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Abstract. We present a one-sex age-structured population dynamiesaistic model
with a discrete set of offsprings, child care, environmbgptessure, and spatial migration.
All individuals have pre-reproductive, reproductive, grabt-reproductive age intervals.
Individuals of reproductive age are divided into fertilegle and taking child care groups.
All individuals of pre-reproductive age are divided intowg (under maternal care) and
juvenile (offspring who can live without maternal care)sdas. It is assumed that all
young offsprings move together with their mother and thistrahe death of mother all her
young offsprings are killed. The model consists of integastial differential equations
subject to the conditions of the integral type. Number ok¢hequations depends on
a biologically possible maximal newborns number of the sgerweration produced by
an individual. The existence and uniqueness theorem ifr@eparable solutions are
studied, and the long time behavior is examined for the wluvith general type of
initial distributions in the case of non-dispersing popioia. Separable and more general
(nonseparable) solutions, their large time behavior, éealdy-state solutions are studied
for the population with spatial dispersal, too.

Keywords: population dynamics, age-structured population, chité.ca

1 Introduction

Many species of animals care of their offsprings. This pinegioon is native for many
species of mammals and birds aodns the main difference between the behavior of the
population taking care of offsprings and that without masdr(or parental) dutiesBut
child care for every species is different. Offsprings of nmaas and birds spend some
time with their mother or both parents, while young offspsrof fishes, reptilia, and
amphibia are left to one’s fate. Mammals and birds feed, wamd defend their young
offsprings from enemies. If one of these native duties isreatized, young offsprings
die and the population vanishes. For many species of manjfjaésg. bear Thalarctos
maritimus and Ursus arctos horribili3, whale Balaenoptera musculiysand panther
(Pannthera oncp only a female takes care of her young offsprings. For sopeeiss
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of mammals and birds, e.g. red foXulpes vulpes gnawer Dolichotis patagonium
penquin Pygoscelis adelige heron Ardea purpureg, falcon (alco ciolumbariug, and
tawny owl (Strix alucg, both parents take care of their young offsprings.

The Sharpe-Lotka-McKendrick-von Foerster (see, e.g),d8H Fredrickson-Hop-
pensteadt-Staroverov [3-5] models are well known in ma#tal biology. In the case
when information about sex ratio is not important the Shdrpika-McKendrick-von
Foerster one sex model (or its Gurtin-MacCamy generatingis]) is usually used to
describe dynamics of age-structured population. The ather(or its Hadeler [7] mo-
dification involving a maturation period) describes theletion of populations forming
permanent pairs. All these models do not include a femalates period.

Models involving a gestation period were first proposed analyezed in papers
[8-11]. However, all these models do not treat the child gdrenomenon. Therefore,
all models mentioned above have to be applied for the papalathich does non care its
young offsprings, e.g. some species of fishes, reptilia,aanphibia. In papers [12-16]
we proposed and examined four population dynamics modéls ahild care: two for
one-sex and the other two for two-sex population. The majnirement in these papers
is that all offsprings under maternal (or parental) carekdted if their mother (or any
of their parents) dies. These models are based on the ndtithe alensity of young
(under maternal or parental care) offsprings which has @®@é-function at least on the
characteristic lines of the equation for this density. Hegrghe differentiability assump-
tion of this density is questionable for many species of malmand birds.There exists
the other essential requirement in the case of the popuolatith the spatial diffusion.
In this caseall young offsprings have to move together with their motfogrpair of
parents). To describe the diffusion of young offsprings and their neoghthe Ficke law
for fluxes of young offsprings and their mothers with the satfiffusion coefficient is
used in models [14] and [15]. In the case of the homogeneousiden problem, each
of these fluxes have to be zeroth on the boundary of the livieg.aBut such the model
does not ensure that young offsprings and their mothers nogether. If we assume that
diffusion flux of young offsprings is proportional to thatthieir mothers, then in the case
of homogeneous Neumann problem at the same time these bxks fhill be zeroth on
the boundary of their living region. But the gradient of thmupg offsprings density on
this boundary may not be equal to zero and we have a loss obfgoungs through the
boundary. This shows that this model is biologically ineatr too. Therefore, there arises
the problem of the construction of a biologically correctarbin the case of a population
with the spatial diffusion.

This problem can be solved by usiagiotion of the complex (family) which consists
of mother (or both parents) and a discrete set of her (thegng offspringsin [17], we
proposed a model for two-sex population taking into accaeemporal pairs, a discrete
set of offsprings, and child care and examined its separadigions. In [9], a model
of two-sex population is studied taking into account peremdrpairs, child care, and a
discrete set of offsprings.

In the present paper we present and examine a one-sex agesd population
dynamics deterministic model with child care and a discseteof offsprings of the same
generation produced by an individual. A preprint versiortto§ paper has been used
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in [18] (see literature cited there) for numerical solvinigtlee model discussed in the
present paper. This model could be used to describe thetmrohf the population for
which only one mother takes care (see above) of her youngroffgs. We consider
the population dynamics both with and without spatial diffun ant take into account
an environmental influence (pressure) which depends onlatpu overcrowding. All
individuals have pre-reproductive, reproductive, andpeproductive age intervals. All
individuals of reproductive age are divided into fertilagle (without offsprings under
maternal care at the given time) and individuals takingdcbdre groups. Individuals of
pre-reproductive age are divided into young and juvenifispoings who can live without
maternal care) classes. We assume that the ecologicalpgedses not influence the
dynamics of the young offsprings directly, that youngs mmgether with their mother,
and that after the death of mother all her young offspringsdled. The model consists
of a system of integro-partial differential equations gabjto conditions of the integral
type. The number of these equations depends on a biologmadkible maximal number
of newborns of the same generation produced by an individual

The paper is organized as follows. In Section 3, we presaheaamine the model
for a non-dispersing population. In Section 3.1, separabletions are studied for the
general type of stationary vital rates. In Section 3.2, tkistence and unigueness the-
orem is proved for the unlimited population. Section 3.3 ésated to the analysis of
the long time behavior of the solution to the model withouatsd diffusion and with
general type of the initial distributions. In Section 4, wansider the model with spatial
dispersal. Separable and more general solutions and timgjitime behavior are studied
in Sections 4.1 and 4.2, respectively. The structure ofistasate solutions is examined
in Section 4.3. Remarks in Section 5 conclude the paper.

2 Notation

The following notation is used for the analysis of the pofiatadynamics.

