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Abstract. Ecological systems have all the properties to produce chaotic dynamics. To
predict the chaotic behavior in an ecological system and itspossible control mechanism
is interesting. Aziz-Alaoui [1] considered a tri-trophic food-chain model with modified
Leslie-Gower type growth rate for top-predator populationand established the chaotic
dynamics exhibited by the model system for a certain choice of parameter values. We
have modified the said model by incorporating density dependent death rate for predator
population. Our mathematical findings reveal the fact that there are two coexisting
equilibrium points one of which is a source and the other one is a sink. The positive
equilibrium point which is sink is actually globally asymptotically stable under certain
parametric conditions. Numerical experiment analysis shows that the model system are
capable to produce chaotic dynamics when the rate of intra specific completion is very
low and chaotic dynamics disappears for a certain value of the rate of intra specific
completion for predator species. Our results suggest that the consideration of density
dependent death rate for predator species have the ability to control the chaotic dynamics.

Keywords: prey-predator, intra specific competition, stability, global stability, chaos,
control.

1 Introduction

The dynamical problems associated with mathematical modeling of various ecological
systems may appear to be simple at first sight but the detailedand systematic analysis
often leads us to very interesting and fascinating dynamics. Specially with three or more
dimensional ecological problems exposed within open environment have the potential to

∗The research work is supported by Council of Scientific and Industrial Research (CSIR), Human Resource
Development Group, New Delhi.

305



M. Bandyopadhyay, S. Chatterjee, S. Chakraborty, J. Chattopadhyay

exhibit very complex dynamics compared to those observed intwo dimensional models.
In the natural world, dynamical behavior exhibited by various ecological systems are
very complicated. For instance, the numbers of wild animalsand plants are continuously
variable quantities and these variations are quite irregular in period and also in amplitude
[2]. Prince et al. [3] remarked that the study of community behaviour with the help of
mathematical models must be based on at least three trophic levels and hence more focus
should be made to study the complex behaviour exhibited by the deterministic models
consist of three and more trophic levels. Present day scientists, not all of them, believe
that “ecology is one of the basic discipline of chaos” [4]. Robert May [5] established
the fact that a simple model for single species have the ability to produce chaotic dyna-
mics, and theoretically demonstrated that the apparent stochastic oscillation of population
could be explained by the highly complex and chaotic behavior arising from the simple
deterministic mathematical models involving some nonlinear terms. A similar chaotic
behavior is observed by Hastings and Powell [6] for a simple three dimensional food
chain model within deterministic environment. After thesepioneering works quite a good
number of articles have appeared which demonstrate the chaotic dynamics observed in
a wide range of three level food-chain models, e.g. see [2, 4,7–15]. Chattopadhyay
and Sarkar [16] observed that increasing the strength of toxic chemicals released by
Toxin Producing Phytoplankton reduce the prevalence of chaos, in a tri-trophic food
chain model. Recently Chatterjee et al. [17] have shown thatchaos may also occur in
eco-epidemiological systems. Various mathematical techniques, like local bifurcation
analysis, global bifurcation analysis, extensive numerical simulations, Poincare-map etc.
have been used to detect chaotic dynamics in multi-dimensional deterministic models
of ecological system, but there is no unique mathematical tool to detect the parametric
domain for which the model under consideration will exhibitchaotic oscillations and also
what type of non-linear coupling terms are required to be present within the mathematical
models which have potential to exhibit chaotic dynamics.

The control of chaotic dynamics with various ecological factors, namely, migration,
predation, refuge, omnivory, habitat-heterogeneity is the most challenging task in such
studies and thus it receives a good deal of attention from various scientists [18]. To the
best of our knowledge, there are few literatures which have considered the inhibitory
effect of “intra specific density dependence”, but it has theability to regulate the popu-
lation dynamics significantly [19]. Based upon this idea we are intended to revisit the
dynamical model for prey-specialist predator-generalistpredator model system studied
by Aziz-Alaoui [1] incorporating intra-specific density dependent death rate for specialist
predator and show that the intra-specific density dependence has ability to control the
chaotic oscillation observed in the original model.

The main objective of the paper is to extend the prey-predator-top predator model
by incorporating density dependent death rate of specialist predator. We have analyzed
the local asymptotic stability behaviour of the coexistingequilibrium points. Then, we
have obtained the global stability conditions for the system. Finally, extensive numerical
simulations is performed to make a further in depth analysisof the system. Finally,
extensive numerical simulations are carried out to understand clearly the dynamics of
the model system over a long time interval.
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2 Basic mathematical model

