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Abstract. In this paper we compare four implementations of the Vincent-Akritas-
Strzeboński Continued Fractions (VAS-CF) real root isolation method using four different
(two linear and two quadratic complexity) bounds on the values of the positive roots
of polynomials. The quadratic complexity bounds were included to see if the quality
of their estimates compensates for their quadratic complexity. Indeed, experimentation
on various classes of special and random polynomials revealed that theVAS-CF
implementation usingLMQ, theQuadratic complexity variant of ourLocalMax bound,
achieved an overall average speed-up of40 % over the original implementation using
Cauchy’s linear bound.

Keywords: Vincent’s theorem, polynomial real root isolation, continued fractions
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1 Introduction

We begin by first reviewing some basic facts about theVAS-CFmethod for isolating the
positive roots of polynomials. This method is based on Vincent’s theorem of 1836, [1],
which states:

Theorem 1. If in a polynomial,p(x), of degreen, with rational coefficients and without
multiple roots we perform sequentially replacements of theform

x← α1 +
1

x
, x← α2 +

1

x
, x← α3 +

1

x
, . . . ,

whereα1 ≥ 0 is an arbitrary non negative integer andα2, α3, . . . are arbitrary positive
integers,αi > 0, i > 1, then the resulting polynomial either has no sign variations or it
has one sign variation. In the last case the equation has exactly one positive root, which
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is represented by the continued fraction

α1 +
1

α2 + 1
α3+ 1

...

,

whereas in the first case there are no positive roots.

See the papers by Alesina & Galuzzi, [2] and Chapter 7 in [3] for a complete histori-
cal survey of the subject and implementation details respectively. The thing to note is that
the quantitiesαi (the partial quotients of the continued fraction) are computed by repeated
application of a method for estimatinglower bounds1 on the values of the positive roots
of a polynomial.

Cauchy’s (linear complexity) bound on the values of the positive roots of a poly-
nomial, was used until recently in theVAS-CFreal root isolation method, [4]. In the
SYNAPS implementation of theVAS-CFmethod, [5], Emiris and Tsigaridas used Kiouste-
lidis’ (linear complexity) bound, [6] and independently verified the results obtained by
Akritas and Strzeboński, [4]2.

In this paper we implemented theVAS-CFreal root isolation process using both
linearandquadratic complexity bounds on the values of the positive roots of a polynomial
— all of which are based on Theorem 2 below, [9], [10], [11] — and discovered that the
latter substantially improve its performance!

The rest of the paper is structured as follows:
In Section 2 we present theVAS-CFalgorithm, as found in [4]; this is done both for

completeness of the present paperandto correct a misprint that appeared in Step 5 in [4].
We also present the theoretical background of our new quadratic complexity bounds.

In Section 3, we compare four different implementations of theVAS-CFalgorithm
using two linear and two quadratic complexity bounds — all suitably adjusted for com-
puting lower bounds on the values of the positive roots.

Finally, in Section 4 we present our conclusions; namely, whenLMQ, theQuadratic
complexity variant of ourLocalMax bound, is implemented inVAS-CF, an overall aver-
age speed-up of40 % is achieved over the original version ofVAS-CF, where Cauchy’s
linear bound is implemented.

2 Algorithmic and theoretical background

In Subsection 2.1 we present theVAS-CFalgorithm — as found in [4] — and correct a
misprint in Step 5 that had appeared in that presentation; moreover, we explain where
the new bound on the positive roots is used. We also present our Theorem 2 from which
all the bounds on the values of the positive roots are derived. Linear complexity bounds

1A lower bound,ℓb, on the values of the positive roots of a polynomialf(x), of degreen, is found by first
computing anupperbound,ub, on the values of the positive roots ofxnf( 1

x
) and then settingℓb = 1

ub
.

2See also Sharma’s work, [7] and [8], where he used the worst possible positive lower bound to prove that
theVAS-CFmethod is still polynomial in time!
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are presented in Subsection 2.2, whereas the quadratic complexity ones are presented in
Subsection 2.3.

