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Density Dependent Predator Death Prevalence Chaosin a

1

The dynamical problems associated with mathematical nmaglelf various ecological

systems may appear to be simple at first sight but the detaitddsystematic analysis
often leads us to very interesting and fascinating dynanSpgcially with three or more
dimensional ecological problems exposed within open envirent have the potential to
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Abstract. Ecological systems have all the properties to produce @hdghamics. To
predict the chaotic behavior in an ecological system angdssible control mechanism
is interesting. Aziz-Alaoui [1] considered a tri-trophiodd-chain model with modified
Leslie-Gower type growth rate for top-predator populationd established the chaotic
dynamics exhibited by the model system for a certain chofggacameter values. We
have modified the said model by incorporating density dependeath rate for predator
population. Our mathematical findings reveal the fact thatre are two coexisting
equilibrium points one of which is a source and the other @na sink. The positive
equilibrium point which is sink is actually globally asynofitally stable under certain
parametric conditions. Numerical experiment analysiswshihat the model system are
capable to produce chaotic dynamics when the rate of ineaifsp completion is very
low and chaotic dynamics disappears for a certain value efrétte of intra specific
completion for predator species. Our results suggest beatonsideration of density
dependent death rate for predator species have the abitiyntrol the chaotic dynamics.
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exhibit very complex dynamics compared to those observégdardimensional models.
In the natural world, dynamical behavior exhibited by vadacological systems are
very complicated. For instance, the numbers of wild aniraal$ plants are continuously
variable quantities and these variations are quite iragualperiod and also in amplitude
[2]. Prince et al. [3] remarked that the study of communithdagour with the help of
mathematical models must be based on at least three trapeis land hence more focus
should be made to study the complex behaviour exhibited &yd#terministic models
consist of three and more trophic levels. Present day ssignnot all of them, believe
that “ecology is one of the basic discipline of chaos” [4]. bRd May [5] established
the fact that a simple model for single species have thetaldiproduce chaotic dyna-
mics, and theoretically demonstrated that the apparecthastic oscillation of population
could be explained by the highly complex and chaotic behaizsing from the simple
deterministic mathematical models involving some nordinterms. A similar chaotic
behavior is observed by Hastings and Powell [6] for a simpted dimensional food
chain model within deterministic environment. After thgéeneering works quite a good
number of articles have appeared which demonstrate thdictdymamics observed in
a wide range of three level food-chain models, e.g. see [2%5]. Chattopadhyay
and Sarkar [16] observed that increasing the strength a€ toilxemicals released by
Toxin Producing Phytoplankton reduce the prevalence obsha a tri-trophic food
chain model. Recently Chatterjee et al. [17] have shown ¢habs may also occur in
eco-epidemiological systems. Various mathematical teglas, like local bifurcation
analysis, global bifurcation analysis, extensive hunasanulations, Poincare-map etc.
have been used to detect chaotic dynamics in multi-dimeasideterministic models
of ecological system, but there is no uniqgue mathematiadlttodetect the parametric
domain for which the model under consideration will exhdtitotic oscillations and also
what type of non-linear coupling terms are required to begméewithin the mathematical
models which have potential to exhibit chaotic dynamics.

The control of chaotic dynamics with various ecologicatdéas, namely, migration,
predation, refuge, omnivory, habitat-heterogeneity & miost challenging task in such
studies and thus it receives a good deal of attention froiowaiscientists [18]. To the
best of our knowledge, there are few literatures which hawesiclered the inhibitory
effect of “intra specific density dependence”, but it hasdbdity to regulate the popu-
lation dynamics significantly [19]. Based upon this idea we iatended to revisit the
dynamical model for prey-specialist predator-generalistdator model system studied
by Aziz-Alaoui [1] incorporating intra-specific densitygiendent death rate for specialist
predator and show that the intra-specific density deperakas ability to control the
chaotic oscillation observed in the original model.