In this paper we consider a three dimensional prey-predatormodel which consists of prey,
specialist predator and generalist predator within deterministic environment. We assume
X ≡ X(t) is the population density of prey,Y ≡ Y (t) is the population density of
specialist predator andZ ≡ Z(t) is that of generalist predator at any instant of timet.
Here we consider the logistic law of growth for prey population, the interaction between
prey and predator follows the Volterra scheme, i.e., specialist predator population die out
exponentially in the presence of prey population and consumption of prey by specialist
predator follows Holling type-II functional response. Theinteraction between specialist
predator and generalist predator will follow the Leslie-Gower scheme [20–22], where
the loss in generalist predator population is proportionalto the reciprocal of per capita
availability of its most favourite food and the growth of generalist predator depends upon
the rate of mating between their male and female individuals. To study the effect of
intra-specific density dependent death of specialist predator on the dynamical behaviour
of prey-specialist predator-generalist predator model weconsider the following system of
nonlinear ordinary differential equations

dX

dt
= a0X − b0X

2 −
v0XY

d0 + X
,

dY

dt
=

v1XY

d0 + X
− a1Y − dY 2 −

v2Y Z

d1 + Y
,

dZ

dt
= c3Z

2 −
v3Z

2

d1 + Y

(1)

with initial conditionsX(0) ≡ X0 ≥ 0, Y (0) ≡ Y0 ≥ 0 and Z(0) ≡ Z0 ≥ 0. Before
going to discuss the ecological significance of the parameters involved with the model
system we like to remark that the system resulting from system (1) withd = 0 is studied
extensively by [1]. The parameters involved with the model (1) are positive and have
ecological significance as follows:a0 is the intrinsic birth rate of prey andb0 stands for
the intra-specific competition rate for them;v0 is the maximum value of the per capita
reduction rate of prey due to predation;d0 measures the extent to which environment
provides protection to prey population;v1 is the growth rate of predator population;a1 is
the intrinsic death rate of predator population;d stands for the intra-specific competition
rate of predator;v2 is the removal rate of predator by super predators andd1 is the half-
saturation constant;c3 is the growth rate of generalist predator due to mating between
male and female individual (the number males and female individuals are assumed to be
same);d2 represents the residual loss of super predator population due to severe scarcity
of its favorite food (in other wordsd2 measures the extent to which environment provides
protection to generalist predator population in absence oftheir favourite food source).
Prey population of sizeX is the only source of food for specialist predator and specialist
predator serve as a favourite food source for generalist predator. At this position we like
to remark that first two equations of system (1) are quite standard and appeared in various
well-known literature. In contrast the third equation is not a standard one and hence
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before proceeding further we are intended to give some ecological justification behind the
growth equation for generalist predator.

2.1 Ecological interpretation behind the third equation of system (1)

If we write the growth equation of generalist predator by following general Leslie-Gower
scheme then it takes the following form

dZ

dt
= αZ

(
1 −

Z

βY

)
. (2)

It is based upon the idea that reduction in a generalist predator population has a reciprocal
relationship with per capita availability of its preferredfood,α is its intrinsic growth rate
and its carrying capacity set by the environmental resources and is proportional to the
abundance of its favourite food whereβ is the conversion factor of specialist predator into
generalist predators. Generalist predator has opportunity to switch over from its favourite
food to other available food sources when its favourite foodsource is not available in
abundance. The consideration can be into account by adding apositive constant to the
denominator of (2) as follows

dZ

dt
= αZ

(
1 −

Z

βY + γ

)
(3)

and γ can be interpreted as the measure of carrying capacity for generalist predator
population in absence ofY . Above equation can be rewritten as follows

dZ

dt
= αZ −

(
α

β

)
Z2

Y + γ
β

≡ c3Z −
v3Z

2

d1 + Y
. (4)

Finally, we get the third equation of system (1)

dZ

dt
= c3Z

2 −
v3Z

2

d1 + Y
, (5)

wherec3Z
2 indicates the fact that mating frequency is directly proportional to the number

of males and number females present at any instant of timet, andv3 = α/β, d1 = γ/β
[14,23].

The model can be simplified if it is written in dimensionless variables

X =
a0

b0
x, Y =

a2
0

b0v0
y, Z =

a3
0

b0v0v2
z, T =

t

a0
,

α =
b0d0

a0
, β1 =

a1

a0
, γ1 =

v1

a0
,

α1 =
d1v0b0

a2
0

, β2 =
c3a

2
0

b0v0v2
, γ2 =

v3

v2
, δ =

da0

b0v0
.
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Then, system (1) becomes

dx

dτ
= x − x2 −

xy

α + x
,

dy

dτ
=

γ1xy

α + x
− β1y − δy2 −

yz

α1 + y
,

dz

dτ
= β2z

2 −
γ2z

2

α1 + y

(6)

with x(0) ≡ x0 ≥ 0, y(0) ≡ y0 ≥ 0 andz(0) ≡ z0 ≥ 0.

2.2 Boundedness of the solutions

Lemma 1. The positive coneInt(R3
+) is invariant for system(6).

The proof is very simple and hence omitted.
To proof the boundedness of the solution of the system (6), weshall first recall the

following comparison lemma given in [1].

