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Abstract. In this paper we compare four implementations of the Vindeuitas-
Strzebonhski Continued FractiongAS-CH real root isolation method using four different
(two linear and two quadratic complexity) bounds on the ealof the positive roots
of polynomials. The quadratic complexity bounds were idelt to see if the quality
of their estimates compensates for their quadratic contglelndeed, experimentation
on various classes of special and random polynomials regtetiiat the VAS-CF
implementation usingMQ, the Quadratic complexity variant of odrocal Max bound,
achieved an overall average speed-upl@f% over the original implementation using
Cauchy’s linear bound.

Keywords: Vincent's theorem, polynomial real root isolation, contal fractions
method, upper bounds on positive roots, linear and quadrathplexity bounds.

1 Introduction

We begin by first reviewing some basic facts aboutW&-CFmethod for isolating the
positive roots of polynomials. This method is based on \Mittegheorem of 1836, [1],
which states:

Theorem 1. If in a polynomial,p(z), of degreen, with rational coefficients and without
multiple roots we perform sequentially replacements ofdinen

r<—aoa+—, r—ay+—, r—az3+—,...,
T T T

wherea; > 0 is an arbitrary non negative integer ang, as, . . . are arbitrary positive
integers,o; > 0,4 > 1, then the resulting polynomial either has no sign variasiam it
has one sign variation. In the last case the equation hastlgxane positive root, which
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is represented by the continued fraction

1
o+ ——,
o2+ az+——

whereas in the first case there are no positive roots.

See the papers by Alesina & Galuzzi, [2] and Chapter 7 in [Bafoomplete histori-
cal survey of the subject and implementation details resmd¢. The thing to note is that
the quantitiesy; (the partial quotients of the continued fraction) are cotagdily repeated
application of a method for estimatingwer bounds on the values of the positive roots
of a polynomial.

Cauchy’s (linear complexity) bound on the values of the fpasiroots of a poly-
nomial, was used until recently in théAS-CFreal root isolation method, [4]. In the
SYNAPS implementation of théAS-CFmethod, [5], Emiris and Tsigaridas used Kiouste-
lidis’ (linear complexity) bound, [6] and independentlyrifed the results obtained by
Akritas and Strzebohski, [8]

In this paper we implemented théAS-CFreal root isolation process using both
linearandquadratic complexity bounds on the values of the positie¢ésrof a polynomial
— all of which are based on Theorem 2 below, [9], [10], [11] —dahiscovered that the
latter substantially improve its performance!

The rest of the paper is structured as follows:

In Section 2 we present tAéAS-CFalgorithm, as found in [4]; this is done both for
completeness of the present papedto correct a misprint that appeared in Step 5 in [4].
We also present the theoretical background of our new gtiad@mplexity bounds.

In Section 3, we compare four different implementationshef\{AS-CFalgorithm
using two linear and two quadratic complexity bounds — ailadhly adjusted for com-
puting lower bounds on the values of the positive roots.

Finally, in Section 4 we present our conclusions; namelygmitMQ, theQuadratic
complexity variant of out.ocalMax bound, is implemented MAS-CF an overall aver-
age speed-up of0 % is achieved over the original version ¥AS-CF where Cauchy'’s
linear bound is implemented.

2 Algorithmic and theoretical background

In Subsection 2.1 we present t&S-CFalgorithm — as found in [4] — and correct a
misprint in Step 5 that had appeared in that presentatiomgover, we explain where
the new bound on the positive roots is used. We also presefitreorem 2 from which

all the bounds on the values of the positive roots are derivatkdricomplexity bounds

1A lower bound, b, on the values of the positive roots of a polynomfélk), of degreen, is found by first
computing arupperbound,ub, on the values of the positive rootso?f(i) and then settingb = ﬁ

2See also Sharma’s work, [7] and [8], where he used the wokstilple positive lower bound to prove that
the VAS-CFmethod is still polynomial in time!
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are presented in Subsection 2.2, whereas the quadratidexitynes are presented in
Subsection 2.3.