2.1 Description of the Continued Fractions Algorithm VAS-CF

Using the notation of paper [4], letf ∈ Z[x] \ {0}. By sgc(f) we denote the number of
sign changes in the sequence of nonzero coefficients off . For nonnegative integersa, b,
c, andd, such thatad− bc 6= 0, we put

intrv(a, b, c, d) := Φa,b,c,d

(

(0,∞)
)

,

where

Φa,b,c,d : (0,∞) ∋ x −→
ax + b

cx + d
∈

(

min
(a

c
,
b

d

)

, max
(a

c
,
b

d

)

)

,

and byinterval datawe denote a list

{a, b, c, d, p, s},

wherep is a polynomial such that the roots off in intrv(a, b, c, d) are images of positive
roots ofp throughΦa,b,c,d, ands = sgc(p).

The value of parameterα0 used in Step 4 below needs to be chosen empirically. In
our implementationα0 = 16.

Algorithm Continued Fractions (VAS-CF)

Input: A squarefree polynomialf ∈ Z[x] \ {0}
Output: The listrootlist of the isolation intervals of the positive roots off

1. Setrootlist to an empty list. Computes← sgc(f). If s = 0 return an empty list. If
s = 1 return{(0,∞)}. Put interval data{1, 0, 0, 1, f, s} on intervalstack .

2. If intervalstack is empty, returnrootlist, else take interval data{a, b, c, d, p, s} off
intervalstack.

3. Compute a lower boundα ∈ Z on the positive roots ofp.

4. If α > α0 setp(x)← p(αx), a← αa, c← αc, andα← 1.

5. If α ≥ 1, setp(x) ← p(x + α), b ← αa + b, andd ← αc + d. If p(0) = 0, add
[b/d, b/d] to rootlist, and setp(x)← p(x)/x. Computes← sgc(p). If s = 0 go to
Step 2. Ifs = 1 addintrv(a, b, c, d) to rootlist and go to Step 2.

6. Computep1(x)← p(x + 1), and seta1 ← a, b1 ← a + b, c1 ← c, d1 ← c + d, and
r ← 0. If p1(0) = 0, add[b1/d1, b1/d1] to rootlist, and setp1(x) ← p1(x)/x, and
r ← 1. Computes1 ← sgc(p1), and sets2 ← s − s1 − r, a2 ← b, b2 ← a + b,
c2 ← d, andd2 ← c + d.
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7. If s2 > 1, computep2(x) ← (x + 1)mp( 1
x+1), wherem is the degree ofp. If

p2(0) = 0, setp2(x)← p2(x)/x. Computes2 ← sgc(p2).

8. If s1 < s2, swap{a1, b1, c1, d1, p1, s1} with {a2, b2, c2, d2, p2, s2}.

9. If s1 = 0 goto Step 2. Ifs1 = 1 add intrv(a1, b1, c1, d1) to rootlist, else put
interval data{a1, b1, c1, d1, p1, s1} on intervalstack.

10. If s2 = 0 goto Step 2. Ifs2 = 1 add intrv(a2, b2, c2, d2) to rootlist, else put
interval data{a2, b2, c2, d2, p2, s2}on intervalstack. Go to Step 2.

Please note that the lower bound,α, on the positive roots ofp(x) is computed in
Step 3, and used in Step 5.

As mentioned in the introduction, Cauchy’s bound was the first one to be used in
VAS-CF. However, new bounds on the values of the positive roots weredeveloped by us
recently; for details see [9], [10], and [11]. The importantthing that emerged from our
work is thatall bounds on the values of the positive roots are derived from the following
[11]:

Theorem 2. Letp(x)

p(x) = αnxn + αn−1x
n−1 + . . . + α0 (αn > 0) (1)

be a polynomial with real coefficients and letd(p) and t(p) denote the degree and the
number of its terms, respectively.