Lemma 2. Let φ be an absolutely continuous function satisfying the differential inequa-
lity:

dφ

dt
+ k1φ(t) ≤ k2, t ≥ 0,

where(k1, k2) ∈ R
2, k1 6= 0. Then, for allt ≥ T̃ ≥ 0,

φ(t) ≤
k2

k1
−

(
k2

k1
− φ

(
T̃

))
e−k1(t− eT ).

Theorem 1. Let us assume

γ1 +
γ1

4β1
+ α1 <

γ2

β2
, (7)

and letA be the set defined by:

A =

{
(x, y, z) ∈ R3

+ : 0 ≤ x ≤ 1, 0 ≤ x +
y

γ1
≤ 1 +

1

4β1
,

0 ≤ x +
y

γ1
+ α′z ≤ 1 +

1

4β1
+

M

β1

}
,

where

α′ =
1

β2
1

(
γ1 + γ1

4β1
+ α1

) and M =
1

4(γ2 −
(
γ1 + γ1

4β1
+ α1

)
β2)

.

(i) A is positively invariant;

309



M. Bandyopadhyay, S. Chatterjee, S. Chakraborty, J. Chattopadhyay

(ii) all non-negative solutions (i.e. solutions initiating atR3
+) of (6) are uniformly

bounded forward in time, (thus they exists for all positive times), they eventually
enter the attracting setA;

(iii) system(6) is dissipative.

Proof. (i) Let (x(0), y(0), z(0)) ∈ A, obviously, from Lemma 1,(x(t), y(t), z(t)) remain
non-negative; we will show that(x(t), y(t), z(t)) ∈ A for all t ≥ 0, we then have to prove
that for allt ≥ 0,

• Step (i-a):x ≤ 1;

• Step (i-b): x(t) +
1

γ1
y(t) ≤ 1 +

1

4β1
;

• Step (i-c): x(t) +
1

γ1
y(t) + α′z(t) ≤ 1 +

1

4β1
+

M

β1
.

• Step (i-a). We first prove thatx(t) ≤ 1 for all t ≥ 0. Sincex > 0, y > 0 and
z > 0 in Int(R3

+), and solutionφ(t) = (x(t), y(t), z(t)) of (6), which starts inInt(R3
+),

satisfies the differential equationdx
dt

≤ x(1 − x), this is obvious by considering the first
equation of (6), moreover, due to the Lemma 1, these solutionremain non-negative. Thus,
x(t) may be compared with solutions of

ds(t)

dt
= s(t)

(
1 − s(t)

)
, s(0) = x(0) > 0,

to getx(t) ≤ 1
1+ce−t for t ≥ 0 (wherec = 1/x0 − 1). It follows that any non-negative

solutionφ(t) of (6) satisfiesx(t) ≤ 1 for all t ≥ 0.

• Step (i-b). We now prove thatx(t) + 1
γ1

y(t) ≤ 1 + 1
4β1

for all t ≥ 0.

We define functionσ(t) = x(t) + 1
γ1

y(t), the time derivative of which is

dσ

dt
=

dx

dt
+

1

γ1

dy

dt
= x(1 − x) −

β1

γ1
y −

δ

γ1
y2 −

1

γ1

yz

α1 + y
.

Since all parameters are positive, and solutions initiating in (R3
+) remain in the non-

negative cone then,

dσ

dt
≤ x(1 − x) −

β1

γ1
y

holds for allx, y, andz non-negative. Thus,

dσ

dt
≤ x(1 − x) + β1x − β1

(
x +

y

γ1

)
.

So

dσ(t)

dt
+ β1σ(t) ≤ β1 +

1

4
,
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since inA, 0 ≤ x ≤ 1 andmax[0,1](x(1 − x)) = 1
4 . Using Lemma 2, we get, for all

t ≥ T̃ ≥ 0,

σ(t) ≤ 1 +
1

4β1
−

(
1 +

1

4β1
− σ(T̃ )

)
e−β1

(
t− eT

)
, (8)

then, if T̃ = 0,

σ(t) ≤ 1 +
1

4β1
−

[
1 +

1

4β1
−

(
x(0) +

y(0)

γ1

)]
e−β1(t− eT ).

Hence, since(x(0), y(0), z(0)) ∈ A, x(t) + 1
γ1

y(t) ≤ 1 + 1
4β1

for all t ≥ 0.

• Step (i-c). We finally prove, providedγ1 + γ1

4β1
+ α1 ≤ γ2

β2
, that

0 ≤ x +
1

γ1
y + α′z ≤ 1 +

1

4β1
+

M

β1

holds, if

α′ =
1

β2
1

(
γ1 + γ1

4β1
+ α1

) and M =
1

4
(
γ2 − (γ1 + γ1

4β1
+ α1)β2

) .