2.1 Description of the Continued Fractions Algorithm VAS-CF

Using the notation of paper [4], Igt € Z[z] \ {0}. By sgc(f) we denote the number of
sign changes in the sequence of nonzero coefficienfs Bbr nonnegative integets b,
¢, andd, such thatd — be # 0, we put

intrv(a,b,c,d) := CIDa,bycyd((O, oo)) ,

where

fuseas 0925 — E € (mn () mee(5. ).

and byinterval datawe denote a list

{a7 b’ c? d7p’ S}’

wherep is a polynomial such that the roots $in intrv(a, b, ¢, d) are images of positive
roots ofp through®,, 4, . 4, ands = sgc(p).

The value of parametet, used in Step 4 below needs to be chosen empirically. In
our implementationyy = 16.

Algorithm Continued Fractions (VAS-CF)

Input: A squarefree polynomial € Z[z] \ {0}
Output: The listrootlist of the isolation intervals of the positive roots pf

1. Setrootlist to an empty list. Compute «— sgc(f). If s = 0 return an empty list. If
s = 1return{(0,00)}. Putinterval datd1,0,0, 1, f, s} onintervalstack .

2. If intervalstack is empty, returmrootlist, else take interval datgu, b, ¢, d, p, s} off
intervalstack.

3. Compute a lower bound € Z on the positive roots gj.
4. If a > ag setp(z) — p(ax), a «— aa, ¢ — ac, anda «— 1.

5. Ifa > 1, setp(x) «— p(z + @), b — aa + b, andd — ac + d. If p(0) = 0, add
[b/d,b/d] torootlist, and sep(z) < p(x)/x. Computes — sge(p). If s =0goto
Step 2. Ifs = 1 addintrv(a, b, ¢, d) to rootlist and go to Step 2.

6. Computep;(x) < p(z+ 1), and sets; «— a,b; — a+b,¢1 — ¢,d; — c+d, and
r « 0. If p1(0) = 0, add[by /d1, b1 /d1] to rootlist, and sep; (z) « p1(z)/x, and
r — 1. Computes; «— sgc(p1), and setsy «— s —s1 — 7, a2 <— b, ba — a+ b,
¢y «— d, anddy < ¢+ d.
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7. If s, > 1, computepy(z) «— (z + 1)™p(557), wherem is the degree op. If
p2(0) = 0, setpa(x) «— pa(z)/x. Computesy «— sge(ps).

8. If s1 < s2, swap{ai, b1, c1,di1, p1,s1} With {ag, ba, c2, d2, p2, 52}

9. If s; = 0 goto Step 2. Ifs; = 1 addintrv(ay,by,c1,dy) to rootlist, else put
interval data{aq, b1, ¢1,d1, p1, $1} Onintervalstack.

10. If s9 = 0 goto Step 2. Ifsy = 1 addintrv(as, ba, ca,ds) to rootlist, else put
interval data{as, b, ca, da, p2, s2}0ninterval stack. Go to Step 2.

Please note that the lower bound, on the positive roots of(z) is computed in
Step 3, and used in Step 5.

As mentioned in the introduction, Cauchy’s bound was the iree to be used in
VAS-CFE However, new bounds on the values of the positive roots weveloped by us
recently; for details see [9], [10], and [11]. The import#mng that emerged from our
work is thatall bounds on the values of the positive roots are derived fraidtowing
[11]:

Theorem 2. Letp(z)
p(z) = anz™ + an_12" P+ 4y (o >0) (1)

be a polynomial with real coefficients and tp) and¢(p) denote the degree and the
number of its terms, respectively.
Moreover, assume tha{x) can be written as

p(z) = q1(z) — g2(x) + q3(2) — qa(x) + ... + Gam—1(2) — @2m(z) + g9(z), (2)

where all the polynomialg;(z), ¢ = 1,2,...,2m and g(x) have only positive coeffi-
cients. In addition, assume that foe= 1,2, ..., m we have

