T∫

T

v0(τ1) exp{λ0(T + t − τ1)} dτ1

and

J12 =

t+T∫

T

v0(τ1)O
(
exp{µ(T + t − τ1)}

)
dτ1.

Now we get estimates ofJs for large time. Setν∞ = lim ν asτ1 → ∞. We first consider

the caseν∞ < ∞. From equations (14) and (15) it follows thatv0 ≤ c0 exp{−
τ1∫

T

ν(x)dx}

wherec0 is a positive constant. Fix sufficiently larget1 > T3 and lett > t1. Then

J11 exp{−tλ0} = η

t+T∫

T

v0(τ1) exp{λ0(T − τ1)} dτ1

≤ c0

t+T∫

T

exp{λ0(T − τ1) −

τ1∫

T

ν dx} dτ1 = c0

t∫

0

exp{−λ0ξ −

t+ξ∫

T

ν dx} dξ

= c0

t1∫

0

exp

{
− ξλ0 −

T+ξ∫

T

ν dx

}
dξ +

t∫

t1

exp

{
− ξλ0 −

T+ξ∫

T

ν dx

}
dξ.
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Whenλ0 + ν∞ > ǫ with a smallǫ > 0 this integral converges ast → ∞ since

t∫

t1

exp

{
− ξλ0 −

T+ξ∫

T

ν dx

}
dξ =

t∫

t1

exp

{
− ξλ0 −

T+ξ∫

t1

ν dξ −

t1∫

T

ν dx

}
dξ

≤ exp

{
−

t1∫

T

ν dx

} t∫

t1

exp{−(λ0 + ν∞ − ǫ)ξ} dξ < ∞

for all t > t1 and tends to 0 ast1 → ∞. Similarly,

J12 exp{−tλ0} =

t+T∫

T

v0(τ1)O
(
exp{µ(T + t − τ1)}

)
dτ1 exp{−tλ0}

≤ c1

t+T∫

T

v0(τ1) exp{µ(T + t − τ1)} dτ1 exp{−tλ0}

≤ c2 exp{−t(λ0 − µ)}

t+T∫

T

exp

{
µ(T − τ1) −

τ1∫

T

ν dx

}
dτ1

= c2 exp{−t(λ0 − µ)}

t∫

0

exp

{
− µξ −

ξ+T∫

T

ν dx)

}
dξ

= c2 exp{−t(λ0 − µ)}

{ t1∫

0

exp{−µξ −

ξ+T∫

T

ν dx)

}
dξ

+ exp

{
−

t1∫

T

ν dx

} t∫

t1

exp

{
− µξ −

T+ξ∫

t1

ν dx

}
dξ

where

exp{−t(λ0 − µ)}

t∫

t1

exp

{
− µξ −

ξ+T∫

t1

ν dx

}

≤ exp{−t(λ0 − µ)}

t∫

t1

exp{−(µ + ν∞ − ǫ)ξ} dξ

≤






c3 exp{−t(λ0 − µ)}, µ + ν∞ − ǫ > 0,

t exp{−t(λ0 + ν∞ − ǫ)}, µ + ν∞ − ǫ = 0,

c4 exp{−t(λ0 + ν∞ − ǫ)}, µ + ν∞ − ǫ < 0
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and the integral

exp{−t(λ0 − µ)}

t1∫

0

exp

{
− µξ −

ξ+T∫

T

ν dx

}
dξ

tends to 0 ast → ∞ since, for negativeµ, it can be written as

exp{−t(λ0 − µ + µt1/t)}

t1∫

0

exp

{
µ(t1 − ξ) −

ξ+T∫

T

ν dx

}

and tends to 0 if−µt1/(λ0 − µ) < t → ∞, while, for µ ≤ 0, this assertion is evident;