Moreover, assume thatp(x) can be written as

p(x) = q1(x) − q2(x) + q3(x)− q4(x) + . . . + q2m−1(x)− q2m(x) + g(x), (2)

where all the polynomialsqi(x), i = 1, 2, . . . , 2m and g(x) have only positive coeffi-
cients. In addition, assume that fori = 1, 2, . . . , m we have

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . . + c2i−1,t(q2i−1)x

e2i−1,t(q2i−1 )

and

q2i(x) = b2i,1x
e2i,1 + . . . + b2i,t(q2i)x

e2i,t(q2i ) ,

wheree2i−1,1 = d(q2i−1) ande2i,1 = d(q2i) and the exponent of each term inq2i−1(x)
is greater than the exponent of each term inq2i(x). If for all indicesi = 1, 2, . . . , m, we
have

t(q2i−1) ≥ t(q2i),

then an upper bound of the values of the positive roots ofp(x) is given by

ub = max
{i=1,2,...,m}

{

(

b2i,1

c2i−1,1

)
1

e2i−1,1−e2i,1

, . . . ,

(

b2i,t(q2i)

c2i−1,t(q2i)

)
1

e2i−1,t(q2i )−e2i,t(q2i )

}

, (3)
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for any permutation of the positive coefficientsc2i−1,j , j = 1, 2, . . . , t(q2i−1). Otherwise,
for each of the indicesi for which we have

t(q2i−1) < t(q2i),

we break up one of the coefficients ofq2i−1(x) into t(q2i) − t(q2i−1) + 1 parts, so that
nowt(q2i) = t(q2i−1) and apply the same formula(3) given above.

For a proof of this theorem see [11]. Among others, the following linear and quadratic
complexity bounds on the values of the positive roots of polynomials are derived from it.

2.2 Linear complexity bounds derived from Theorem 2

Various linear complexity bounds can be obtained from the above theorem; the ones
described below have been presented elsewhere, [11], butnot in the context of complexity.
We present them here again, briefly, for completeness:

C. Cauchy’s “leading-coefficient” implementation of Theorem 2. For a polynomial
p(x), as in equation (1), withλ negative coefficients, Cauchy’s method first breaks
up its leading coefficient,αn, into λ equalparts and then pairs each part with the
first unmatched negative coefficient, [12].

That is, we have:

ubC = max
{1≤k≤n : αn−k<0}

k

√

−
λαn−k

αn

or, equivalently,

ubC = max
{1≤k≤n : αn−k<0}

k

√

−
αn−k

αn

λ

.

K. Kioustelidis’ “leading-coefficient” implementation of Theorem 2. For a polynomial
p(x), as in (1), Kioustelidis’ method matches the coefficient−αn−k of the term
−αn−kxn−k in p(x) with αn

2k , the leading coefficient divided by2k. Kioustelidis’
“leading-coefficient” implementation of Theorem 2 differsfrom that of Cauchy’s
only in that the leading coefficient is now broken up inunequalparts, by dividing it
with different powers of2, [6],

ubK = 2 max
{1≤k≤n : αn−k<0}

k

√

−
αn−k

αn

or, equivalently,

ubK = max
{1≤k≤n : αn−k<0}

k

√

−
αn−k

αn

2k

.

In addition to the above we present our own two linear complexity implementations of
Theorem 2, the combination of which (that is, taking the minimum) yields the best linear
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complexity upper bound on the values of the positive roots ofa polynomial, [11]. Please
note that in general we can obtain better bounds if in Theorem2 we pair coefficients from
non adjacent polynomialsq2ℓ−1(x) andq2i(x), 1 ≤ ℓ < i — and this is done in the
following definitions:

FL. “First–λ” implementation of Theorem 2. For a polynomialp(x), as in (2), withλ
negative coefficients we first take care of all cases for whicht(q2i) > t(q2i−1), by
breaking up the last coefficientc2i−1,t(q2i), of q2i−1(x), into t(q2i) − t(q2i−1) + 1
equalparts. We then pair each of the firstλ positive coefficients ofp(x), encountered
as we move in non-increasing order of exponents, with the first unmatched negative
coefficient.

LM. “Local-Max” implementation of Theorem 2. For a polynomialp(x), as in (1), the
coefficient−αk of the term−αkxk in p(x) — as given in (1) — is paired with the
coefficientαm

2t , of the termαmxm, whereαm is the largest positive coefficient with
n ≥ m > k andt indicates the number of times the coefficientαm has been used.

We have tested extensively — on various classes of specific and random polynomials —
all four linear complexity bounds mentioned above and the following is a summary of our
findings, [11]:

• Kioustelidis’ bound is, in general, better (or much better)than Cauchy’s; this hap-
pens because the former breaks up the leading coefficient inunequalparts, whereas
the latter breaks it up inequalparts.