R™: the Euclidean space of dimensionwith z = (x1,...,Zm),

k: the diffusion modulus,

(0,T) and(Ty,Ts) (T < Ty < T3): the child care and reproductive age intervals,
respectively,

u(t, 71, z): the age-space-density of individuals agedt timet at the position:
who are of juvenilef, € (T,T1)), fertile single ¢; € (13,73)), or post-reproductive
(rp, > T3) age,

ug(t, 71,72, x): the age-space-density of individuals agedt timet at the position
x who take care of theik offsprings aged, at the same time,

v(t, 1, 2): the natural death rate of individuals aggdat timet at the positionc
who are of juvenile or adult age,

vi(t, 71, T2, ): the natural death rate of individuals agadat timet at the position
2 who take care of theit offsprings aged-,

vis(t, 71, T2, x): the natural death rate &f— s young offsprings aged, at timet at
the position: whose mother is aged at the same time,
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ag(t, 71, x) dt: the probability to produce offsprings in the time intervdt, ¢ + dt]
at the locationr for an individual aged ,

N: sum of spatial densities of juvenile and adult individyals

p(N): the death rate conditioned by ecological causes (ovedir@of the popula-
tion), p(0) = 0,

uo(71, x), uko (11, T2, ): the initial age distributions,

[t =-]: the jump discontinuity of; at the pointr; = T,

o= ag, v1(m1) = max(0, 7 — T3),72(11) = min(m — 11, 7),
k=1
k—1

Up=Vp+ D ks,
s=0

T, = Ty + T': the minimal age of an individual finishing care of offspringf the
first generation,

T, = T5 + T: the maximal age of an individual finishing care of offspsngf the
last generation,

o1 = (T, T3), o2 = (11, Ty), o3 = (12, Ty),
UT = (T,OO)\Ul, U; = (T,OO)\UQ, U§ = (Ta OO)\U37

Q ={(r,m): ne(+mnT3+m), »ec(0T)}

In what followsk, T, 71, andT3 are assumed to be positive constants. In the case of
non-dispersing populations all functionsuy, v, v, vks, ak, ug, andugy do not depend
on the spatial position.

3 The non-dispersing population dynamics model

In this section, we present a deterministic model for a nispeatsing age-structured
population with discrete set of offsprings of the same gat@n produced by an indi-
vidual and prove the existence and uniqueness theorem.elnabe of stationary vital
rates, we examine separable solutions and find the long tehauior of the solution
to this model with initial distributions of the general typ&\Ve take into account the
environmental pressure by letting the death rates of jueemd adult individuals depend
on the sum of their spatial densiti€§, and assume that young offsprings are subject to
natural mortality and are protected from density relateddases of mortality dependent
on N directly. Note that in more general case the environmemrgdgure depends on
N,x,t, and age of the individuals. At age = T all young offsprings go to the
juvenile group and at age;, = T3 all juveniles become adult individuals. Letbe
the biologically possible maximal number of newborns ofshene generation produced
by an individual. Using the balance law, we derive the dgrditpendent population
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dynamics model which consists of the equations

O *
du+ O u+ (v+p(N))u = { , T1Eo07,

au, T €01

0, €T, (o, n € ol (1)
+{ 72(n) n + n t>0,
| > vkoupdre, T €02 > Uklr=T, T1 € 03,
y1(m1) k=1 k=1

s=0

Opug + Op, g + Oryup, + (,,k + Z Vis + p(N))
k=
1<

0, " (2)
= i tte, 1<k<n_1, (r1,2) €Q, t>0,
s=kt1
oo T Tstra ,
N:/UdT1+/d7'2 / Zukdﬁ 3)
T 0 Ty 4y F=1
subject to the conditions
Uy =7 = [ Zn: kug| =7 dm1,
o3 k=1
Uk|ry=0 = i, (4)

U|t:0 = Uo, Uk|t:0 = Uk,
[U|ler] = 0; T = TI;T27T3;T4~

Here 0, and 0,, signify partial derivatives. The first term on the right-daside
in equation (1) means the part of individuals who producéspoihgs, the second and

third terms describe the part of individuals whose all yowfigprings die and who
k—1

finish child care, respectively. The transition term v4su; on the lefth-hand side in
s=0

equation (2) describes the part of individuals ageét timet who take child care ok

young offsprings and whose at least one young offspring @esilarly, the term on the
right-hand side in this equation describes a part of indigld aged at time¢ who take
care of more thak,1 < k < n — 1, young offsprings aged, whose number after the
death of the other offsprings is equaltoThe conditionu|,,—,] =0, 7 = T, T, T3, T}
means that function must be continuous at the point, = 7, discontinuity of the right-
hand side of equation (1).

As follows from the foregoing, the given functionsvy, vis, o, ug, andugg and
the unknown ones anduy are to be positively valued, otherwise they have no biolalgic
significance. The positive constarifsand 7 are to be given, too. The assumption
T < Ty given in Section 2 is natural.
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In order that conditions (4) would be consistent we formauthe following compat-

ibility conditions:

n
U0|n:T - f Z kuk()|7—2:T dm,
o3 k=1

Uk()|7'2:() = ak|t:()u()7
[u0|7'1=7'] =0, 7=T1,T3,13,T}.

Inserting

u(tv’rl) = f(t)U(thl)v ’ll,k(t, T177_2) = f(t)Uk(ta T1, 7—2)7 f(O) =1

into (1)—(4), we split this system into the problem térandUy,,

O *
atU+871U+VU:—{ ) T €079,
alU, 1 € 01

0, T1 € 0'5,
+{ 72n) n

+
[ 3 vkoUrdre, 71 €02

y1(71) k=1

Uk + 07, Uy + 07, Ug + 0, Uy,
0, k=n,

— n
S vl 1<k<n—1,
s=k-+1

subject to the conditions

Uln=r = [ Y kUg|ry=rdm,

o3 k=1
Uk|r=0 = axU,
Ult=o = w0, Uklt=0 = uko,
[U|'rl:'r] = 0; T = TI;T27T3;T4a
and the equations fof and N,

fI:_p(fﬁ)fa f(O):l,

oo T T3+72 n

B :/Udﬁ—i—/dTg / > Uy dm,
T 0 Ty 4rp =1

N = fB.