The proof is similar as done above; we define the following function:

η(t) = x(t) +
1

γ1
y(t) + α′z(t),

the time derivative of which is

dη

dt
=

dx

dt
+

1

γ1

dy

dt
+ α′

dz

dt

= x(1 − x) −
β1

γ1
y −

δ

γ1
y2 −

1

γ1

yz

α1 + y
+ α′

(
β2 −

γ2

α1 + y

)
z2.

Similarly to the previous Step (i-b), since every solution initiating in R3
+ remains non-

negative, all parameters are positive,0 ≤ x ≤ 1 andmax[0,1](x(1 − x)) = 1
4 , we get,

dη(t)

dt
≤

1

4
+ β1 − β1η(t) + α′β1z + α′

(
β2 −

γ2

y + α1

)
z2,

thus, as in A,y ≤ γ1 + γ1

4β1
, one gets

dη(t)

dt
≤

1

4
+ β1 − β1η(t) + α′β1z + α′

(
β2 −

γ2

γ1 + γ1

4β1
+ α1

)
z2,

hence

dη(t)

dt
+ β1η(t) ≤

1

4
+ β1 + M, (9)
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where

M = max
z∈R+

(
α′β1z + α′

(
β2 −

γ2

γ1 + γ1

4β1
+ α1

)
z2

)
.

The maximum M exists since, from the formula (7), one easily gets

β2 −
γ2

γ1 + γ1

4β1
+ α1

< 0,

and simple algebraic computations show that with

α′ =
1

β2
1

(
γ1 + γ1

4β1
+ α1

) , M =
1

4
(
γ2 −

(
γ1 + γ1

4β1
+ α1

)
β2

) .

Therefore, from equation (9), and using Lemma 2, we get for all 0 ≥ x ≥ 1,

η(t) ≤ 1 +
1

4β1
+

M

β1
−

(
1 +

1

4β1
+

M

β1
− η(T̃ )

)
e−β1(t−eT ) (10)

then, if T̃ = 0,

η(t) ≤ 1 +
1

4β1
+

M

β1
−

(
1 +

1

4β1
+

M

β1
− η(0)

)
e−β1t.

Thus since(x(0), y(0), z(0)) ∈ A,

x +
1

γ1
y + α′z ≤ 1 +

1

4β1
+

M

β1
.

Consequently, we get the result

x +
1

γ1
y +

z

β2
1

(
γ1 + γ1

4β1
+ α1

) ≤ 1 +
1

4β1
+

1

β1

1

4
(
γ2 −

(
γ1 + γ1

4β1
+ α1

)
β2

)

for all t ≥ 0.

(ii) We must prove that, for(x(0), y(0), z(0)) ∈ R3
+, (x(t), y(t), z(t)) → A as

t → ∞.
We will follow the steps:

• Step (ii-a): lim sup
t→∞

x(t) ≤ 1;

• Step (ii-b): lim sup
t→∞

(x(t) +
y(t)

γ1
) ≤ 1 +

1

4β1
;

• Step (ii-c): lim sup
t→∞

(x(t) +
y(t)

γ1
+ α′z(t)) ≤ 1 +

1

4β1
+

M

β1
.
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• Step (ii-a). This results follows directly from Step (i-a) and Lemma 2, since
solutions of the initial value problemdx

dt
= x(1−x), x(0) ≥ 0, satisfy lim

t→∞

supx(t) ≤ 1.

• Step (ii-b). Letǫ ≥ 0 be given. Then there exists aT1 > 0 such thatx(t) ≤ 1 + ǫ
2

for all t ≥ T1. From (8) withT̃ = T1, see Step (i-b), we get, for allt ≥ T1 ≥ 0,

σ(t) = x(t) +
y(t)

γ1
≤ 1 +

1

4β1
−

[
1 +

1

4β1
−

(
x(T1) +

y(T1)

γ1

)]
e−β1(t−T1)

≤ 1 +
1

4β1
−

[(
1 +

1

4β1

)
eβ1T1 − bigg(x(T1) +

y(T1)

γ1

)
eβ1T1

]
e−β1t

≤ 1 +
1

4β1
−

[(
1 +

1

4β1

)
−

(
x(T1) +

y(T1)

γ1

)
eβ1T1

]
e−β1t.

Then

x(t)+
y(t)

γ1
≤

(
1+

1

4β1
+

ǫ

2

)
−

[(
1+

1

4β1
+

ǫ

2

)
−

(
x(T1)+

y(T1)

γ1

)
eβ1T1

]
e−β1t.

for all t ≥ T1. Let T2 ≥ T1 be such that
∣∣∣∣
(

1 +
1

4β1
+

ǫ

2

)
−

(
x(T1) +

y(T1)

γ1

)
eβ1T1

∣∣∣∣e
−β1t ≤

ǫ

2
for all t ≥ T2.

Then

x(t) +
y(t)

γ1
≤ 1 +

1

4β1
+ ǫ for all t ≥ T2.