— €21, €2i—1,t(qo;
Q2i71(x) = C2;—1,1% Fobt 021'—1,15(1121'71)35 Ttz
and
— €24,1 €2 "
q2i (:C) - b2i,1=’U s S b2i,t(q2i)x 27't(q2‘)7

whereegz; 11 = d(ge2i—1) andeg; 1 = d(g2;) and the exponent of each termgg_; (x)
is greater than the exponent of each ternyin(z). If for all indices:i = 1,2,...,m, we
have

t(gai—1) > t(q2:),

then an upper bound of the values of the positive rootg of is given by

-1 1
b2i,1 €2i—1,1€24,1 b2i,t(q2i) €2i—1,t(qe;) ~ ©2i,t(qg;)
ub=  max — ey | ——— ,(3)
{i=1,2,...m} |\C2i—1,1 C2i—1,t(qas)
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for any permutation of the positive coefficieats ; ;, j = 1,2,...,t(¢g2i—1). Otherwise,
for each of the indicesfor which we have

t(q2i—1) < t(q2i),

we break up one of the coefficients @b;_1 () into ¢(g2;) — t(g2;—1) + 1 parts, so that
nowt(qe;) = t(g2;—1) and apply the same formu(&) given above.

For a proof of this theorem see [11]. Among others, the follmdinear and quadratic
complexity bounds on the values of the positive roots of potyials are derived from it.

2.2 Linear complexity bounds derived from Theorem 2

Various linear complexity bounds can be obtained from thevaltheorem; the ones
described below have been presented elsewhere, [1Tjpbatthe context of complexity.
We present them here again, briefly, for completeness:

C. Cauchy’s “leading-coefficient” implementation of Theorem 2. For dypmmial
p(z), as in equation (1), with negative coefficients, Cauchy’s method first breaks
up its leading coefficienty,,, into A equalparts and then pairs each part with the
first unmatched negative coefficient, [12].

That is, we have:

k )\an—k
ubo = max -
{1<k<n: a,_,p<0} Oy
or, equivalently,
Qi
ubo = max kl— Z k.
{1<k<n: a,_,p<0} ):L

K. Kioustelidis’ “leading-coefficient” implementation of Theorem 2. For dypmmial
p(z), as in (1), Kioustelidis’ method matches the coefficient,,_; of the term
—an—kz" "% in p(z) with 4, the leading coefficient divided 3. Kioustelidis’
“leading-coefficient” implementation of Theorem 2 diffdrem that of Cauchy’s
only in that the leading coefficient is now broken upuimequalparts, by dividing it

with different powers o2, [6],

Qpy—
ubg = 2 max i) Ink
{1<k<n: a,_<0} Oy
or, equivalently,
On—k
ubg = max k| — Z .
{1<k<n: a,_p<0} 2—2

In addition to the above we present our own two linear comiplémplementations of
Theorem 2, the combination of which (that is, taking the minin) yields the best linear
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complexity upper bound on the values of the positive roots pblynomial, [11]. Please
note that in general we can obtain better bounds if in The@#ra pair coefficients from
non adjacent polynomialg,_1(z) andgs;(x), 1 < ¢ < i — and this is done in the
following definitions:

FL. “First-=)\" implementation of Theorem 2. For a polynomjal:), as in (2), withA
negative coefficients we first take care of all cases for whigh) > t(g2;—1), by
breaking up the last coefficient; _; ;(4,.), Of g2i—1(z), INtO t(g2;) — t(gi—1) +1
equalparts. We then pair each of the fipspositive coefficients of(z), encountered
as we move in non-increasing order of exponents, with theuirsmatched negative
coefficient.

LM. “Local-Max” implementation of Theorem 2. For a polynomijglz), as in (1), the
coefficient—ay, of the term—ay.z* in p(z) — as given in (1) — is paired with the
coefficient<z, of the terma,,, 2™, wherea,, is the largest positive coefficient with
n > m > k andt indicates the number of times the coefficient has been used.