J3 exp{−tλ0} = exp{−tλ0}

∞∫

t+T4

u0(τ1 − t) exp

{
−

τ1∫

τ1−t

ν dx

}
dτ1

= exp{−tλ0}

∞∫

T4

u0(ξ) exp

{
−

t+ξ∫

ξ

ν dx

}
dξ

= exp{−tλ0}

{ t1∫

T4

u0(x) exp{−

t1∫

ξ

ν dx −

t+ξ∫

t1

ν dx

}
dξ

+

∞∫

t1

u0(ξ) exp

{
−

t+ξ∫

ξ

ν dxdξ

}

≤

{ t1∫

T4

u0(ξ) exp

{
−

t1∫

ξ

ν dx

}
dξ +

∞∫

t1

u0(ξ) dξ

}
exp{−t(λ0 + ν∞ − ǫ)}

≤

∞∫

T4

u0(ξ) dξ exp{−(λ0 + ν∞ − ǫ)};

and

J4 exp{−tλ0} = η

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

v0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)} dτ1.

Herec1, . . . , c4 are some positive constants. From equations (21) and (30) itfollows that

U ≤ c5 exp{−
τ1∫

ξ

νdx} with a constantc5 > 0 for t ≤ τ1 − T, T ≤ τ1 ≤ T4. Hence,

J2 exp{−tλ0} = exp{−tλ0}

t+T4∫

t+T

U(T4 + t − τ1, T4) exp

{
−

τ1∫

T4

ν dx

}
dτ1
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≤ c5 exp{−tλ0}

t+T4∫

t+T

exp

{
−

T4∫

τ1−t

ν dx −

τ1∫

T4

ν dx} dτ1

= c5 exp{−tλ0}

t+T4∫

t+T

exp

{
−

τ1∫

τ1−t

ν dx

}
dτ1

= c5 exp{−tλ0}

T4∫

T

exp

{
−

t+ξ∫

ξ

ν dx

}
dξ

= c5 exp{−tλ0}

T4∫

T

exp

{
−

t1∫

ξ

ν dx −

t+ξ∫

t1

ν dx

}
dξ

≤ c5 exp{−t(λ0 + ν∞ − ǫ)}

T4∫

T

exp

{
−

T4∫

ξ

ν dx

}
dξ.

Since these estimates forJ11, J12, J2, andJ3 are valid for every smallǫ > 0, we conclude
that, for large time andν∞ < ∞,

β ∼ β̄(λ0) exp{tλ0}, β̄(λ0) = η(λ0)β̃(λ0), (38)

β̄(λ0) =

∞∫

0

v0(x + T ) exp{−xλ0} dx

+

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

v0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)} dτ1 (39)

if λ0 +ν∞ > 0. It is evident that(J12 +J2+J3) exp{−tλ0} for ν∞ = ∞ is less than that
given above forν∞ < ∞. Therefore formula (38) remains valid for the caseν∞ = ∞,
too.

It remains to find the asymptotic behavior ofN defined by equation (12). Putf(t) =
F (t) exp{−tλ0} in equation (10) to get

F ′ =
(
λ0 − ρ(Fβ exp{−tλ0})

)
F, F (0) = 1.

The asymptotic behavior ofF andN can be described by the unique solutions of the
equations

F̃ ′ =
(
λ0 − ρ

(
F̃ β̄(λ0)

))
F̃ , F̃ (0) = 1

and

Ñ ′ =
(
λ0 − ρ

(
Ñ

))
Ñ , Ñ(0) = β̄(λ0),
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respectively. Hence,





F̃ , Ñ → 0 ast → ∞ if λ0 ≤ 0,

F̃ , Ñ → ∞ ast → ∞ if sup
N≥0

ρ(N) ≤ λ0 < ∞,

F̃ → N∗/β̄(λ0) andÑ → N∗ ast → ∞ if λ0 ∈
(
0, sup

N≥0
ρ(N)

)
,

β̄(λ0)<∞, andλ0 =ρ(N∗).

(40)

This enables us to formulate

Theorem 4. Let conditions of Theorem3 be satisfied,ν is non-decreasing, and̄β(λ0) <
∞ whereλ0 is a unique real root of equation(18). Then the solution of problem(6)–(11)
for large time behaves as follows:






N ∼ Ñ,

u ∼ v0(τ1) exp{λ0(T − τ1)}Ñ/β̃(λ0),

uk ∼ v0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)}Ñ/β̃(λ0)

(41)

where asymptotic behavior of̃N is given by(40).