Hence

lim sup
t→∞

(
x(t) +

y(t)

γ1

)
≤ 1 +

1

4β1
.

• Step (ii-c). This proof is similar to the previous one. Letǫ ≥ 0 be given. Then there
exists aT3 ≥ 0 such thatx(t) + y(t)

γ1
≤ 1 + 1

4β1
+ ǫ

2 for all t ≥ T3.

From (10) withT̃ = T3, see Step (i-c), we get, for allt ≥ T3 ≥ 0,

η(t) = x(t) +
1

γ1
y(t) + α′z(t)

≤ 1 +
1

4β1
+

M

β1
−

[
1 +

1

4β1
+

M

β1
− η(T3)

]
e−β1(t−T3)

≤ 1 +
1

4β1
+

M

β1
−

[(
1 +

1

4β1
+

M

β1

)
eβ1T3 − η(T3)e

β1T3

]
e−β1t

≤ 1 +
1

4β1
+

M

β1
−

[(
1 +

1

4β1
+

M

β1

)
− η(T3)e

β1T3

]
e−β1t.
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Then

η(t) ≤ 1 +
1

4β1
+

M

β1
+

ǫ

2
−

[
1 +

1

4β1
+

M

β1
+

ǫ

2
− η(T3)e

β1T3

]
e−β1t.

Let T4 ≥ T3 be such that
∣∣∣∣1 +

1

4β1
+

M

β1
+

ǫ

2
− η(T3)e

β1T3

∣∣∣∣e
−β1t ≤

ǫ

2
for all t ≥ T4.

Then

η(t) ≤ 1 +
1

4β1
+

M

β1
+ ǫ for all t ≥ T4.

Hence

lim sup
t→∞

(
x(t) +

y(t)

γ1
+ α′z(t)

)
≤ 1 +

1

4β1
+

M

β1
.

(iii) System (6) obviously dissipative inR3
+.

3 Existence and stability of equilibria

The system (6) possesses the following biological feasibleequilibria.
The trivial equilibrium pointE0(0, 0, 0), the axial equilibrium pointE1(1, 0, 0) and

the planar equilibrium pointE2(x2, y2, 0), wherey2 = (1 − x2)(α + x2) andx2 is given
by the roots of following cubic equation:

δx3 − δ(1 − 2α)x2 +
(
δ − β + δα(α − 2)

)
x − α(β + αδ) = 0.

Remark 1. The equilibriaE0 andE1 exist for any parametric value, while an uniqueE2

exists ifx2 < 1 andδ(1 + α2) > β + 2δα.

We now seek the regions of parameter space for which the modelsystem (2) admits
feasible interior equilibrium (s). Any feasible equilibrium must correspond to a positive
rootx∗ of the quadratic equation

g(x) = 0,

where

g(x) = x2 + Ax + B (11)

andA, B are given by

(i) A = α − 1,

(ii) B = y∗ − α
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for which, additionallyy∗ = γ2−α1β2

β2
, andz∗ = (α1+y∗)[γ1x∗

−(β1+δy∗)(α+x∗)]
(α+x∗) . Now, we

describe the range of possibilities for which an interior positive equilibrium (equilibria)
exists.

If γ2 > α1β2, theny∗ > 0.

Case 1. If A > 0 andB > 0, then by Descartes’ rule of signs there is no positive root of
the equationg(x) = 0 and hence the model system has no interior equilibrium point.

Case 2. If B < 0, then by Descartes’ rule of signs there exists exactly one positive root
of equation (11). Also,y∗ > 0. Now, if this positive root is denoted byx∗ and satisfy the
restrictionx∗ > α(β1+δy∗)

γ1−β1−δy∗
, thenz∗ > 0. Hence ifB < 0, and the positive root of the

equation (11) is greater thanα(β1+δy∗)
γ1−β1−δy∗

, then there exists a unique interior equilibrium
pointE∗(x∗, y∗, z∗).

Case 3. If A < 0 andB > 0,then by Descartes’ rule of signs, equation (11) has two
positive roots. Forz∗ > 0 these positive roots must be greater thanα(β1+δy∗)

γ1−β1−δy∗
. Also

y∗ > 0. Now, if one positive root is greater thanα(β1+δy∗)
γ1−β1−δy∗

(assumingγ1 > β1 + δy∗),
then there exists one interior equilibrium point, and if both positive roots are greater than
α(β1+δy∗)
γ1−β1−δy∗

, then there exists two interior equilibrium points. But if no root is greater than
α(β1+δy∗)
γ1−β1−δy∗

, then no interior stationary solution exists.

3.1 Local stability of the interior equilibrium point

The variational matrix for the system (6) atE∗ is given by

J∗ =




1 − 2x − yα
(α+x)2 − x

(α+x) 0
γ1αy

(α+x)2
γ1x

(α+x) − (β1 + 2δy) − α1z
(α1+y)2 − y

(α1+y)

0 γ2z2

(α1+y)2 0


 .