0, T1€O'§,

n
Z Uk|72:T7 T1 € 03,
k=1

(Tl,TQ) S Q, t>0

®)

(7)
t>0,

8

€)

(10)

(11)

(12)

Functionf means the ratio of the total limited (under ecological puesspopulation

N and the total unlimited populatioh
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3.1 Separable solutions to problent7)}~9)

In this section we restrict ourselves by the case wherg, vy, anday, do not depend on
t and are positive supported functions. Moreover, we asshate is continuous, while
o, v, andyy, areCl-functions. We seek solutions of the form

U = Uv*(m) exp{\t}, wo=Uv*(r), oNT)=1,
Up= U”A(Tl - 72)”1?(71;72)65413{)\15}7 Ugo = UU}‘(H - 72)91?(71772)7 (13)
U;i‘|72:0 = Qg,
whereU > 0 is an arbitrary constant while the constarand positive functions* and
vy are to be determined. Note that separable solutions to thiend@dacCamy model and

their application to genetics were first studied in [19] ab@l|[ respectively, (see also [21]
and [2]). Inserting (13) into equations (7)—(9) gives theatpns forv* andv;,

, 0, € o7,
oY+ (v 4+ At :_{ \ s
au”, T €01
0, 1€ O—S;
v2(T1) n
* Z l/kovgi‘(ﬁ,ﬁ)v/\(ﬁ - 72)d72, T1 € 02 (14)
y1(m1) k=1
0, T1 S U;a
+ > ’U]/C\(Tl,T)’U)‘(Tl -T), 7 €03
k=1
with the conditions
MNT) =1, [p)]=0, =TT, Ts, Ty,
0; k= n,
A A ~ A n
a’l‘lvk +a’rzvk+(yk+>‘>vk - Z Vskvﬁ, 1§k§n71 in Q (15)
s=k+1
with the condition
U;i‘|72:0 = Ok,
and the characteristic equation far
- / S kv (71, TYo (71 — T) dry. (16)
k=1

Here and in what follows the prime indicates differentiatioEquations (15) can be
solved in the recurrent way starting with= n and have a unique positivé*-solution.
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Equations (14) can be solved explicitly fer € [T,T1] U [I3,00), while, for r; €
(T1,T3), they can be reduced into Volterra type integral equatiortls thie delayl” and,
therefore, have a unique positive solution. Obviously silution is aC'* -function except
the pointsr; = 11,15, T3, andT,. From (14) and (15) it is easy to see that

v = 1)0(7'1) exp{—X(m — T)},v,? = ’02(7'1,7'2) exp{—A7a} a7

wherev? andvy satisfies equations (14) and (15) for= 0. From equations (16) and (17)
we get the characteristic equation far

n

1=1I(\), I(\)= /exp{—m)\}vo(x) Z kvp(z +T,T) dx. (18)

o k=1

The distribution of roots of this equation is well known. Ha unique real root,
and a discrete set of complex conjugate roots. The real padroplex roots is less than
Xo. As a result we formulate

Theorem 1. Let v, vy, vk, and oy be positive functions and ¢ C([T,0)), oy €
C%a1) N CYo1), v andvks € C°(Q) N CH(Q). Then problen(7)~9) has a one-
parameter class of separable solutions of typ@&) with the properties

U e C([T,00)) NC (T, 00) \ {m1 = T1, T>, T3, T4}),
U, € C()(Q)mcl(Q\{’ﬁ :TQ+TQ}> if T37T1 > 777
"Rl e €0(Q)n Q) if T3-T1 <T.

From the biological point of view death rates increase with eacreasing and need
not stay bounded.

3.2 The existence and uniqueness theorem to syste)—(9)

In this section, we consider the cdbg— 77 > 2T (the opposite case can be examined
similarly) and prove the existence and uniqueness theooesgdtem (7)—(9) with vital
rates independent of We assume that conditions of Theorem 1 are satisfied:.grachd
uyo are positiveC-functions. Integrating of equation (8), fox: 7, yields

Un(t, 71, 72) = Uno(T1 —t, T2 —1t) €xp {—/%(5754‘7'2—7'1)015};

T1—t

T1

Ur(t, 71, 72) = upo(m1 —t, 72 —t) exp {/17k(§;§+7271)d§} (19)

T1—t

+/exp {_/ﬁk(§a€+72_71)d§} Z (VskUs)|(’r]+t77'1,'r],'r]+7'277'1)dn

s=k+1

T1—1 n
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with 1 < k£ < n — 1. Equation (19) can be solved in the recurrent way startiriy wi
k=n-—1.
If t > 7, we have

Up(t,71,72) =U(t — 12,71 772)1)2(7'1,72) (20)

with v defined in Section 1. It remains to determii¢, 7).
Lett <7 —1T. Set

b

II(a,b;v + ) = exp { 7/(1/(35) + a(z)) d:c},

a
n

A(11,72) (vkov2)|mn),

B(taTlvTQ) = Vk()(TlaTQ)Uk(taTlvTQ)v

Integrating equation (7), we get

U(t,m1) = uo(mi — )I(11 —t,75v), 71 € [T,T1] (21)
and
— )11 —t,7; t < — T
U(t,’ﬁ) _ u()(Tl ) (7_1 » 715 V)v =71 4, (22)
UY(T4-i-t—7’1,7—’4)1_[(7—’4,7'1;V)7 t>1 —1Ty

for m, > T,. We write two last terms of the right hand side of equationsafi) sets
0,71 = T) x [T1,T5],[0,71 —T) x [T, Ts], and[0, 7, — T) x [T3,T4] in the form

v2(71)
f B(t,Tl,Tg)dTg, 0<t§’71(7'1),
“/1(;’1)
v2(71) n f U(t_TQ,Tl_TQ)A(Tl,TQ)dTQ
— 7v1(T1)
Z Vkon dT2 - v2(71)
yi(r) F= + [ B(t,m1,72)dm, Y1(m1) <t <H2(m1),
t
Y2(71)
f U(t—TQ,T1—7'2)A(T1,T2)d7'2, tZ’Yg(Tl),
Y1(71)
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3 C(t,m), 0<t<T,
ZU]C|T2:T -
pa Dr)U(t-T,m—T), t>T

[0,7’1 7T) X [Tl,TQ] = {0 § t<mn 7T1, T1 € [Tl,TQ]}
U{Tl -1 <t<mn =T, 1 € [Tl,Tg]},

[0,7’1 — T) X [TQ,T3] = {0 <t< min(ﬁ — TQ,T), T € [TQ,T3]}
U{TStSTl —T5, 7 € [T2+T,T3]}
U{Tl -1y <t<T, n € [TQ,T2+T]}

U{max(T,Tl 7T2) <t<T — (TQ 7T), T € [TQ,T3]}

U{Tl — (Tg —T) <t<mn-T,m € [TQ,T3]},
and

0,71 =T) x [T5,T4] ={0<t <7 —T3, 11 € [T3,T4]}
U{n —T3<t<T, n €[13,Ty}
U{T <t<n—(T3-T), 11 € [T5,T4]}
U{n—-Ts-T)<t<mn—T, n €[T5,T4]}.