4 A population dynamics model with spatial diffusion

In this section we generalize the model in Section 3 by including the random spatial
diffusion in an open bounded domainΩ ⊂ R

m with the extremely inhospitable boundary
∂Ω and examine two special and steady state solutions in the case of constant diffusion
modulusκ and time-space-independent vital rates. The model reads asfollows:






∂tu + ∂τ1
u +

(
ν + ρ(N)

)
u − κ∆u

= −

{
0, τ1 ∈ σ∗

1 ,

αu, τ1 ∈ σ1

+






0, τ1 ∈ σ∗
2 ,

γ2(τ1)∫

γ1(τ1)

n∑
k=1

νk0uk dτ2, τ1 ∈ σ2

+






0, τ1 ∈ σ∗
3 ,

n∑
k=1

uk|τ2=T , τ1 ∈ σ3,
t > 0, x ∈ Ω,

u|τ1=T =
∫
σ3

n∑
k=1

kuk|τ2=T dτ1,

u|t=0 = u0, u|∂Ω = 0, [u|τ1=τ ] = 0, τ = T1, T2, T3, T4,

(42)






∂tuk + ∂τ1
uk + ∂τ2

uk +
(
ν̃k + ρ(N)

)
uk − κ∆uk

=






0, k = n,
n∑

s=k+1

νskus, 1 ≤ k ≤ n − 1, (τ1, τ2) ∈ Q, t > 0, x ∈ Ω,

uk|τ2=0 = αku, uk|t=0 = uk0, uk|∂Ω = 0,

(43)
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N =

∞∫

T

u dτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

uk dτ1. (44)

Here∆ signifies the Laplace operator inRm. We examine the case whereu0 anduk0

depend on(τ1, x) and(τ1, τ2, x), respectively,ν, νk, αk, andνsk do not depend ont and
x, and add the following compatibility conditions:

u0|τ1=T =

∫

σ3

n∑

k=1

kuk0|τ2=T dτ1, u0|∂Ω = 0,

[u0|τ1=τ ] = 0, τ = T1, T2, T3, T4;

uk0|τ2=0 = (αk)|t=0u0, uk0|∂Ω = 0.

4.1 A case of product initial distributions

In this section we study a special case of initial functions and look for solutions to
equations (42)–(44) of the form

{
u(t, τ1, x) = U(t, τ1)f(t, x), u0(τ1, x) = U0(τ1)f0(x), f0|∂Ω = 0,

uk(t, τ1, τ2, x) = Uk(t, τ1, τ2)f(t, x), uk0(τ1, τ2, x) = Uk0(τ1, τ2)f0(x)
(45)

wheref0(x) > 0 in Ω while U andUk are unique solutions of problem (7)–(9) and
(5) with u0 anduk0 replaced byU0 andUk0, respectively. Substituting (45) into equa-
tions (42)–(44), we get the problem forf andN,

{
∂tf = −ρ(N)f + κ∆f, f(0, x) = f0(x), f |∂Ω = 0,

N = fβ
(46)

with β(t) defined by equation (11). By substitutionf(t, x) = F (t, x) exp{−tλ0} we
reduce this equation into the problem

{
∂tF =

(
λ0 − ρ(aF )

)
F + κ∆F, F (0, x) = f0(x), F |∂Ω = 0,

N(t, x) = F (t, x)a(t), a(t) = β(t) exp{−tλ0}.
(47)

Theorem 5. Let conditions of Theorem2 with u0 anduk0 replaced byU0 andUk0 hold.
Assume that0 < f0 ∈ C2+δ(Ω̄) with δ ∈ (0, 1), f0|∂Ω = 0, and∂Ω ∈ C2+δ. Let λ0

be as in Theorem4. Then problem(42)–(44)has a unique solution of type(45)which for
large t (t > τ1 − T ) behaves as follows:

(i)