• Our first-λ bound, as the name indicates, uses additional coefficients and, therefore,
it is not surprising that it is, in general, better (or much better) than both previous
bounds. In the few cases where Kioustelidis’ bound is betterthanfirst-λ, our local-
maxbound takes again the lead.

Therefore, given their linear cost of execution,min(FL, LM) is the best among the lin-
ear complexity bounds, [11], and we use it in Section 3 to determine the cutoff point
between linear and quadratic complexity bounds. Additionally, in Section 3 we see
that implementingmin(FL, LM) in the continued fractions real root isolation method,
VAS-CF/ min(FL, LM), we obtain a speed-up of 15 % — when compared withV AS −
CF/Cauchy.

2.3 Quadratic complexity bounds derived from Theorem 2

In this subsection we present the two quadratic complexity bounds which will be used in
our experimentation. See the literature, [13], for a more complete discussion of quadratic
complexity bounds.

We begin withKQ, the quadratic version of Kioustelidis’ bound on the valuesof the
positive roots of a polynomial. To our knowledge this was first presented by Hong, [14,
p. 574], and can be stated as follows:
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KQ. Kioustelidis’ Quadratic complexity implementation of Theorem 2. For a polyno-
mial p(x), as in equation (1), each negative coefficientai < 0 is “paired” with
eachone of the preceding positive coefficientsaj divided by2j−i — that is,each
positive coefficientaj is “broken up” into unequal parts, as is done withjust the
leading coefficient in Kioustelidis’ bound — and the minimumis taken over allj;
subsequently, the maximum is taken over alli.

That is, we have:

ubKQ = 2 max
{ai<0}

min
{aj>0 : j>i}

j−i

√

−
ai

aj

,

or, equivalently,

ubKQ = max
{ai<0}

min
{aj>0 : j>i}

j−i

√

−
ai
aj

2j−i

.

Hong’s Theorem 2.2, if examined carefully, reveals that forpolynomials in one variable
it is the quadratic version of Kioustelidis’ bound,KQ; moreover, the relation with our
Theorem 2 is quite obvious.

This observation lead us to our own quadratic complexity bound, LMQ, based also
on our Theorem 2, [13], which can be stated as follows:

LMQ. “Local-Max” Quadratic complexity implementation of Theorem 2. For a polyno-
mial p(x), as in (1), each negative coefficientai < 0 is “paired” witheachone of the
preceding positive coefficientsaj divided by2tj — that is,eachpositive coefficient
aj is “broken up” into unequal parts, as is done withjust the locally maximum
coefficient in the local max bound;tj is initially set to 1 and is incremented each
time the positive coefficientaj is used — and the minimum is taken over allj;
subsequently, the maximum is taken over alli

That is, we have:

ubLMQ = max
{ai<0}

min
{aj>0 : j>i}

j−i

√

−
ai
aj

2tj

.

Since2tj ≤ 2j−i — wherei andj are the indices realizing themax of min; equality
holds when there areno missing terms in the polynomial — it is clear that the bounds

computed byLMQ are sharper by the factor2
j−i−tj

j−i than those computed by Kioustelidis’
KQ; nonetheless,VAS-CFis implemented with both quadratic bounds.

We have also implemented the fastest quadratic complexity bound,FLQ, but we
omit it since its behavior is similar to that ofLMQ and it cannot be directly compared
with KQ; details can be found elsewhere, [15].
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3 Empirical results

In this section we compare four implementations of theVAS-CFreal root isolation method
using two linear and two quadratic complexity bounds on the values of the positive roots
of polynomials.

The two linear complexity bounds are: Cauchy’s andmin(FL, LM), the minimum of
ourFirstLambda andLocalMax bounds, [11], whereas the two quadratic complexity ones
are:KQ, theQuadratic complexity variant ofKioustelidis’ bound, studied by Hong, [14],
andLMQ, theQuadratic complexity version of ourLocalMax bound, [13].

Our choice of the various bounds in the implementations ofVAS-CFis justified as
follows:

1. From the linear complexity bounds we included:

(a) Cauchy’s bound,C, to be used as a point of reference, since it has been in use
for the past 30 years, and

(b) ourmin(FL, LM) bound, [11], which is the best among the linear complexity
bounds, in order to see when it’s implementation will outperform that of the
two quadratic complexity bounds.