Then, by integrating, reduce equation (7) with conditid)s { into the integral equations

obtaining:

T1

£
U@n)=/WH&nw+aﬁg/UW+t—an@@—nﬁm+ﬂun>@&

Tl—t Tl—t
with
T1 §-T
f(t,Tl)Z/H(f,Tl;V-i-Oz)df B +t—m7,&m)dn
T1—1 E+t—71

+ug(m —O)I(my — t, ;v + @)
in {0 <t<m -1, for 1 € [Tl,Tg]},
U(t,Tl):U(Tl—l—t—Tl,Tl)H(Tl,Tl;l/-i-Oz)

T1

¢

+ [ mivrayde [Un+t=nmA.g—ndy
T T

in {Tl - <t<n-T for T € [Tl,TQ]},

T1

¢
Ul(t, 1) :/H(S,ﬁ;V+a)d£ Un+t—r1,n)AE E—n)dn + f(t, 1)
—t

T1—1 T1
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with

ft,m) =uo(r —OI(r —t, 750 + )

T1

T
+/H<s,n;v+a>ds /B(€+t7ﬁ,€ﬁz)d72

T1—1t E+t—T1

+ / TH(E, ms v+ @)C(E 11— 71, €) de

Tl—t
in {0 <t< min(ﬁ — TQ,T) for 1 € [TQ,Tg]},

T1

¢
Ut,m) = /H(ﬁ,ﬁ;V+a)d&/U(anﬁ,n)A(&&fn)dn+f(t,ﬁ) (26)
T47i—t &-T

with

ft,m) =uo(r —OI(r —t, 750 + )

TH471—t I3
+/H(£,ﬁ;v+a)d£{ /U(n+t7ﬁ,n)A(£,£*n)dn

T1—1 T1—1

T

+/B(€+t_7—17§5 7-2) d7-2+c(§+t_7-17§)}

E+t—71

+ / (&, 75 v+ @) D(EU(E+1 -~ T, 6T} dé

TH4711—t
in {T <t<m —Ty for 7 € [TQ +T,T3]},

T1

¢
Ut,m) = /H(S, T3 v+ ) dS/U(anﬁ,n)A(E,&n) dn+f(t,m1) (27)

T2 Tl—t
with

f(t7T1) - U(T2+t_7-1)TQ)H(T27T1;V+04)
T1 T

+/H(£,T1;I/+Oé)d£{ /B(£+tTlvgaTQ)dT2+C(£+t7—1;£)}

T> €+t_7'1
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in {7 — Ty, <t<T for r € [T, T> + T},

T £
Ut,n) = /H(S,ﬁ;1/+O<)dS/U(anﬁ,n)A(S,&n)dn+f(t,ﬁ) (28)
Tri—t &

with

f(ta Tl) - U(T2+t_7-1) TQ)H(T27T1; V+a)
TH71—t I3

+/H(€,ﬁ;v+a)d€{ /U(n+t7ﬁ,n)A(£,£*n)dn
To T1—1
T
+ /B(€+t_Tla€7T2)dT2+C(§+t_7-1)€)}
E+t—71

T1

+ / (&, m; v+a) D(EU(E+1— —T,6~T) dé

T+711—t

in {max(T, 71 —To) <t<mn —(Ta —T) for 7, € [T, T3]}, and

o1 £
Ul(t, 1) :/H(faﬁ;VJrOé)df/U(nth*71,77)14(575*n)dnJrf(taTl) (29)
T> &-T

with

ft,m)=UTo+t— 71, T)I(Te, 71;v + «)

T1

+/H(f,n;v+a>D(5>U(s+t—n S 76— T)de

T
in {n — (I —T)<t<n —T for 7 € [Ty, T3]},

Ut,m) =uo(m —O)II(my — t, 715 v)
T1 T

30
+/H(n,ﬁ;V)dn{ /B(n+tﬁ,n,fz)deJrC(nHﬁ,n)} (30)

Tt n—="T3
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in {0§t<’7‘1 — T3 for r € [Tg,T4]},

U(t,n) =UT3+t—m1, T3)II(T3, 715 v)

T1 Ts
+/H(€77'1;V)d§{ /U(n+t—71,77)14(€7§—77)d77

T3 T1—1 (31)
T
+ /B(§+t*717§,72)d72 +C(§+t717§)}
§+t—71
in {Tl —T3 <t< T for T € [T37T4]},
U(t,Tl) :U(T3+t—T1, Tg)H(Tz;,Tl, l/)
T+711—t Ts
+ H(&n;V)df{ Un+t—r1,m) A& E—n)dn
/ J
T
+/B(€+t_7-17§5TQ)dT2+C(€+t_Tla€)}
(32)
E+t—71
T1 T3
+/H(£,ﬁ;l/)d€{ /U(nﬂfﬁ,n)A(&f*n)dn
Tt <
+D(§)U(§+tT1T,€T)}
in {T<t<mn —(T5—T) for ry € [T3,T4]}, and
U(t,Tl) = U(Tg +t— T17T3)H(T3,T1;l/)
T1 Ts
+/H(§771;V)d§{ /U(n+t7ﬁ,n)A(£,£*n)dn (33)
Ts 13

=T
+DOUE+t—7 —T,§—T)}

in {Tl — (T3 —T) <t<m —T for r; € [T3,T4]}.

By changing variables equations (23)—(29) can be writteafiorm of Volterra type
integral equations with kernels independenttaind therefore have a unique positive
CP-solutions. Once equations (23)—(29) are solved, form(88%-(33), (21), and (22)
determine functiorV which is continuous i{(¢,71): 0 <t <7 —T,7 € [T,T1] U
[T5,00)}. Itis evident that functio is not differentiable at the points = Ty,...,T}
and it is aC'-function along the characteristic lines except the points: 17, ..., T}.
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If ug is a positiveC'! -function, then under the conditions of Theorem 1 on diffdiegion
equations (23)—(29) with respectitove derive integral equations of Volterra type &t/
written on the characteristic lines. These equations shawbtU is continuous function
except linesr; = Ty,t + T,, s = 1,2. ThusU is aC'-function fort < 7 — T, 1, €
(Th,Ts) exceptlinegy = Ts,t + Ts, t > 0,s = 1,2. Similarly, by using (30)—(33) and
(22) we prove thal is not differentiable at the lineg; = T, andt = 7, — Ts, 71 €
(T3,Ty), s =1,...,4.
If t > — T, we have

Ut,7) =U(T 4+t —7,T)0°(r1) (34)

with v° determined in Section 1. By definition (see;(Q\e get the equation fdr (¢, T'),

fz kUk|7‘2:Td7_17 Ogthla
oz k=1
tirT n
JUT+t—71,T)0°(r1 =T) kz kvd(r1,T)dr
=1
Ut,T)= - Ty n (35)
+ f Z kJUk|7—2:TdT1, T, <t< T37
T k=1
n
fU(T*I*t*’Tl,T)’UO(Tl*T) Z k’Ug(Tl,T>d7'1, t>T3,
o3 k=1

which has a retarded structure with the delgyand has a unique positive solution. It is
easytoseethat(t,T) € C°([0,00))NC*((0, T)U(T, 00)). Thus, we have the following
result:

Theorem 2. Letug andugg be positiveug € CO([T, 00))NCL((T, 00)), uko € CO(Q)N
C'(Q), andT; — Ty > 2T. Then under the conditions of Theorémroblem(7)~9) has
a unigue positive solution with the properties

U € C°([0,00) x [T',00)) N C*(([0,00) x [T’ 00))
\A{n =T1, T, T5, Tus 71 =t + T, t + 11, t + To, t + T, t + Ty}),
Uk € C()([O,oo) X Q) ﬂCl((O,oo) x Q)
\{r=tn =T, T5,t + T,t + T, t + To, t + T3}).