{
u(t, ·) → 0 uniformly in [T,∞) × Ω,

uk(t, ·) → 0 uniformly in [T,∞) × (0, T ] × Ω
(48)
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if λ0 ≤ κΛ1 andt → ∞,

(ii)






u(t, ·) → (N∗(x)/β̃(λ0))v
0(τ1) exp{λ0(T − τ1)}

uniformly in [T,∞) × Ω,

uk(t, ·) → (N∗(x)/β̃(λ0))v
0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)}

uniformly in [T,∞) × (0, T ]× Ω

(49)

if λ0 > κΛ1 and t → ∞ wherev0 and v0
k are defined in Section3.1, Λ1 is the first

eigenvalue of the Dirichlet problem to the operator−∆ in Ω, N∗ is a unique positive in
Ω solution of the problem

(
λ0 − ρ(N∗)

)
N∗ + κ∆N∗ = 0 in Ω, N∗|∂Ω = 0, (50)

andβ̃(λ0) is defined by equation(39).

Proof. We use the upper and lower solutions technique. By [23, Chapters 5 and 6],0 and
a constantb ≥ max

(
γ(λ0)/ inf a, max f0

)
with inf a > 0 andγ(λ0) a unique positive

root of ρ(γ) = λ0 are lower and upper solutions of time-dependent problem (47) and its
steady-state analogue

(
λ0 − ρ

(
β̄(λ0)F̃

))
F̃ + κ∆F̃ = 0 in Ω, F̃ |∂Ω = 0. (51)

Hereβ̄(λ0) = η(λ0)β̃(λ0) whereη(λ0) is defined by equation (36).
Let Φ1 > 0 in Ω andΛ1 be the normalized principle eigenfunction (maxΩ Φ1 = 1)

and corresponding eigenvalue of the Dirichlet problem to the operator−∆ in Ω. Function
ξΦ1 with ξ ≤ γ(λ0 − κΛ1)/β̄(λ0) is a lower solution to problem (50) ifλ0 > κΛ1

andξΦ1 with a positiveξ is an upper solution to the same problem ifλ0 ≤ κΛ1. The
lower solution to problem (51) is 0 ifλ0 ≤ κΛ1. By Theorem 4.4 of Chapter 3 in [23],
equation (51) has only zero solution ifλ0 ≤ κΛ1, and a unique positive inΩ solution
F̃ (x; β̄(λ0)) if λ0 > κΛ1. By Theorem 4.1 of Chapter 2 in [23], problem (47) has a
unique global solutionF (t, x) ∈ [0, b].

Now we prove thatF (t, x) has a nonnegative limit ast → ∞. Let us consider prob-
lem (47)1 for large timet > t0 > 0 with the initial conditionF (0, x) = f0(x) replaced
by theF |t=t0 = F (t0, x). We denote this problem byP (t0). Since, by equation (38),
a → β̄(λ0) as t → ∞, we have0 < a−(t) := β̄(λ0) − ǫ(t) < a(t) < a+(t) :=
β̄(λ0) + ǫ(t) for t ≥ t0, whereǫ(t) > 0 monotonically tends to 0 ast → ∞. Denote by
P±(t0) the problemP (t0) with a(t) replaced bya±(t0), respectively. LetF̃ (x; a±(t0))
be the unique solutions of the steady-state analogue of problemP±(t0)). Then functions
ξ±F̃ (x; a±(t0)) with sufficiently largeξ− and smallξ+ > 0 represent the lower and upper
solutions to problemsP±(t0) and their steady-state analogues, respectively. Because of
the uniqueness of the solution to problem (51) and by Theorem7.3 of Chapter 10 in [23]
problem (47)1 has a unique solution which tends to the unique solution of Problem (51).
Hence,N → N∗ = β̄(λ0)F̃ (x; β̄(λ0)) ast → ∞. The proof is complete.
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4.2 A case of the linear combination of the product initial distributions

In this section we examine the case of initial functions





u0(τ1, x) =
s∑

i=1

U i
0(τ1)f

i
0(x), f i

0|∂Ω = 0,

uk0(τ1, τ2, x) =
s∑

i=1

U i
k0(τ1, τ2)f

i
0(x)