2. From the quadratic complexity bounds we included:

(a) Kioustelidis’KQ, and

(b) our ownLMQ, in order to compare their performance; as explained in the
previous sectionLMQ computes sharper estimates thanKQ.

We have implemented all versions ofVAS-CFas a part ofMathematicakernel. They
all use the same implementation of Shaw and Traub’s algorithm for Taylor shifts (see
[16]). We followed the standard practice and used as benchmark the Laguerre3, Cheby-
shev (first4 and second5 kind), Wilkinson6 and Mignotte7 polynomials, as well as several
types of randomly generated polynomials of degrees{100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1500, 2000}. For the random polynomials the size of the coefficients
ranges from−220 to 220.

All computations were done on a Windows XP laptop computer with with 1.8 Ghz
Pentium M processor, and 2 GB of RAM. The change in memory use was negligible in
every case, and hence, it is not included in the following tables. The average speed-up
was calculated using the formula:Speed-up= 100 · (LMQ − Cauchy)/Cauchy, from
which we omitted the minus sign.

3recursively defined as:L0(x) = 1, L1(x) = 1 − x, andLn+1(x) = 1

n+1
((2n + 1 − x)Ln(x) −

nLn−1(x))
4recursively defined as:T0(x) = 1, T1(x) = x, andTn+1(x) = 2xTn(x) − Tn−1(x)
5recursively defined as:U0(x) = 1, U1(x) = 2x, andUn+1(x) = 2xUn(x) − Un−1(x)
6defined as:W (x) =

Q

n

i=1
(x − i)

7defined as:Mn(x) = xn
− 2(5x − 1)2
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Table 1. Special Polynomials. Some indicative results are given for degrees100, 1000,
1500 and2000. The average speed-up for this table is about 32 %

Polynomial Degree Time (s)
Class Cauchy FL+ LM KQ (Hong) LMQ

Laguerre 100 0.23 0.19 0.19 0.17
Laguerre 1000 979 665 729 633
Laguerre 1500 7194 4903 5356 4569
Laguerre 2000 27602 21007 22712 19277

Chebyshev I 100 0.19 0.17 0.16 0.11
Chebyshev I 1000 517 460 496 299
Chebyshev I 1500 3681 3333 3381 2188
Chebyshev I 2000 16697 15010 14571 10473

Chebyshev II 100 0.42 0.17 0.15 0.10
Chebyshev II 1000 529 437 443 296
Chebyshev II 1500 3772 3198 3190 2166
Chebyshev II 2000 16559 14492 14370 10184

Wilkinson 100 0.03 0.03 0.03 0.03
Wilkinson 1000 54.6 44.5 43.7 43.3
Wilkinson 1500 339 295 270 265
Wilkinson 2000 1361 1305 1241 1242

Mignotte 100 0.008 0.004 0.008 0.004
Mignotte 1000 0.79 0.78 0.81 0.66
Mignotte 1500 2.05 2.12 2.06 1.77
Mignotte 2000 4.52 4.37 4.47 3.69

Table 2. Polynomials with random 10-bit coefficients. The average speed-up for
this table is about 39 %

Degree No. of roots Time (s), Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.01 0.01 0.01 0.01
100 4.4 (2/6)

(0.00/0.01) (0.01/0.02) (0.01/0.02) (0.01/0.01)
0.06 0.06 0.05 0.04

200 4.0 (2/8)
(0.02/0.18) (0.03/0.16) (0.03/0.14) (0.03/0.09)

0.14 0.12 0.13 0.09
300 4.8 (4/6)

(0.07/0.24) (0.06/0.22) (0.07/0.19) (0.07/0.13)
0.17 0.18 0.17 0.16

400 4.4 (4/6)
(0.12/0.21) (0.12/0.25) (0.12/0.20) (0.12/0.20)

0.70 0.54 0.35 0.32
500 4.8 (2/8)

(0.21/1.96) (0.20/1.22) (0.21/0.56) (0.20/0.50)
0.96 0.86 0.60 0.53

600 5.2 (4/6)
(0.46/1.41) (0.51/1.25) (0.42/0.84) (0.42/0.72)
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0.95 0.81 0.82 0.69
700 4.0 (2/6)