If in additionug € L1 (T, ), theng € C°([0,00)) N C*(0, o).

The proof of the solvability of equation (10) is evident.
Note that the similar result can be obtained for the dase 17 < 27T, too.
As a result we formulate

Theorem 3. Assume thap € C'([0,)),p(0) = 0 andp’ > 0. Then under the
conditions of Theorer equationg10) and (12) have a unique positive global solution
such thatf and N € C*((0, x)).
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3.3 The long time behavior of the solution to systenf7)}—(11)

In this section, we find the asymptotic behavior of the solutio system (7)—(11). We
first find an upper bound fdv (¢, T'). It follows from equation (20) and (32) that

t—T1 n
Ut,T)<¢ / u(z,t)de, &= maxv’(x) Zkvg(:c +T,7), t>T1Ts.
£, ! k=1
Now
T3
U(t7T) §n€7 U:/U(maT)d% te [T35T3+T1]7
0

then
Ts+T T3 T3+T1
very<e [ <6 [U@ndrre [ U@D)d<ngren)
T T Ts
and
T3+T1
U(m,T)dJﬁSn(l—l—ng), te (T3+T1,T3+2T1],
T

and, by induction,
T3+mTy
UT) < f/U(x,T) dz < &n(1 + E1)™, € (Ty + mTh, Ts + (m + 1)T4].

m T1

Therefore, there exists the Laplace transfaf, T') of U (¢, T),

U\T) :/dﬁ/ZkUk|T2:Texp{—t)\}dt
o3 0 k=1

T1—=T

= / dn / exp{—tA} > kUk|r,—7 dt
o3 0 k=1
+ /v0(7—1 -T) dn/exp{ft)\} Z ko) (11, TYU(T 4+t — 7, T) dt
o3 71 =T k=1

=L\ +UNT)I(N
with
T1—=T

n
L\ = / dn / exp{—tA} Y kUxlr=r dt
o3 0 k=1
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and(\) defined by equation (18). Hence,
UNT) =LA/ (1—I(V).
Roots ofl (\) are discussed in Section 1. Functifig)\) is analytic and, using the method
of a rectangle contour integral [22], we evaluate the inv&@place transform obtaining
U(t,T) = nexp{tho} + O(exp{tu}), n=—I1(Xo)/I'(Xo) >0 (36)

wherep < A is the real part of the first pair of conjugate complex rootdier by
equations (20) and (32), for large timex =, — T'), we get the following formulas:

U(ta Tl) = ’UO(’TI)U(T +t- TlvT)v
U(t,m1,72) = ’Ug(Tl,Tg)UO(Tl —n)UT+t—mn,T)

with U (¢, T') defined by equation (36).

The asymptotic behavior of defined by equation (11) will now be studied. We
assume that conditions of Theorem 2 foy hold, while v satisfies conditions of The-
orem 1 and does not decreaseras— oo. Functiong can be written in the form

4
B =3 Jowhere); = [, Udn, Jo = [ Udn, J3 = [T, Udn, Js =
s=1

(37)

T T3+

3 2 n
[ dr [ P Updr.
0

T1+72
By equation (36) we gef; = J11 + Jy2 with
t+T
J11 =n / 1)0(7'1) exp{)\o(T +t— ’7'1)}(21’7'1
T
and
t+T
Jio = / ’UO(Tl)O< exp{u(T +t— 7'1)}) dm.
T

Now we get estimates of; for large time. Set,, = limv asm, — oco. We first consider
the case/s, < co. From equations (14) and (15) it follows th&t < ¢y exp{— [ v(x)dz}
T

wherec is a positive constant. Fix sufficiently large > 75 and lett > ¢;. Then

t+T
Tuexp{~th} =1 [ W(n)exp{Aa(T = m)}dn
T
t+T T1 t t+§
S Co / eXp{)\()(Tle) 7/1/(‘11}(317'1 :co/exp{f)\o{f / l/dZ}df
T T 0 T
ty T+E t T+¢
co/exp{ — &N — / z/d:c}der/exp{ — & — / l/dx}df.

0 T ty T
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When)\ + v > e with a smalle > 0 this integral converges as— oo since
T+¢

t t T+ ty
/exp{_&o_ / de}dgz/exp{_&o_ / Vdg_/ydx}dg

t1 T t1 t1 T

t1 t
gexp{ — de} exp{—(Ao + Voo — €){} dE < 0
o f

t1
forallt > t; andtendsto 0 a§ — oco. Similarly,

t+T

J12 exp{ft)\o} = / vo(ﬁ)O(exp{u(T +t— ’7'1)}) dT1 exp{ft)\o}
T er
<c¢ / 0O (1) exp{p(T +t — 1)} dry exp{—tAo}
T t+T T1
< cgexp{—t(Ao— )} / exp {,u(T —T7) — /Vdac} dn
T T
t E+T
= caexp{—t(ro — p)} [ exp { —pé - I/dx)} d¢
[roine ]
ty §+T
= cgexp{—t(Xo — u)}{ /exp{*uﬁ - / Vd:v)} d¢
y ; Ty
+exp{/ydx}/exp{u§/ydx}d§

T t1

~
=

where

: 4T
exp{—t(Ao — )} /exp{ —pé— / Vdﬂf}

t1
t
< exp{~t(h — )} [ exp{~(u-+ v - 96} ¢
ty
czexp{—t(ho — p)}, W+ Voo — € >0,

<ctexp{—t(Ao+ v —€)}, p+ve—€=0,
caexp{—t(Ao+ Voo —€)}, L+ Ve—€<0
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and the integral

ty E+T
%N4QWWH/%P{#@—/VW}%
0 T

tends to 0 ag — oo since, for negative, it can be written as

t1 &+T
exp{—t(Ao — pu + ut1/t)} /exp {u(tl —-&) — / de}

T
and tends to O if-uty /(Ao — p) < t — oo, while, for i < 0, this assertion is evident;