Here,

traceJ∗ =
x∗y∗

(α + x∗)2
− x∗ +

y∗z∗

(α1 + y∗)2
− δy∗.

Now traceJ∗ < 0 if

x∗y∗

(α + x∗)2
+

y∗z∗

(α1 + y∗)2
< x∗ + δy∗.

Also,

det J∗ = −
γ2(2α + 1)y∗z∗

(α + x∗)2(α1 + y∗)3
[
x∗2 − px∗ + qB

]
,

where

p =
2(y∗ − α2)

2α + 1
, q =

α

2α + 1
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and

D(J∗) = traceJ∗ × M(J∗) − det J∗,

whereM(J∗) is the sum of the second order principle minors ofJ∗.
Therefore

D(J∗) = −
γ2y

∗z∗2

(α1 + y∗2)

[
1

(α1 + y∗)

(
β1 + 2δy∗ +

α1z
∗

(α1 + y∗)2
−

γ1x
∗

(α + x)

)

+
αγ1

(α + x∗)2

(
β1 + 2x∗ + 2δy∗ +

α1z
∗

(α1 + y∗)2

+
αy∗

(α + x∗)2
− 1 −

γ1x
∗

(α + x∗)

)]
.

(12)

To examine the local stability of the interior equilibrium (equilibria), suppose that
there is one positive equilibriumE∗(x∗, y∗, z∗) or two positive equilibriaE∗

1 (x∗

1, y
∗

1 , z∗1)
andE∗

2 (x∗

2, y
∗

2 , z∗2). Then(x∗

i , y
∗

i , z∗i ) satisfy

g(x∗

i ) = x2
i + Axi + B = 0

and

y∗

i =
γ2 − α1β2

β2
, z∗i =

(α1 + y∗

i )[γ1x
∗

i − (β1 + δy∗

i )(α + x∗

i )]

(α + x∗

i )
, i = 1, 2.

Let us define the function,h(x∗

i ) = x∗

i
2 − px∗

i + qB, so that the signs ofh(x∗

i ) and
detJ∗ are opposite. It is useful to compare the two following g and h. Suppose these two
function coincide atx = x̄. Then,

g(x̄) = h(x̄),

or, equivalently,

x̄ =
B(q − 1)

A + p
.

At x̄, g(x̄) = B2(q−1)2

(A+p)2 + B(Aq+p)
(A+p) .

ForA < 0 andB > 0, p and q are positive and henceg(x̄) > 0.

Case 1. If B < 0, recall that there exist exactly one interior equilibrium point E∗. It can
easily be verified that forB < 0,

(i) traceJ∗ < 0,

(ii) D(J∗) = traceJ∗ × M(J∗) − det J∗ < 0.

Now we shall verify the sign ofdetJ∗. For that, letB′ = −B so thatB′ > 0. Here
two cases may arise:
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a) whenp > 0, hereE∗ is stable ifx∗2 > px∗ + qB′, and
b) whenp < 0, or letp′ = −p > 0. HereE∗ is stable ifx∗2 + p′x∗ > qB′.

Case 2. If A < 0 andB > 0, then here also it can easily be verified that

(i) traceJ∗ < 0,

(ii) D(J∗) = traceJ∗ × M(J∗) − det J∗ < 0.

For the above conditions we observe that equation (11), has two positive roots. De-
note these roots byx∗

1 and x∗

2 with 0 < x∗

1 < x∗

2 (say), and corresponding
0 < z∗1 < z∗2 . Assume that there exists at least one equilibrium point, sothatz∗2 > 0. now
atx = x̄, g(x̄) > 0. Hence0 < x∗

1 < x̄ < x∗

2 and therefore

detJ∗(x∗

1, y
∗

1 , z
∗

1) = −
γ2(2α + 1)y∗

1z∗1
(α + x∗

1)
2(α1 + y∗

1)
3
h(x∗

1)

> −
γ2(2α + 1)y∗

1z∗1
(α + x∗

1)
2(α1 + y∗

1)
3
g(x∗

1) = 0.

HenceE∗

1 (x∗

1, y
∗

1 , z
∗

1) is a saddle. If we have two interior equilibria, then0 < z∗1 < z∗2
and

detJ∗(x∗

2, y
∗

2 , z
∗

2) = −
γ2(2α + 1)y∗

2z
∗

2

(α + x∗

2)
2(α1 + y∗

2)3
h(x∗

2)

< −
γ2(2α + 1)y∗

2z
∗

2

(α + x∗

2)
2(α1 + y∗

2)3
g(x∗

2) = 0.

In this case,E∗

2 (x∗

2, y
∗

2 , z
∗

2) is a sink.
We are now in the position to write the following theorem.