(0.45/1.68) (0.44/1.33) (0.44/1.25) (0.50/0.91)
1.97 1.68 1.22 1.02

800 5.2 (4/8)
(0.67/4.09) (0.74/3.33) (0.71/2.25) (0.72/1.70)

2.56 2.27 1.44 1.19
900 3.6 (2/6)

(0.68/7.15) (0.72/6.13) (0.71/2.55) (0.67/1.87)
4.07 3.56 2.86 2.06

1000 6.4 (4/8)
(1.63/9.02) (1.54/7.64) (1.57/4.51) (1.38/3.18)

10.6 7.51 5.78 5.24
1500 4.0 (2/6)

(2.73/26.1) (2.33/13.9) (2.35/10.1) (2.43/7.77)
53.8 45.5 23.3 19.1

2000 6.8 (4/12)
(7.54/137) (7.90/118) (7.67/53.9) (7.61/40.2)

Table 3. Polynomials with random 1000-bit coefficients. Theaverage speed-up for this
table is about 48 %

Degree No. of roots Time (s),Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.01 0.01 0.01 0.01
100 4.0 (4/4) (0.00/0.02) (0.00/0.02) (0.00/0.02) (0.00/0.02)

0.06) 0.05 0.04 0.03200 3.6 (2/6)
(0.03/0.12) (0.02/0.10) (0.02/0.06) (0.01/0.06)

0.12 0.11 0.10 0.09300 4.8 (2/8)
(0.04/0.32) (0.04/0.28) (0.04/0.23) (0.04/0.17)

0.29 0.25 0.24 0.16
400 4.4 (2/6) (0.06/0.54) (0.06/0.44) (0.06/0.44) (0.06/0.25)

0.68 0.55 0.45 0.32500 5.2 (4/8)
(0.16/1.20) (0.17/0.95) (0.21/0.92) (0.21/0.48)

0.76 0.54 0.43 0.39600 3.6 (2/4)
(0.19/2.09) (0.18/0.96) (0.19/0.66) (0.18/0.52)

1.26 1.28 0.85 0.68
700 3.6 (0/6) (0.25/2.82) (0.19/2.51) (0.19/1.54) (0.19/1.29)

3.03 2.53 1.08 0.93800 4.4(2/6)
(0.29/5.50) (0.26/4.76) (0.34/1.68) (0.27/1.53)

4.55 3.72 2.23 1.59900 5.6 (4/8)
(1.05/9.32) (1.02/7.53) (1.00/3.09) (0.76/2.68)

2.42 2.06 1.27 1.04
1000 3.6 (2/6) (0.46/4.62) (0.44/3.92) (0.40/2.00) (0.42/1.68)

16.1 9.41 7.17 5.631500 5.6 (4/8)
(2.30/40.2) (1.99/18.2) (2.10/11.9) (1.96/10.8)

23.3 19.4 13.2 10.42000 5.2(4/6)
(4.12/79.8) (4.08/65.4) (4.33/33.4) (4.11/20.2)
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Table 4. Monic polynomials with random 10-bit coefficients.The average speed-up for
this table is about 31 %

Degree No. of roots Time (s),Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.01 0.01 0.01 0.01
100 4.8 (2/8) (0.01/0.02) (0.00/0.02) (0.01/0.02) (0.00/0.02)

0.08 0.06 0.06 0.05200 5.6 (4/6)
(0.03/0.16) (0.03/0.13) (0.03/0.09) (0.03/0.08)

0.12 0.12 0.12 0.10
300 4.8(4/6)

(0.08/0.22) (0.08/0.21) (0.08/0.15) (0.08/0.15)
0.19 0.19 0.18 0.17

400 4.8 (4/6) (0.19/0.29) (0.16/0.26) (0.15/0.26) (0.16/0.20)
0.44 0.42 0.33 0.32500 5.2 (4/10)

(0.18/1.38) (0.18/1.19) (0.18/0.74) (0.19/0.63)
0.99 0.76 0.65 0.49

600 5.6 (4/8)
(0.30/2.04) (0.30/1.21) (0.31/0.94) (0.30/0.72)