(52)

and look for the solution of problem (42)–(44) in the form





u(t, τ1, x) =
s∑

i=1

U i(t, τ1)f
i(t, x),

uk(t, τ1, τ2, x) =
s∑

i=1

U i
k(t, τ1, τ2)f

i(t, x)
(53)

whereU i, U i
k represent the unique solution (7)–(9) and (5) withu0, uk0 in (9) and (5)

replaced byU i
0, U

i
k0, respectively. From (42)–(44), by using equation (52), (53), and

(7)–(9) we get the system





∂tf
i = −ρ(N)f i + κ∆f i, t > 0, x ∈ Ω,

N =
s∑

i=1

f iβi(t),

f i|t=0 = f i
0, x ∈ Ω,

f i|∂Ω = 0, t > 0

or





f i = F i exp{−tλ0},

∂tF
i =

(
λ0 − ρ(N)

)
F i + κ∆F i, t > 0, x ∈ Ω,

N =
s∑

i=1

ai(t)F i, ai(t) = βi(t) exp{−tλ0},

F i|t=0 = f i
0, x ∈ Ω,

F i|∂Ω = 0, t > 0

(54)

whereβi(t) is defined by equation (11) withU andUk replaced byU i andU i
k, respec-

tively.

Theorem 6. Assume that conditions of Theorem2 with u0 anduk0 replaced byU i
0 and

U i
k0 hold and that0 < f i

0 ∈ C2+δ(Ω̄), f i
0|∂Ω = 0, and∂Ω ∈ C2+δ with δ ∈ (0, 1). Let

λ0 be as in Theorem4 and letρ ∈ C1+δ(R+
1 ), ρ(0) = 0, ρ′ > 0. Then problem(42)–(44)

has a unique solution of type(52), (53), the large time behavior of which is described by
formulas(48)and (49).

Proof. By equation (38),ai → ηi(λ0)β̃(λ0) ast → ∞ whereβ̃(λ0) is given by (39),
while ηi(λ0) is defined in (36) and depends onU i

0 and U i
k0. It is evident that0 is
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a lower solution of problem (54) and its steady-state analogue. The constantb ≥
max(max

Ω
f i
0, γ(λ0)/ min

i
inf
t

ai) with γ(λ0) a unique solution ofρ(γ) = λ0 is an upper

solution of problem (54) and its steady-state analogue. Then Theorem 8.1 of Chapter 8 in
[23] ensures the existence and uniqueness of the global solution F i ∈ [0, b], i = 1, . . . , s
to problem (54).

Now we examine the large time behavior ofF i. Let t0 be sufficiently large. We
rewrite system (54) in the form






∂tF
i =

(
λ0 + q − ρ(Ñ)

)
F i + κ∆F i, t > t0, x ∈ Ω,

F i|∂Ω = 0, t > t0,

F i|t=t0 = F i(t0, x), x ∈ Ω

Ñ = β̃(λ0)
s∑

i=1

ηi(λ0)F
i

(55)

with known

q(t, x) = −ρ′
(
Ñ + ξ

(
N − Ñ

)) s∑

i=1

(
ai − ηi(λ0)β̃(λ0)

)
F i, ξ(t, x) ∈ (0, 1)

and then get






∂tÑ =
(
λ0 + q − ρ

(
Ñ

))
Ñ + κ∆Ñ , t > t0, x ∈ Ω,

Ñ |∂Ω = 0, t > t0,

Ñ |t=t0 = β̃(λ0)
s∑

i=1

ηi(λ0)F
i(t0, x), x ∈ Ω.