We have tested extensively — on various classes of specificaardom polynomials —
all four linear complexity bounds mentioned above and thieviong is a summary of our
findings, [11]:

¢ Kioustelidis’ bound is, in general, better (or much bettegn Cauchy’s; this hap-
pens because the former breaks up the leading coefficiemequalparts, whereas
the latter breaks it up irqualparts.

e Ourfirst-)\ bound, as the name indicates, uses additional coefficiedtslacrefore,
it is not surprising that it is, in general, better (or muclité&g than both previous
bounds. In the few cases where Kioustelidis’ bound is bét@nfirst-\, ourlocal-
maxbound takes again the lead.

Therefore, given their linear cost of executienin(FL, LM) is the best among the lin-
ear complexity bounds, [11], and we use it in Section 3 tord@tee the cutoff point
between linear and quadratic complexity bounds. Additignan Section 3 we see
that implementingnin(FL, LM) in the continued fractions real root isolation method,
VAS-CF min(FL,LM), we obtain a speed-up of 15% — when compared WithS —
CF/Cauchy.

2.3 Quadratic complexity bounds derived from Theorem 2

In this subsection we present the two quadratic complexitynials which will be used in
our experimentation. See the literature, [13], for a momaglete discussion of quadratic
complexity bounds.

We begin withKQ, the quadratic version of Kioustelidis’ bound on the valaéthe
positive roots of a polynomial. To our knowledge this wag finesented by Hong, [14,
p.574], and can be stated as follows:
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KQ. Kioustelidis’ Quadratic complexity implementation of Theorem 2. For a polyno-
mial p(z), as in equation (1), each negative coefficient< 0 is “paired” with
eachone of the preceding positive coefficients divided by2/~* — that is,each
positive coefficients; is “broken up” into unequal parts, as is done wjtist the
leading coefficient in Kioustelidis’ bound — and the minimisrtaken over allj;
subsequently, the maximum is taken overiall

That is, we have:

. . Q;
ubgg = 2 max min i ——,
{a;<0} {a;>0: j>i} a;

or, equivalently,

. a;
ubgg = max min i/ ———.
{a;<0} {a;>0: j>i} 5T

Hong’s Theorem 2.2, if examined carefully, reveals thatdolynomials in one variable
it is the quadratic version of Kioustelidis’ bounlQ; moreover, the relation with our
Theorem 2 is quite obvious.

This observation lead us to our own quadratic complexityntobuMQ, based also
on our Theorem 2, [13], which can be stated as follows:

LMQ. “Local-Max” Quadratic complexity implementation of Theorem 2. For a polyno-
mial p(z), as in (1), each negative coefficient< 0 is “paired” with eachone of the
preceding positive coefficients divided by2’/ — that is,eachpositive coefficient
a; is “broken up” into unequal parts, as is done wjtist the locally maximum
coefficient in the local max bound; is initially set to 1 and is incremented each
time the positive coefficient; is used — and the minimum is taken over @l
subsequently, the maximum is taken overiall

That is, we have:

. Qg
ubrmg = max min il ——a—.
{ai<0} {a;>0: j>i} QTJJ

Since2t < 2/—% — wherei andj are the indices realizing theax of min; equality
holds when there areo missing terms in the polynomial — it is clear that the bounds

computed by MQ are sharper by the factdr 7= than those computed by Kioustelidis’
KQ; nonethelessyAS-CFis implemented with both quadratic bounds.

We have also implemented the fastest quadratic complegipnt, F'LQ, but we
omit it since its behavior is similar to that €@MQ and it cannot be directly compared
with KQ; details can be found elsewhere, [15].
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3 Empirical results

In this section we compare four implementations oN#&-CFreal root isolation method
using two linear and two quadratic complexity bounds on #hlees of the positive roots
of polynomials.

The two linear complexity bounds are: Cauchy’s amid(FL, LM), the minimum of
ourFirstLambda andlocalMax bounds, [11], whereas the two quadratic complexity ones
are:KQ, theQuadratic complexity variant dfioustelidis’ bound, studied by Hong, [14],
andLMQ, theQuadratic complexity version of olwocalMax bound, [13].

Our choice of the various bounds in the implementationgA8-CFis justified as
follows:

1. From the linear complexity bounds we included:

(a) Cauchy’s bound;, to be used as a point of reference, since it has been in use
for the past 30 years, and

(b) ourmin(FL,LM) bound, [11], which is the best among the linear complexity
bounds, in order to see when it's implementation will outpen that of the
two quadratic complexity bounds.