1.14 0.99 0.92 0.73
700 5.2 (4/8) (0.43/1.63) (0.42/1.47) (0.46/1.30) (0.49/0.94)

1.45 1.29 1.22 0.90800 5.6(4/8)
(0.66/1.99) (0.64/1.62) (0.65/1.42) (0.69/1.03)

1.01 1.01 1.05 1.09
900 4.4 (2/6)

(0.74/1.18) (0.71/1.31) (0.69/1.36) (0.72/1.33)
3.40 3.02 (1.10/4.28) (1.10/2.70)

1000 5.6 (4/8) (1.18/7.09) (1.03/5.94) (1.10/4.28) (1.10/2.70)
14.8 11.8 8.43 6.801500 6.8 (6/8)

(6.06/27.3) (5.86/17.1) (5.98/12.9) (4.90/9.24)
54.8 47.6 23.9 19.4

2000 7.6(4/14)
(6.12/137) (6.09/120) (6.15/56.0) (6.03/42.2)

Table 5. Monic polynomials with random 1000-bit coefficients. The average
speed-up for this table is about 60 %

Degree No. of roots Time (s), Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.03 0.01 0.01 0.01
100 6.0 (4/8)

(0.02/0.04) (0.01/0.03) (0.00/0.02) (0.00/0.02)
0.09 0.07 0.04 0.04

200 5.2 (4/8)
(0.02/0.22) (0.02/0.19) (0.02/0.11) (0.03/0.06)

0.19 0.14 0.12 0.14
300 5.6(4/8)

(0.06/0.46) (0.07/0.28) (0.06/0.24) (0.07/0.26)
0.41 0.24 0.21 0.15

400 5.2 (4/8)
(0.08/1.00) (0.06/0.54) (0.06/0.44) (0.06/0.28)

0.62 0.39 0.45 0.26
500 5.6 (4/8)

(0.18/1.00) (0.12/0.68) (0.12/0.74) (0.12/0.37)
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1.03 0.52 0.37 0.32
600 4.8 (4/6)

(0.24/3.09) (0.17/1.21) (0.17/0.68) (0.17/0.59)
1.27 1.02 0.86 0.65

700 5.2 (2/10)
(0.20/2.67) (0.21/1.84) (0.19/1.43) (0.19/1.09)

2.92 2.40 1.02 0.79
800 5.6(4/8)

(0.43/5.41) (0.39/4.46) (0.38/2.02) (0.38/1.38)
4.22 2.67 1.84 1.43

900 6.0 (4/8)
(0.84/9.86) (0.80/5.78) (0.88/2.47) (0.74/2.22)

4.23 2.90 2.23 1.44
1000 5.6 (4/6)

(2.21/5.86) (1.34/4.21) (1.34/3.52) (1.15/1.84)
17.1 11.4 8.28 5.44

1500 6.8 (6/8)
(26.06/41.8) (5.25/28.2) (4.86/15.7) (3.30/10.4)

30.6 24.0 16.7 12.6
2000 6.4(6/8)

(4.80/102) (4.59/80.9) (4.60/47.4) (5.02/35.9)

Table 6. Products of termsx20 − r, with random 20-bitr. The average speed-up for
this table is about 48 %

Degree No. of roots Time (s),Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.05 0.05 0.03 0.02
100 10 (0.02/0.09) (0.02/0.09) (0.02/0.04) (0.02/0.02)

0.31 0.27 0.24 0.15
200 20 (0.18/0.39) (0.16/0.38) (0.16/0.32) (0.12/0.20)

1.07 0.89 0.87 0.57300 30
(0.58/1.37) (0.60/1.11) (0.60/1.04) (0.56/0.60)

2.22 1.97 1.94 1.50
400 40 (1.92/2.58) (1.86/2.27) (1.86/2.08) (1.35/1.70)

8.51 5.32 4.55 3.24
500 50 (6.03/11.5) (4.24/7.28) (4.25/5.32) (2.87/3.74)

13.9 9.15 8.96 6.43600 60
(11.7/17.0) (8.28/10.2) (8.43/9.35) (5.96/6.84)

24.6 17.2 16.5 12.1
700 70 (21.7/29.1) (13.7/21.2) (13.3/19.7) (10.6/14.0)