J3 exp{ft)\o} = exp{ft)\o} / U()(Tl — t) exp{ — / I/dl‘} d’7'1

t+Ts T1—1t
i~ te

= exp{—t)\o}/uo(g)exp{ - / de} d¢

Ty 3
ty ty t+¢
exp{tA()}{/w)(:c)exp{/l/dx / z/d:c}df
Ty I3 t1
i~ t4e
+/@@mm{/VM%}
t1 3
t1 t1 [e%s}
< {/m& exp{ - /d} g+ [ (e de}exp{—tw T v — )}
Ty 13 t1
< [ u©) dgexp{~ 0 + v — )
Ty
and
T Ts+72
Jyexp{—tio} = 77/ dry / Z v (11, 12)0° (11 — 72) exp{Ao(T — 71)} d7y.
0 Ty 4rp =1
Herecy, ..., c4 are some positive constants. From equations (21) and (8)atvs that

U < csexp{— [ vdz} witha constant; > 0fort < — T, T <, <T,. Hence,
§

t+Ty T
Joexp{—tAo} = exp{—tAo} / UTy+t—m1,Ty)exp { — /l/dl‘} drm

t+T Ty
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t+Ty Ty T1
< cs exp{—tAo} / eXp{ - / vdz — /de} dr
t+T T1—1 Ty

t+Ty T1
= c5 exp{—tAo} / eXp{ - / de} dry
T1—

t+T t

Ty t+¢
=cs5 exp{t)\o}/exp{ — / Vd:c} dé
T

3

Ty t1 t+&
ZC5eXp{—t)\0}/exp{ —/de— / Vdac}d§
T

3 t1

Ty Ty
< csexp{—t(Ao+ Voo — €)} exp{ — I/d:C} d¢.
ool -]

3

Since these estimates fér, , J12, Jo, and.Js; are valid for every small > 0, we conclude
that, for large time and., < oo,

B~ B(No)exp{tro}, B(Ao) = n(Ao)B(Xo), (38)

oo

B(Xo) = /vo(:c + T)exp{—zXo}dz

0

T T3tT2
+ / dm / Z Ug(ﬁ, 72)0° (1 — 7o) exp{Xo(T — 1)} dmy (39)
0 Tigm F=1

if \o+voo > 0. Itis evidentthalJiz + Jo+ J3) exp{—tAo} for v, = oo is less than that
given above for,, < oo. Therefore formula (38) remains valid for the casg = oo,
too.

It remains to find the asymptotic behavior@fdefined by equation (12). Pyitt) =
F(t) exp{—tAo} in equation (10) to get

F/ = ()\() — p(Fﬂ exp{ft)\o}))F, F(O) = 1.

The asymptotic behavior df and N can be described by the unique solutions of the
equations

F'= (X~ p(FB(N)))E, F(0)=1

and
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respectively. Hence,

F,NHOastHoo if)\()§0,
F, N — coast — oo if sup p(IV) < Xy < o0,
- . - =0 (40)
F'— N*/B(X\) andN — N*ast — oo if Ag € (0, sup p(N)),
N>0

B(Ao) < oo, andig=p(N*).
This enables us to formulate

Theorem 4. Let conditions of Theore@be satisfiedy is non-decreasing, an,a(Ao) <
oo where)\ is a unique real root of equatiof18). Then the solution of proble(®)—-(11)
for large time behaves as follows:

N ~ N,
u ~v°(1) exp{Ao(T — 71)} N /B(No), o (41)
ug ~ v (11, 72)0° (11 — 72) exp{Xo(T — 1)} N/B(No)

where asymptotic behavior of is given by(40).

4 A population dynamics model with spatial diffusion

In this section we generalize the model in Section 3 by indgdhe random spatial
diffusion in an open bounded domdihc R™ with the extremely inhospitable boundary
09 and examine two special and steady state solutions in tleeafasonstant diffusion
modulusk and time-space-independent vital rates. The model reddd@ss:

Ou+ Onu+ (v+ p(N))u — KAu

0, T € 05,
.
— 0, Tleal’+ v2(T1) n
ou, T1 € 01 | > vkourdre, T €02
y1(71) k=1
0, T1 € 03, (42)
+4 & t>0, €
Z uk|7'2:T7 T1 S g3, ’ ’
k=1
n
’u,|-,—1:T = f Z kuk|72:Td71,
o3 k=1

u|t=0 = Uy, U|8Q = 07 [u|7'1=7'] = 0; T = Tl; T27T3; T4a

Opug + Or ug + Oryup + (Dk + p(N))uk — kAuy,

0, k=n,
=q & (43)
S vskus, 1<k<n-—1, (rm,)€Q, t>0, x€Q,
s=k+1
Uk | =0 = kU, Ulc|t:() = Uko, Uk|aQ =0,
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[e%e} T T3+712 n
N:/udﬁ —|—/ dr / Zuk dry. (44)
T 0 T 4 k=1

Here A signifies the Laplace operator R™. We examine the case wheug and uxo
depend on(m1, z) and(r, 72, ), respectivelyy, vy, oy, andvs, do not depend onand
x, and add the following compatibility conditions:

n
U()|71:T:/E kugo|r=1 d71, uolag =0,
k=1

[u()|‘rl:‘r] = 0; T = Tl; T2a T37T4;

uk0|7'2=0 = (ak)|t=0U07 Uk0|aQ =0.

4.1 A case of product initial distributions

In this section we study a special case of initial functionsl ok for solutions to
equations (42)—(44) of the form

u(t,m,2) =Ut,m1)f(t,x), w(r,z) =Uo(r)folx), foloa =0, (45)
up(t, 1,712, x) = Uk(t, 71, 2) f(t,2), uko(T1,72,2) = Uko(71, 72) fo(2)

where fo(z) > 0 in Q while U and Uy, are unique solutions of problem (7)—(9) and
(5) with ug anduyg replaced by, and Uyg, respectively. Substituting (45) into equa-
tions (42)—(44), we get the problem férand V,

O f = _p(N)f + kA, f(O,x) = fO(x)7 leQ =0, (46)
N=fp

with 3(t) defined by equation (11). By substitutigift,z) = F(t, z) exp{—tA\o} we

reduce this equation into the problem

OEF = (Ao — p(aF))F + kAF, F(0,z) = fo(z), Floo =0, (7)
N(t,z) = F(t,x)a(t), a(t) = B(t)exp{—tAo}.