2. From the quadratic complexity bounds we included:

() Kioustelidis’KQ, and

(b) our ownLMQ, in order to compare their performance; as explained in the
previous sectiohMQ computes sharper estimates tha®.

We have implemented all versions\WWAS-CFas a part oMathematic&ernel. They
all use the same implementation of Shaw and Traub’s algorfdr Taylor shifts (see
[16]). We followed the standard practice and used as bendhtha Laguerrg Cheby-
shev (first and secontlkind), Wilkinsorf and Mignotté polynomials, as well as several
types of randomly generated polynomials of degrge®), 200, 300, 400, 500, 600, 700,
800,900, 1000, 1500,2000}. For the random polynomials the size of the coefficients
ranges from-22 to 229,

All computations were done on a Windows XP laptop computéh with 1.8 Ghz
Pentium M processor, and 2 GB of RAM. The change in memory wsenegligible in
every case, and hence, it is not included in the followindembThe average speed-up
was calculated using the formul&peed-up= 100 - (LMQ — Cauchy/Cauchy from
which we omitted the minus sign.

®recursively defined asLo(z) = 1, Li(z) = 1 — z, andLn41(2) = ;45 ((2n + 1 — 2)Ln(z) —
nln_1(z))

4recursively defined asfo(z) = 1, Th (x) = «, andTp 41 () = 20T (z) — Th—1(x)

Srecursively defined ad/y(z) = 1, U1 (z) = 2z, andUp41(x) = 22Un (x) — Un—1(z)

Sdefined asW (z) = [/ (z — 1)

"defined asM,, (z) = =™ — 2(5z — 1)?
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Table 1. Special Polynomials. Some indicative results asengor degreeg00, 1000,
1500 and2000. The average speed-up for this table is about 32 %

Polynomial  Degree Time (s)

Class Cauchy FL+LM KQ (Hong) LMQ
Laguerre 100 0.23 0.19 0.19 0.17
Laguerre 1000 979 665 729 633
Laguerre 1500 7194 4903 5356 4569
Laguerre 2000 27602 21007 22712 19277

Chebyshev | 100 0.19 0.17 0.16 0.11
Chebyshev | 1000 517 460 496 299
Chebyshev | 1500 3681 3333 3381 2188
Chebyshev | 2000 16697 15010 14571 10473
Chebyshev I 100 0.42 0.17 0.15 0.10
Chebyshev I 1000 529 437 443 296
Chebyshev I 1500 3772 3198 3190 2166
Chebyshev Il 2000 16559 14492 14370 10184
Wilkinson 100 0.03 0.03 0.03 0.03
Wilkinson 1000 54.6 445 43.7 43.3
Wilkinson 1500 339 295 270 265
Wilkinson 2000 1361 1305 1241 1242
Mignotte 100 0.008 0.004 0.008 0.004
Mignotte 1000 0.79 0.78 0.81 0.66
Mignotte 1500 2.05 2.12 2.06 1.77
Mignotte 2000 4.52 4.37 4.47 3.69

Table 2. Polynomials with random 10-bit coefficients. Therage speed-up for
this table is about 39 %