38.0 26.3 24.4 17.2
800 80 (33.7/44.2) (23.6/30.4) (19.4/30.3) (15.1/19.3)

53.7 43.5 37.0 29.5900 90
(40.4/63.8) (37.0/51.5) (28.8/45.8) (23.1/36.6)

89.6 69.1 63.9 50.0
1000 100 (70.9/103) (52.2/78.5) (45.4/76.5) (42.1/58.9)

577 456 429 353
1500 150 (468/696) (378/533) (360/473) (3.11/402)

2228 1907 1808 14642000 200
(1917/2711) (1674/2342) (1614/2279) (1204/1767)
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Table 7. Products of termsx20 − r, with random 1000-bitr. The average speed-up for
this table is about 25 %

Degree No. of roots Time (s),Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.08 0.08 0.11 0.09
100 10 (0.05/0.10) (0.05/0.12) (0.06/0.31) (0.03/0.23)

1.65 1.42 1.28 1.31200 20
(0.96/2.14) (0.97/2.09) (1.02/0.1.45) (1.10/1.50)

7.54 5.20 4.88 4.24
300 30

(5.08/10.8) (4.46/5.65) (3.67/5.49) (3.92/4.69)
15.7 15.7 14.7 12.7

400 40 (10.8/19.7) (13.3/17.5) (12.7/17.3) (11.0/14.1)
42.4 44.5 35.5 35.0500 50

(29.2/64.7) (35.2/48.7) (32.8/40.5) (27.5/49.7)
117 106 103 92.0

600 60
(91.9/154) (82.6/134) (90.0/121) (86.5/97.0)

248 252 240 189
700 70 (208/332) (221/282) (205/264) (168/205)

549 481 474 382800 80
(351/753) (410/590) (412/542) (364/432)

1138 855 834 670
900 90

(971/1271) (721/967) (718/931) (646/723)
1661 1335 1265 1065

1000 100 (1513/1913) (1123/1673) (1066/1440) (947/1146)
9004 8360 8230 61411500 150

(8233/9705) (7281/8999) (7357/9652) (5659/6470)

Fig. 8. Products of termsx − r with random integerr. The average speed-up for
this table is about 35 %

Degree No. of roots Time (s),Avg (Min/Max)
Avg (Min/Max) Cauchy FL+ LM KQ (Hong) LMQ

0.46 0.24 0.34 0.34
10 100 (0.28/0.94) (0.18/0.28) (0.27/0.41) (0.30/0.41)

1.46 1.40 1.41 1.4010 200
(1.24/1.85) (1.28/1.69) (1.26/1.71) (1.20/1.69)

18.1 18.1 21.2 22.1
10 500 (16.5/18.9) (16.6/18.8) (17.5/24.4) (18.7/24.2)

0.07 0.02 0.03 0.03
1000 20 (0.04/0.14) (0.02/0.03) (0.02/0.04) (0.02/0.04)

3.69 0.81 0.88 0.811000 50
(2.38/6.26) (0.60/1.28) (0.52/1.28) (0.52/1.11)

47.8 13.8 17.6 15.8
1000 100 (37.6/56.9) (10.3/19.2) (12.4/25.9) (11.3/21.3)
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4 Conclusions

Notice the following general remarks:

• the only inequality between bounds that is always satisfied is that theKQ bound is
always greater than or equal toLMQ,

• for an individual polynomial a better bound may lead to worseperformance inVAS-
CF,

• timing results are subject to measurement error, which especially affects small tim-
ings.

Taking these observations into consideration, one could foresee that usingLMQ
should give the best performance ofVAS-CF, except for individual data points for which
this is not true.

Indeed, from the tables in Section 3, it is obvious that theVAS-CFimplementation
using ourLMQ bound is fastest for all classes of polynomials tested, except for the case
of very many very large roots, Table 8. For all cases, the average overall improvement in
computation time is about40 %. In the case of very many very large rootsVAS-CFusing
LMQ is a very close second toVAS-CFusing our linear complexity boundmin(FL, LM).

Moreover, as was shown elsewhere, [17], using just ourmin(FL, LM) bound the
VAS-CFalgorithm isalwaysfaster than that by Vincent-Collins-Akritas8, [19], or any of
its variants, [20]. Therefore, our current results widen the gap between these two methods.
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