Theorem 5. Let conditions of Theore@with uy anduy, replaced by, and Uy, hold.
Assume thab < f, € C*9(Q) with § € (0,1), folan = 0, anddQ € C*+°. Let \y
be as in Theorem. Then problenf42)«(44) has a unigue solution of tydd5) which for
larget (¢t > 7 — T) behaves as follows:

() {u(t, ) — 0 uniformly in [T, c0) x Q, (48)

ug(t,-) — 0 uniformly in [T, 00) x (0,T] x Q
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if A\g < kA1 andt — oo,

u(t,) — (N*(2)/B(X0))0°(11) exp{Ao(T — 71)}
uniformly in [T, 00) x £,

ug(t,) = (N*(2)/B(Xo)v (11, 2)0° (11 — 72) exp{Xo(T — 71)}
uniformly in [T, 00) x (0,7] x

(ii) (49)

if Ao > kA1 andt — oo wherev? and v are defined in SectioB.1, A; is the first
eigenvalue of the Dirichlet problem to the operateA in 2, N* is a unique positive in
Q) solution of the problem

(Mo — p(N*))N* + KAN* =0 in Q, N*[yq =0, (50)
andj3()o) is defined by equatiof89).

Proof. We use the upper and lower solutions technique. By [23, @naptand 6]0) and

a constanb > maX(fy()\O)/inf @, max fo) with inf @ > 0 and~y()g) a unique positive
root of p(y) = Ao are lower and upper solutions of time-dependent probledAd its

steady-state analogue

(Mo = p(BN)F))EF + kAF =0 in Q, Flpg = 0. (51)

Here3()\) = n(AO)B(Ao) wheren()\) is defined by equation (36).

Let®; > 0in Q2 andA; be the normalized principle eigenfunctiangxqo ®; = 1)
and corresponding eigenvalue of the Dirichlet problem &odperator A in 2. Function
€Dy with € < y(\g — kA1)/B(N\o) is a lower solution to problem (50) g > rA;
and£®; with a positiveé is an upper solution to the same problem\if < «A;. The
lower solution to problem (51) is 0 X, < xA;. By Theorem 4.4 of Chapter 3 in [23],
equation (51) has only zero solution)fy < xA;, and a unique positive if solution
F(x;B(AO)) if \y > kA;1. By Theorem 4.1 of Chapter 2 in [23], problem (47) has a
unique global solutiod (¢, z) € [0, b].

Now we prove tha¥ (¢, ) has a nonnegative limit &— oc. Let us consider prob-
lem (47) for large timet > ¢, > 0 with the initial conditionF'(0, z) = fo(z) replaced
by the F'|;—;, = F'(to,z). We denote this problem b¥(¢y). Since, by equation (38),
a — B(Xo) ast — oo, we havel < a_(t) = B(A) — €(t) < a(t) < ai(t) ==
B(Xo) + €(t) for t > to, wheree(t) > 0 monotonically tends to 0 a— co. Denote by
Py (to) the problemP(ty) with a(t) replaced byu (to), respectively. Lef'(x; a (o))
be the unique solutions of the steady-state analogue ofgoB, (¢o)). Then functions
£+ F(x; ax(to)) with sufficiently largef_ and smalk . > 0 represent the lower and upper
solutions to problem®, (¢y) and their steady-state analogues, respectively. Becduse o
the uniqueness of the solution to problem (51) and by Thear&mwof Chapter 10 in [23]
problem (47) has a unique solution which tends to the unique solution oblem (51).
Hence N — N* = 3(\o)F(z; 3(\o)) ast — oo. The proof is complete.
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4.2 A case of the linear combination of the product initial dstributions

In this section we examine the case of initial functions

M

Ul)(Tl)fo( f(ﬂé‘ﬂ =0,
L _ (52)
g Ugo(71,72) fo ()

uo(T1,x) =

el

Uko(T1, T2, @

and look for the solution of problem (42)—(44) in the form

S

u(t,m,x) = Z Ut ) fit, @),
=t , (53)
ug(t, 71,72, x) = Z ity T, ) fi(t, )

whereU?, U} represent the unique solution (7)—(9) and (5) with uxo in (9) and (5)
replaced byUg, Ui, respectively. From (42)—(44), by using equation (52), (%8)d
(7)—(9) we get the system
atfl__p( )fi+l€Afi7 t>0) $€Q7
N = Z 1B (),
fli= ()*f()v z €,
flan =0, t>0
or
fi= Filexp{—tA\o},
atFZ:()\()fp(N))FZ+HAF1, t>0, LL‘GQ,
N =Y a'(t)F?, a'(t) = B'(t) exp{—tAo}, (54)
1=1
Filo=f5, z€Q,
Filag = 0, t>0

where'(t) is defined by equation (11) with andU, replaced byU* andU}, respec-
tively.

Theorem 6. Assume that conditions of Theor@mwith 1y anduyo replaced byU§ and
U}, hold and that) < fi € C?T9(Q), filan = 0, anddQ € C**9 with § € (0,1). Let

\o be asin Theoremand letp € C'+9(R}), (0) =0, p > 0. Then probleng42)(44)
has a unique solution of tyd&2), (53), the large time behavior of which is described by
formulas(48)and (49).

Proof. By equation (38)a" — 7%(A\o)5(X\o) ast — oo wheref(\o) is given by (39),
while n'(\o) is defined in (36) and depends &7 and U;,. It is evident that0 is
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a lower solution of problem (54) and its steady-state ansogThe constanb >
maX(mgx fé o)/ min inf a®) with v(A\o) a unique solution op(vy) = Ao is an upper
solution of problem (54) and its steady-state analoguenTineorem 8.1 of Chapter 8 in
[23] ensures the existence and uniqueness of the globdimol’ € [0,b], i =1,...,s
to problem (54).

Now we examine the large time behavior Bf. Let ¢, be sufficiently large. We
rewrite system (54) in the form

OF = (Mo+q—p(N)F' + kAF', t>tg, z€Q,
Fi|8Q:O, t > 1o,
Fili—, = Fi(tg,x), z€Q (55)

N = B(X) é ' (Xo) F*

with known

S

g(t,z) = —p'(N+£(N = N)) D (0" =" (M)B(h)) F',  &(t,x) € (0,1)

i=1

and then get

6tN:()\0+q—p(N))N+/@AN, t>ty, xe,
Nloa =0, t> o, (56)
~ ~ S . .
Nli=ty, = B(Ao) >_ n* (M) F*(to, ), z € Q.
i=1

Note thaty — 0 ast — oo andq* = sup, ,, |q| < cosinceF" € [0,b]. Lety(\o+q*)
be a solution op(y) = Ao + ¢*. The constants and~y (Ao + ¢*) are the lower and upper
solutions of problem (56) and of the problgty + ¢* — p(N))N + kAN = 0in €,
N|aq = 0. Since the steady-state analogue of problem (56);- p(N*)) N*+xAN* =
01in Q, N*|sq = 0, has a unique solutiol\(* = 0 if Ay < kA; andN* > 0in Q if
Ao > kA1, whereA; is defined in Section 4.1) Theorem 7.3 of Chapter 10 in [23}\sho
that N(t,z) — N*(z) uniformly in Q ast — oo. Obviously, F7 — 0 ast — oo if
)\0 S KAl.