Degree No. of roots Time (s), Avg (Min/Max)
Avg (Min/Max) ~— Cauchy  FL+LM KQ(Hong)  LMQ
100 4.4 (216) (0.86?&01) (o.gi()/cl).oz) (0%2,10_02) (0?62}0.01)
200 4.0 (2/8) (0,82'73 18) (0.830/2_16) (0.%2/50.14) (o(.)c')gé/lo.og)
300 4.8 (4/6) (0_37.}3_ 24) (0_861/5_22) (0%;/:?).19) (0(.)6(;?0.13)
400 4.4 (4/6) (0. 32.}5.21) (o.gél/cs).zs) (o?i;/i).zo) (o(.)ilz?o.ZO)
500 4.8 (2/8) (o,;)Jf,ge) (o.(z)bsﬁ.zz) (ogi/sc).ss) (O(.);())?O.SO)
600 5.2 (4/6) (04?6?16 41) (0_33?_25) (0.(21.2/%.84) (0?4521/2)0.72)
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700 4.0 (2/6) (0,25?15,68) (0.223/1_33) (02{2/21.25) (O(.);(S)?O.Ql)
800 5.2 (4/8) (0;7?1 09) (0_;22_33) (0.17. 5/22.25) (O%%(Zl.m)
900 3.6 (2/6) (0628?76 15) (0_?22/2_13) (0.17- 11/42.55) (0%6-317?1.87)
1000 6.4 (4/8) (1.:3'(/);02) (1.2215/3.64) (1.25321.51) (12(2);/53.18)
1500 4.0(2/6) (2.713?/.266.1) (2.;'35;13.9) (2.53;220.1) (2?4'12‘/17.77)
2000 6.8 (4/12) (7.?2/?37) (7.‘91)50'/5118) (7.%3;/23.9) (7.1:i/14o.2)

Table 3. Polynomials with random 1000-bit coefficients. 8lierage speed-up for this
table is about 48 %

Degree No. of roots Time (s)Avg (Min/Max)
Avg (Min/Max) Cauchy FL+LM  KQ (Hong) LMQ
100 4.0 (4/4) (o.gd(/)c}.oz) (o.gbo/cl).oz) (0%8/10.02) (o?d%}o.oz)
200 3.6 (2/6) (0.8'398?12) (o.gé()/cs).lo) (o%(z)/%.os) (o?d(i?o.oe)
300 4.8(2/8) (0.84}532) (o.ghl/cl).zs) (o.%i/%.zs) (o?da?o.n)
400 4.4 (216) (0.86?354) (0.86%8.44) (0%2/%.44) (o(.)d%?o.zs)
500 5.2 (4/8) (o.fé?ls.zo) (0.2'75/8.95) (o.()éilff).gz) (092?5048)
600 3.6 (2/4) (o.féigog) (o.géf/g.ge) (0%3/%.66) (o(.)i%?o.sz)
700 3.6 (0/6) (0.55?282) (0.1'92/2.51) (0.01'8/51.54) (o(.)ig?l.zg)
800 4.4(2/6) (0.39?53.50) (025276) (0.1352%.68) (0?23?1.53)
900 5.6 (4/8) (1.515?95.32) (18'27/%53) (1.2(5c2)f3.09) (o%%%?z.ss)
1000 3.6 (2/6) (o.féﬁaz) (o.if/g.gz) (0.143/72.00) (0%4-1%‘/11.68)
1500 5.6 (4/8) (2.3?3?}0.2) (1.3&318.2) (2.7ié/711.9) (1%%:/))10.8)
2000 5.2(4/6) (4.1223/'739.8) (4.%2}25.4) (4.1:55/233.4) (4%&‘/120.2)
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Table 4. Monic polynomials with random 10-bit coefficierithie average speed-up for
this table is about 31 %

Degree No. of roots Time (s)Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM  KQ (Hong) LMQ
0.01 0.01 0.01 0.01
100 48(218)  001/0.02) (0.00/0.02) (0.01/0.02) (0.00/0.02)
0.08 0.06 0.06 0.05
200 56(46)  (003/0.16) (0.03/0.13) (0.03/0.09) (0.03/0.08)
012 012 012 0.10
300 48(4%6)  (008/0.22) (0.08/0.21) (0.08/0.15) (0.08/0.15)
0.19 0.19 0.18 017
400 48(46)  (019/0.29) (0.16/0.26) (0.15/0.26) (0.16/0.20)
0.44 0.42 033 032
500 52(410)  (018/1.38) (0.18/1.19) (0.18/0.74) (0.19/0.63)
0.99 0.76 0.65 0.49
600 56(48)  (030/2.04) (0.30/1.21) (0.31/0.94) (0.30/0.72)
114 0.9 0.02 0.73
700 52(48)  (0431.63) (0.42/1.47) (0.46/1.30) (0.49/0.94)
1.45 129 122 0.90
800 56(48)  (066/1.99) (0.64/1.62) (0.65/1.42) (0.69/1.03)
.01 .01 1.05 1.09
900 44(206)  074/1.18) (0.71/1.31) (0.69/1.36) (0.72/1.33)
3.40 302 (L10/428) (L.10/2.70)
1000 56(4/8)  (1187.09) (L03/5.94) (1.10/4.28) (L.10/2.70)
148 118 8.43 6.80
1500 6.8(6/8)  (6.06/27.3) (5.86/17.1) (5.98/12.9) (4.90/9.24)
2000 7o) 548 476 3.9 194