(56)

Note thatq → 0 ast → ∞ andq∗ = supt,x |q| < ∞ sinceF i ∈ [0, b]. Letγ(λ0+q∗)
be a solution ofρ(γ) = λ0 + q∗. The constants0 andγ(λ0 + q∗) are the lower and upper
solutions of problem (56) and of the problem(λ0 + q∗ − ρ(N̄))N̄ + κ∆N̄ = 0 in Ω,
N̄ |∂Ω = 0. Since the steady-state analogue of problem (56),(λ0−ρ(N∗))N∗+κ∆N∗ =
0 in Ω, N∗|∂Ω = 0, has a unique solution (N∗ = 0 if λ0 ≤ κΛ1 andN∗ > 0 in Ω if
λ0 > κΛ1, whereΛ1 is defined in Section 4.1) Theorem 7.3 of Chapter 10 in [23] shows
that Ñ(t, x) → N∗(x) uniformly in Ω as t → ∞. Obviously,F j → 0 as t → ∞ if
λ0 ≤ κΛ1.

Consider the caseλ0 > κΛ1. Let Λ̃k andωk be the eigenvalue and corresponding
eigenfunction of the Dirichlet problem to the operator−κ∆ + ρ(N∗(x))I in Ω, whereI
is the identity operator. TheñΛ1 = λ0, ω1 = N∗ > 0 in Ω, andΛ̃k > Λ̃1 for k ≥ 2. We
rewrite system (56) in the form






∂tÑ =
(
λ0 − ρ

(
N∗(x)

))
Ñ + κ∆Ñ + (q + g)Ñ, t > t0, x ∈ Ω,

Ñ |∂Ω = 0, t > t0,

Ñ |t=t0 = β̃(λ0)
s∑

i=1

ηi(λ0)F
i(t0, x), x ∈ Ω
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with known

g(t, x) = −ρ′
(
N∗(x) + ξ

(
Ñ − N∗

))(
Ñ − N∗

)
, ξ(t, x) ∈ (0, 1).

Obviously,g → 0 ast → ∞. We seek now its solution in the form

Ñ =

∞∑

j=1

pj(t)ωj(x), qÑ =

∞∑

j=1

qj(t)ωj(x), gÑ =

∞∑

j=1

qj(t)ωj(x)

and obtain

p′j =
(
λ0 − Λ̃k

)
pj + qj + rj , pj(t0) =

∫

Ω

ωj(x)Ñ(t0, x) dx/

∫

Ω

ω2
j dx.

Hence,pj → 0 for j ≥ 2 ast → ∞ andp1 = p1(t0) +
∫ t

0
(q1(τ) + r1(τ))dτ → 1 as

t → ∞ sinceN∗ = limt→∞ Ñ = limt→∞

∑s
j=1 pjωj = limt→∞ p1N

∗. Similarly, we
get






∂tF
i =

(
λ0 − ρ

(
N∗(x)

))
N i + κ∆F i +

(
q + gi

)
F i, t > t0, x ∈ Ω,

F i|∂Ω = 0, t > t0,

F i|t=t0 = F i(t0, x), x ∈ Ω

with known

gi(t, x) = −ρ′
(
N∗(x) + ξ(Ñ − N∗)

)(
Ñ − N∗

)
F i and ξ(t, x) ∈ (0, 1)

wheregi(t, x) → 0 ast → ∞. Then

F i =

s∑

j=1

pi
jωj , qF i =

s∑

j=1

qi
jωj , giF i =

s∑

j=1

gi
jωj ,

and finally

pi′

j =
(
λ0 − Λ̃1

)
pi

j + qi
j + gi

j ,

pi
j(t0) =

∫

Ω

ωj(x)F i(t0, x) dx/

∫

Ω

ω2
j dx.

Obviously,pi
j → 0 ast → ∞ if j ≥ 2 andpi

1 = pi
1(t0) +

∫ t

0
(qi

1(τ) + gi
1(τ)) dτ which

because of the boundedness ofF i is bounded, too. Since ???? Then, for large time, by
Equations (53), (36), and (37) we get

u(t, τ1, x) ∼ v0(τ1)
s∑

i=1

ηipi
1 exp{λ0(T − τ1)}N

∗(x)

→N∗(x)v0(τ1) exp{λ0(T − τ1)}/β̃(λ0)

and similarly

uk(t, τ1, τ2, x) ∼ N∗(x)v0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)}/β̃(λ0).

The proof is complete.