Consider the cas®, > xA;. Let A, andwy, be the eigenvalue and corresponding
eigenfunction of the Dirichlet problem to the operatet A + p(N*(x))I in 2, wherel
is the identity operator. Theh; = A, wy = N* > 0in Q, andA;, > A, fork > 2. We
rewrite system (56) in the form

N = (Mo —p(N*(l‘)))N—I—KAN-i- (g+g)N, t>ty, €,
N|aQ:O, t > to,

Nleeso = A(20) g 7 (M) Fi(to,x), €9
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with known
g(t,x) = —p'(N*(2) + §(N = N*)) (N = N¥),  &(t,2) € (0,1).
Obviously,g — 0 ast — co. We seek now its solution in the form

N =3 pi(wi@), aN =3 g(t)w;(z), gN =) g;(t)w;(x)
Jj=1 j=1 j=1
and obtain
p} = (>\o - [\k)pj +qj+rj, pilto) = /wj(x)N(t()vx) de//WJQ‘ da.
Q

Q

Hence,p; — 0forj > 2 ast — oo andp: = pi(to) + [ (q1(7) + r1(r))dr — 1 as
t — 0o sinceN* = limy_oo N = lim;_ o0 > pjw; = limy o p1N*. Similarly, we
get

O F' = (Mo — p(N*(2))) N+ KAF' + (q+ g ) F', t>to, z €,
Fllgo =0, > to,
Fili—t, = Fi(to,x), z €
with known
g'(t,x) = —p/(N*(2) + &N — N*)) (N — N*)F' and &(t,2) € (0,1)
whereg(t,z) — 0 ast — oco. Then

j=1 j=1 =1
and finally
" S , ;
p';= ()\0 - Al)plj +4q'+9',
pé(to) = /wj(x)Fi(to,ac)dx//w?dx.
Q Q

Obviously,p’; — 0 ast — oo if j > 2 andp’; = p',(to) + [3(gi(r) + gi (7)) dr which
because of the boundednessHifis bounded, too. Since ???? Then, for large time, by
Equations (53), (36), and (37) we get

u(t,71,x) ~ 00(m1) > n'ph exp{ro(T — m1)}N*(x)

=1
— N*(@)0° (1) exp{Mo(T — 71)}/B(Xo)
and similarly
ug(t, 71, o, ) ~ N*(@)vp (11, 72)v° (11 — 72) exp{Ao(T — Tl)}/ﬁ()\o).
The proof is complete. O
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4.3 Steady-state solutions

We consider the steady-state problem. In this case allifumein model (42)—(44) do not
depend on time. Assume that it has a positive solution.

Theorem 7. Let s, T,Ty,...,T, be positive constants and functions vy, vis, and

ay, satisfy conditions of Theoreth Then any positive steady-state solution of prob-
lem (42)(44)is separable, i. e. any nontrivial separable solution conséten in the
form

u(r, ) = UO(ﬁ) exp{Ao(T — 71)}N(33)/5()\0)a
ug (11, 72, ) = V2 (11, T2)0° (11 — T2) exp{ Ao (T — Tl)}N(x)/B()\O)

wherev? and v,? are defined in Section 3y, is as in Theorerd, and N (z) is a unique
positive inS) solution of equatiorf48).

Proof. We use the Langlais [24] argument. Let the steady-statelgmobas a positive
supported solution. TheiV(z) defined by formula (44) is known. Let; andw;(z),
j > 1be asin Section 4.2. Then, farandu, € L2(Q2), we have

u= > U(T)z*(n)ws(x), 25(T) =1,
% (57)
up = > U(T)z° (11 — m2) 23 (11, 2)ws ().
s=1
Substituting functions (57) into the steady version of diguis (42)—(44), we get equa-
tions 14 and (15) with\, v* andv} replaced by\,, z* andz§, respectively. Obviously,

25(m) =" (1) eXp{—/N\s(Tl —T)},  zi(r1,m)=v0(T1,70) exp{—i&sTg}. (58)

For A, we get the equatiorig®(T)(1 — I(A,)) = 0 with I(A,) defined by equation (18).
SinceI(A,) = 1 only for A, = X, only one of U*(T') is not zero. Denote thi&’®

by U and the corresponding®(z) by &(x). Then, by definition, we geUo(z) =
N(:c)/B(Ao) > 0in Q. Finally, from Equations (57) and (58) the result of theorem
follows.

5 Concluding remarks

A discrete newborns set-based deterministic model of exexge-structured and density-
dependent population dynamics both with and without spdiffaision has been proposed
and investigated. The model consists of a system ef 1 integro-partial differential
equations subject to conditions of an integral type. The bem is a biologically
possible maximal number of newborns of the same generatamiuped by an individual.
Dynamics of young individuals in models given in [12—-16] isdribed by differential
equations for densities. In [17] and in the present modeatons for offsprings under
maternal care are not used in all. The spatial defsity =, ) of young offsprings aged
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7o at timet at the positionc is determined in this model by the formW&(t, 72, z) =

Ts3+72 n
Tydry 2ok=1 kug dm.

When \y < kA; then there exists no nontrivial steady-state solution of mo
del (42)—(44).

Under the conditions of Theorem 6 the limit functions given druation (49)
represent a unique nontrivial separable solution to theadststate analogue
of problem (42)—(44).

The nontrivial asymptotic behavior of the solution to thedabgiven above both
with (at least for the (52) initial distributions) and withiospatial diffusion is described
by product of spatial densitiy* and the same age profiles (see equations (40), (41), and
(49)), whereN* is a constant for the non-dispersing population and it isation of the
spatial position: in the opposite case.

Itis well known that the Sharpe-Lotka-McKendrick-von Bt@r or Gurtin-MacCamy
models, that can be applied only for the population whichsdua take child care, under
some restrictions on the vital rates have a class of prodlitisns. Such the populations,
e.g. fishes, reptilia, and amphibia, produces very largetrauraf newborns and a large
part of them dies because of predators. Usually populatakiag care of offsprings
produce a small number of newborns and only due to child ¢erertodel of the such
populations, (1)—(4), under suitable restrictions on thal vates has a class of product
solutions, too.
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