(6.12/137)  (6.09/120)  (6.15/56.0) (6.03/42.2)

Table 5. Monic polynomials with random 1000-bit coefficentThe average
speed-up for this table is about 60 %

Degree No. of roots Time (s), Avg (Min/Max)

Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ
0.03 0.01 0.01 0.01

100 6.0 (4/8) (0.02/0.04)  (0.01/0.03) (0.00/0.02)  (0.00/0.02)
0.09 0.07 0.04 0.04

200 5.2 (418) (0.02/0.22)  (0.02/0.19) (0.02/0.11) (0.03/0.06)
0.19 0.14 0.12 0.14

300 5.6(4/8) (0.06/0.46)  (0.07/0.28)  (0.06/0.24)  (0.07/0.26)
0.41 0.24 0.21 0.15

400 5.2 (4/8) (0.08/1.00)  (0.06/0.54) (0.06/0.44) (0.06/0.28)
500 5.6 (4/8) 0.62 0.39 0.45 0.26

(0.18/1.00)  (0.12/0.68) (0.12/0.74) (0.12/0.37)
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600 4.8 (4/6) (O,zlzi(/);og) (0.2'75/?.21) (0%?/7().68) (o(.)fﬁo.Sg)
700 5.2 (2/10) (0.216?27.67) (o.;ﬁ.m) (0%3/61.43) (o(.)igfl.og)
800 5.6(4/8) (o.jé?52.41) (0;:;2.46) (0.1:42/22.02) (0952?1.38)
900 6.0 (4/8) (O.:j:.BG) (0.26%78) (0.1232/42.47) (0%%1?2.22)
1000 5.6 (4/6) (2.:553.86) (1.2232.21) (1.232/33.52) (1:.Lff>‘/11.84)
1500 6.8 (6/8) (26,%):;};1_8) (5_215“/;8,2) (4?52?15.7) (3?;:)‘/110.4)
2000 6.4(6/8) (4.28)502) (4.23}20.9) (4.%3%/747.4) (5.1()2é(735.9)

Table 6. Products of terme®® — r, with random 20-bit-. The average speed-up for
this table is about 48 %

Degree No. of roots Time (s)Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ
100 o 0.05 0.05 0.03 0.02
(0.02/0.09)  (0.02/0.09)  (0.02/0.04)  (0.02/0.02)
200 20 031 0.27 0.24 0.15
(0.18/0.39)  (0.16/0.38)  (0.16/0.32)  (0.12/0.20)
200 i 1.07 0.89 0.87 057
(058/1.37)  (0.60/1.11)  (0.60/1.04)  (0.56/0.60)
200 0 252 197 1.04 150
(1.92/258) (1.86/2.27)  (1.86/2.08)  (L.35/1.70)
=00 o 851 532 455 3.24
(6.03/11.5)  (4.24/7.28) (4.25/532)  (2.87/3.74)
500 5 13.9 9.15 8.96 6.43
(117/17.0)  (8.28/10.2)  (8.43/9.35)  (5.96/6.84)
700 70 24.6 17.2 16.5 12.1
(21.7/29.1)  (13.7/21.2)  (13.3/19.7)  (10.6/14.0)
800 ” 38.0 26.3 24.4 7.2
(33.7/44.2)  (23.6/30.4)  (19.4/30.3)  (15.1/19.3)
900 % 53.7 435 37.0 295
(40.4/63.8) (37.0/51.5) (28.8/45.8)  (23.1/36.6)
89.6 69.1 63.9 50.0
1000 100 (70.9/103)  (52.2/78.5)  (45.4/76.5)  (42.1/58.9)
577 456 429 353
1500 150 (468/696)  (378/533)  (360/473)  (3.11/402)
2000 200 2978 1907 1808 1464
(1917/2711)  (1674/2342) (1614/2279) (1204/1767)
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Table 7. Products of term&® — r, with random 1000-bit. The average speed-up for
this table is about 25 %