Theorem 2. If there is exactly one interior stationary solutionE∗, then it is a sink

providedx∗2 − px∗ + qB > 0, wherep = 2(y∗
−α2)

2α+1 , q = α
2α+1 and B = y∗ − α.

If there are two interior stationary solutions, then one is saddle and the other is sink.

Next we shall find the conditions for the global stability of the positive equilibrium
point.

3.2 Global stability

In this section we shall prove the global stability of the coexisting equilibrium pointE∗.
We prove the global stability result with help of a suitable Lyapunov function. Global sta-
bility of coexisting equilibrium ensures that all trajectories ultimately approaches towards
the equilibrium point starting from any point within the positive octant.

Theorem 3. Suppose the following conditions holdy∗ < α(α+x∗), z∗ < δα1(α1 +y∗),
andγ2 > β2(α1 + M ′γ1)(α + y∗), then the coexisting equilibrium pointE∗ is a global
attractor.
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Proof. Let us consider the following Lyapunov function,

V (t) =

[
x − x∗ − x∗ ln

x

x∗

]
+ A2

[
y − y∗ − y∗ ln

y

y∗

]
+ A3

[
z − z∗ − z∗ ln

z

z∗

]
,

whereA1 andA2 are two positive constants to be defined later. Taking the time derivative
of V (t) along the solution of (6), we get

V̇ = (x − x∗)

[
1 − x −

y

α + x

]
+A2(y − y∗)

[
γ1x

α + x
− β1 − δy −

z

α1 + y

]

+A3(z − z∗)

[
β2z −

γ2z

α1 + y

]
.

(13)

Using the following results

1 = x∗ +
y∗

α + x∗
,

γ1x
∗

α + x∗
= β1 + δy∗ +

z∗

α1 + y∗
, β2 =

γ2

α2 + y∗
,

the time derivative ofV becomes

V̇ = (x − x∗)

[
− (x − x∗) +

y∗

α + x∗
−

y

α + x

]

+ A2(y − y∗)

[
γ1x

α + x
−

γ1x
∗

α + x∗
− β1 − δ(y − y∗) +

z∗

α1 + y∗
−

z

α1 + y

]

+ A3(z − z∗)

[
β2(z − z∗) +

γ2z
∗

α1 + y∗
−

γ2z

α1 + y

]
.

(14)

After some algebraic calculations, we obtain,

V̇ = (x − x∗)2 + y∗
(x − x∗)2

(α + x∗)(α + x)
− A2δ(y − y∗)2

+ A2z
∗

(y − y∗)2

(α1 + y)(α1 + y∗)
+ A3β2(z − z∗)2

− A3α1γ2
(z − z∗)2

(α1 + y)(α1 + y∗)
− A3γ2y

∗
(z − z∗)2

(α1 + y)(α1 + y∗)

+
(x − x∗)(y − y∗)

(α + x)(α + x∗)

[
− α − x∗ + A2αγ1

]

+
(y − y∗)(z − z∗)

(α1 + y)(α1 + y∗)

[
− A2α1 − A2y

∗ + A3γ2z
∗

]
.

(15)

Assuming,A2 = α+x∗

αγ1
andA3 = α+y∗

γ2z∗
, we have

V̇ =

[
− 1+

y∗

(α + x)(α + x∗)

]
(x−x∗)2+A2

[
− δ+

z∗

(α1 + y)(α + y∗)

]
(y−y∗)2

+ A3

[
β2 −

α1γ2 + γ2y
∗

(α1 + y)(α + y∗)

]
(z − z∗)2.
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From Theorem 1, we observe thatlim supt→∞
(x(t)+ y(t)

γ1
) ≤ M ′, where,M ′ = 1+ 1

4β1
.

So, we can say thatx(t) < M ′ andy(t) < M ′γ1 for all time t. So, 1
α
≥ 1

α+x
≥ 1

α+M ′
,

and 1
α1

≥ 1
α1+y

≥ 1
α1+M ′γ1

. Substituting, we get

V̇ ≤

[
− 1 +

y∗

α(α + x∗)

]
(x − x∗)2 + A2

[
− δ +

z∗

α1(α + y∗)

]
(y − y∗)2

+ A3

[
β2 −

γ2

(α1 + M ′γ1)(α + y∗)

]
(z − z∗)2 < 0,

if y∗ < α(α + x∗), z∗ < δα1(α1 + y∗), andγ2 > β2(α1 + M ′γ1)(α + y∗).
Therefore by LaSalle’s theorem [24],E∗ is globally asymptotically stable in the

xyz-space.
Hence the theorem.

4 Numerical simulations

We began our numerical simulation with the set of parameter values taken from [1]
exceptd. We integrate the model system (1) numerically using the MATLAB code ode45
available in the MATLAB 6.5.