549



V. Skakauskas

4.3 Steady-state solutions

We consider the steady-state problem. In this case all functions in model (42)–(44) do not
depend on timet. Assume that it has a positive solution.

Theorem 7. Let κ, T, T1, . . . , T4 be positive constants and functionsν, νk, νks, and
αk satisfy conditions of Theorem1. Then any positive steady-state solution of prob-
lem (42)–(44) is separable, i. e. any nontrivial separable solution con bewritten in the
form

u(τ1, x) = v0(τ1) exp{λ0(T − τ1)}N(x)/β̃(λ0),

uk(τ1, τ2, x) = v0
k(τ1, τ2)v

0(τ1 − τ2) exp{λ0(T − τ1)}N(x)/β̃(λ0)

wherev0 andv0
k are defined in Section 3,λ0 is as in Theorem4, andN(x) is a unique

positive inΩ solution of equation(48).

Proof. We use the Langlais [24] argument. Let the steady-state problem has a positive
supported solution. ThenN(x) defined by formula (44) is known. Let̃Λj andωj(x),
j ≥ 1 be as in Section 4.2. Then, foru anduk ∈ L2(Ω), we have






u =
∞∑

s=1
Us(T )zs(τ1)ωs(x), zs(T ) = 1,

uk =
∞∑

s=1
Us(T )zs(τ1 − τ2)z

s
k(τ1, τ2)ωs(x).

(57)

Substituting functions (57) into the steady version of equations (42)–(44), we get equa-
tions 14 and (15) withλ, vλ andvλ

k replaced bỹΛs, zs andzs
k, respectively. Obviously,

zs(τ1)=v0(τ1) exp{−Λ̃s(τ1 − T )}, zs
k(τ1, τ2)=v0

k(τ1, τ2) exp{−Λ̃sτ2}. (58)

For Λ̃s we get the equationsUs(T )(1− I(Λ̃s)) = 0 with I(Λ̃s) defined by equation (18).
SinceI(Λ̃s) = 1 only for Λ̃s = λ0, only one ofUs(T ) is not zero. Denote thisUs

by Ũ and the correspondingωs(x) by ω̃(x). Then, by definition, we get̃Uω̃(x) =
N(x)/β̃(λ0) > 0 in Ω. Finally, from Equations (57) and (58) the result of theorem
follows.

5 Concluding remarks

A discrete newborns set-based deterministic model of one-sex age-structured and density-
dependent population dynamics both with and without spatial diffusion has been proposed
and investigated. The model consists of a system ofn + 1 integro-partial differential
equations subject to conditions of an integral type. The number n is a biologically
possible maximal number of newborns of the same generation produced by an individual.
Dynamics of young individuals in models given in [12–16] is described by differential
equations for densities. In [17] and in the present model equations for offsprings under
maternal care are not used in all. The spatial densityY (t, τ2, x) of young offsprings aged
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τ2 at timet at the positionx is determined in this model by the formulaY (t, τ2, x) =∫ T3+τ2

T1+τ2

∑n
k=1 kuk dτ1.

When λ0 < κΛ1 then there exists no nontrivial steady-state solution of mo-
del (42)–(44).

Under the conditions of Theorem 6 the limit functions given by equation (49)
represent a unique nontrivial separable solution to the steady-state analogue
of problem (42)–(44).

The nontrivial asymptotic behavior of the solution to the model given above both
with (at least for the (52) initial distributions) and without spatial diffusion is described
by product of spatial densityN∗ and the same age profiles (see equations (40), (41), and
(49)), whereN∗ is a constant for the non-dispersing population and it is a function of the
spatial positionx in the opposite case.

It is well known that the Sharpe-Lotka-McKendrick-vonFörster or Gurtin-MacCamy
models, that can be applied only for the population which does not take child care, under
some restrictions on the vital rates have a class of product solutions. Such the populations,
e.g. fishes, reptilia, and amphibia, produces very large number of newborns and a large
part of them dies because of predators. Usually populationstaking care of offsprings
produce a small number of newborns and only due to child care the model of the such
populations, (1)–(4), under suitable restrictions on the vital rates has a class of product
solutions, too.
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