Degree No. of roots Time (s)Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ
100 10 0.08 0.08 0.11 0.09
(0.05/0.10)  (0.05/0.12)  (0.06/0.31)  (0.03/0.23)
200 20 1.65 1.42 1.28 1.31
(0.96/2.14)  (0.97/2.09) (1.02/0.1.45)  (1.10/1.50)
300 30 7.54 5.20 4.88 4.24
(5.08/10.8)  (4.46/5.65)  (3.67/5.49)  (3.92/4.69)
400 40 15.7 15.7 14.7 12.7
(10.8/19.7)  (13.3/17.5)  (12.7/17.3)  (11.0/14.1)
500 50 42.4 445 35.5 35.0
(29.2/64.7)  (35.2/148.7)  (32.8/40.5)  (27.5/49.7)
600 60 117 106 103 92.0
(91.9/154) (82.6/134) (90.0/121) (86.5/97.0)
700 70 248 252 240 189
(208/332) (221/282) (205/264) (168/205)
800 80 549 481 474 382
(351/753) (410/590) (412/542) (364/432)
900 90 1138 855 834 670
(971/1271)  (721/967) (718/931) (646/723)
1000 100 1661 1335 1265 1065
(1513/1913)  (1123/1673) (1066/1440)  (947/1146)
1500 150 9004 8360 8230 6141

(8233/9705)  (7281/8999)  (7357/9652)  (5659/6470)

Fig. 8. Products of terms — » with random integer. The average speed-up for
this table is about 35 %

Degree No. of roots Time (s)Avg (Min/Max)

Avg (Min/Max) — Cauchy — FL¥LM KO (Hong) MO

0 00 0.46 0.24 0.34 0.34
(0.28/0.94)  (0.18/0.28)  (0.27/0.41)  (0.30/0.41)

o 200 1.46 140 141 1.40
(L24/1.85) (L28/1.69) (126/1.71)  (L.20/1.69)

o 00 8.1 81 212 521
(165/18.9)  (16.6/18.8) (17.5/24.4)  (18.7/24.2)

1000 20 0.07 0.02 0.03 0.03
(0.04/0.14)  (0.02/0.03)  (0.02/0.04)  (0.02/0.04)

3.60 0.81 0.88 0.81
1000 50 (2.38/6.26)  (0.60/1.28)  (0.52/1.28)  (0.52/1.11)

1000 100 478 138 76 158

(37.6/56.9)  (10.3/19.2)  (12.4/25.9)  (11.3/21.3)
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4 Conclusions

Notice the following general remarks:

e the only inequality between bounds that is always satisfdfiat theKQ bound is
always greater than or equalltQ,

o for an individual polynomial a better bound may lead to wgregformance in/AS-
CF,

e timing results are subject to measurement error, whichaasiheaffects small tim-
ings.

Taking these observations into consideration, one couldsé®e that usinggMQ
should give the best performance\(iS-CF, except for individual data points for which
this is not true.

Indeed, from the tables in Section 3, it is obvious thatWA&-CFimplementation
using ourLMQ bound is fastest for all classes of polynomials tested, gdoe the case
of very many very large roots, Table 8. For all cases, theageoverall improvementin
computation time is abod) %. In the case of very many very large rodM&S-CFusing
LMQ is a very close second ¥AS-CFusing our linear complexity boundin(FL, LM).

Moreover, as was shown elsewhere, [17], using justwiir(FL, LM) bound the
VAS-CFalgorithm isalwaysfaster than that by Vincent-Collins-Akritg19], or any of
its variants, [20]. Therefore, our current results widengap between these two methods.
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