We have performed the numerical simulations for different values of the parameter
a0 with d = 0 and keeping the other parameters fixed as given in Table 1. Results of
numerical simulations show that with increase in the value of a0, the trajectory approaches
towards a strange attractor through period doubling route,starting from a periodic limit
cycle. Fora0 ≥ 2.95 the system exhibit chaotic oscillation and trajectory approaches the
chaotic attractor. Projection of the phase-space trajectory on XY -plane is presented in
Fig. 1 for four different values ofa0 as mentioned in the labels.

Table 1. Hypothetical parameter values taken from [1]

Parameters b0 v0 d0 v1 a1 d1 d2 v2 v3 c3

Default values 0.06 1 10 2 1 10 20 0.405 1 0.038

Now we shall prove that the strange attractor shown in Fig. 1 is actually chaotic
in nature. For this we will first calculate all the Lyapunov exponents associated with
the strange attractor shown in Fig. 1(d). The spectrum of Lyapunov exponent is shown
in Fig. 2. One can see that the largest Lyapunov exponent thuscalculated is positive,
showing that the strange attractor is chaotic in nature. In order to show the sensitive
dependence of the trajectories on the initial conditions and to establish the divergence
of two trajectories starting from two nearby points in the phase-space one can take help
of the functionS(t) defined below. LetX(t) ≡ (X1(t), X2(t), X3(t)) and Y (t) ≡
(Y1(t), Y2(t), Y3(t)) are two solution trajectories of the model system (1) starting from
two nearby point sayx0 andy0 such that||x0 − y0|| is very small then S(t) stands for

S(t) =

√[(
X1(t) − Y1(t))2 + (X2(t) − Y2(t))2 + (X3(t) − Y3(t)

)2]
.
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For detailed discussion on this functionS(t), please see [25]. The Plot ofS(t)
against the timet is given in Fig. 3. It clearly shows that the difference between the two
trajectories starting with two different initial point varies randomly with time. Thus we
may conclude that the trajectory shown in Fig. 1(d) is chaotic in nature. The Fig. 1 is
obtained by keepingd = 0. Next, we shall observe the role of the parameterd, on the
model system (1), which we have introduced in this article.
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Fig. 1. Phase portrait in theXY -plane, for the system (1), showing the transition to
chaos, via period-doubling from a limit cycle to strange attractors, withd = 0, the set
of other parameter values are given in Table (1).a0 is varied as given under each figure.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

0

5
Dynamics of Lyapunov exponents

Time

Ly
ap

un
ov

 e
xp

on
en

ts

0.3712
−0.004

−19.39

Fig. 2. The spectrum of Lyapunov exponent calculated for thestrange attractor shown
in Fig. 1(d).
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To see the effect of intra-specific density dependence of specialist predator on the
dynamics of the model system (1), we again integrate model system (1) numerically for
different values ofd keepinga0 fixed at 3 and all other parameter values as mentioned in
Table 1. We observe that that the chaotic nature of solution trajectory disappears with the
increasing magnitude of intra-specific density dependent death rate of specialist predator
(see Fig. 4). The chaos in the system can also be controled by decreasing the value of
growth rate of the generalist predatorc3 (see Fig. 5).
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Fig. 3. separation between two nearby trajectories with advancement of time.
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Fig. 4. Phase portrait in theXY -plane, for the system (1), showing the transition from
chaos to stable period-1 limit cycle, via period-halving, with c3 = 0.038 anda0 = 3.0,
the other parameter values are given in Table 1.d is varied as given under each figure.
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Fig. 5. Phase portrait in theXY -plane, for the system (1), showing the transition from
chaos to stable period-1 limit cycle, via period-halving, with c3 = 0.03 andd = 0, the

other parameter values are given in Table 1.a0 is varied as given under each figure.

5 Discussion

In the present work we have observed the significant change ofdynamical behavior of a
three species food-chain by introducing density dependentdeath rate of specialist predator
population without altering the growth equation of the top predator. We have obtained the
boundedness condition for the solutions, the local and the global stability conditions for
the extended model system. In the present model we find two coexisting equilibrium point
for a certain restriction on the parameters and it is interesting to note that one of which is
unstable whenever other one is stable. Then we established that local asymptotic stability
imply the global stability of it under some parametric restriction.

Finally, we carried out numerical simulations to substantiate the analytical findings.
Our findings established the fact that the density dependentdeath rate for one of the preda-
tor species has ability to control the chaotic dynamics. This kind of dynamical change
occur due to the reason that introduction of density dependent death rate in the growth
equation of specialist predator have a negative feedback onthe evolution of the model
system with advancement of time. All solution trajectoriesstarting from various points
within the positive cone ultimately settle down to the coexisting equilibrium point leaving
the chaotic oscillatory mode with the increasing magnitudeof intra specific competition
parameter indicatingE∗ is a global attractor. Hence, we may finally remark that the
density dependent death rate of predator population has some stabilization effect on the
three dimensional model system, otherwise system shows chaotic dynamics in a certain
range of biological feasible parametric space.
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