The main objective of the paper is to extend the prey-predampredator model
by incorporating density dependent death rate of spetiaedator. We have analyzed
the local asymptotic stability behaviour of the coexistegilibrium points. Then, we
have obtained the global stability conditions for the syst&inally, extensive numerical
simulations is performed to make a further in depth analg$ithe system. Finally,
extensive numerical simulations are carried out to undedstlearly the dynamics of
the model system over a long time interval.
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2 Basic mathematical model

In this paper we consider a three dimensional prey-predadolel which consists of prey,
specialist predator and generalist predator within detd@atic environment. We assume
X = X(t) is the population density of pre}, = Y (¢) is the population density of
specialist predator and = Z(t) is that of generalist predator at any instant of titme
Here we consider the logistic law of growth for prey popwatithe interaction between
prey and predator follows the Volterra scheme, i.e., sfistj@edator population die out
exponentially in the presence of prey population and comsiam of prey by specialist
predator follows Holling type-Il functional response. Tingeraction between specialist
predator and generalist predator will follow the Lesliew&o scheme [20-22], where
the loss in generalist predator population is proportidgaahe reciprocal of per capita
availability of its most favourite food and the growth of gealist predator depends upon
the rate of mating between their male and female individudis study the effect of
intra-specific density dependent death of specialist joedsn the dynamical behaviour
of prey-specialist predator-generalist predator modeteresider the following system of
nonlinear ordinary differential equations

dX ’UoXY
— =apX —bpX? —
a 0 do+ X’
vy o XY voY 7
= - —aY —dY? - 1
i do+x i +Y’ (1)
a4z ,  v3Z?
e _
dt di+Y

with initial conditions X (0) = X, > 0, Y(0) =Y, > 0 and Z(0) = Z, > 0. Before
going to discuss the ecological significance of the pararmméteolved with the model
system we like to remark that the system resulting from sygt® withd = 0 is studied
extensively by [1]. The parameters involved with the modgldre positive and have
ecological significance as followsy is the intrinsic birth rate of prey ang stands for
the intra-specific competition rate for themy; is the maximum value of the per capita
reduction rate of prey due to predatiody; measures the extent to which environment
provides protection to prey population; is the growth rate of predator populatian;is

the intrinsic death rate of predator populatidrstands for the intra-specific competition
rate of predatory, is the removal rate of predator by super predators&nd the half-
saturation constant;s is the growth rate of generalist predator due to mating betwe
male and female individual (the number males and femaliahaals are assumed to be
same);ds represents the residual loss of super predator populatietialsevere scarcity
of its favorite food (in other wordd, measures the extent to which environment provides
protection to generalist predator population in absenctheif favourite food source).
Prey population of siz& is the only source of food for specialist predator and spistia
predator serve as a favourite food source for generalistgpoe. At this position we like

to remark that first two equations of system (1) are quitedsteshand appeared in various
well-known literature. In contrast the third equation ist mostandard one and hence
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before proceeding further we are intended to give some gimabjustification behind the
growth equation for generalist predator.

2.1 Ecological interpretation behind the third equation of system (1)

If we write the growth equation of generalist predator bydeing general Leslie-Gower
scheme then it takes the following form

dz Z
EOLZ<1§—Y). (2)

It is based upon the idea that reduction in a generalist poegdapulation has a reciprocal
relationship with per capita availability of its preferribd, « is its intrinsic growth rate
and its carrying capacity set by the environmental rescuarel is proportional to the
abundance of its favourite food whesas the conversion factor of specialist predator into
generalist predators. Generalist predator has oppoyttméwitch over from its favourite
food to other available food sources when its favourite feodrce is not available in
abundance. The consideration can be into account by addiugiive constant to the
denominator of (2) as follows

dz A
ﬁ?:az(1_6Y+v) ©

and~ can be interpreted as the measure of carrying capacity foergést predator
population in absence af. Above equation can be rewritten as follows
dz oZ (a) A v3 22

2 R . 4
a Y+3 O dry )

g

Finally, we get the third equation of system (1)

dz ’U3Z2
L ez - 5
dt C3 d1+Y, ( )

wherecs; Z?2 indicates the fact that mating frequency is directly projomal to the number
of males and number females present at any instant oftimedvs = «/3, di = v/
[14,23].

The model can be simplified if it is written in dimensionlessiables

2 3
ao a, a, t
X ="z, =y Z=—2 0 T=_-
bo bovo bovova ao
bodo aq U1
= ) ﬂl = ) 1=,
ago agp ago
2
o d1vobo G349 U o dag
a1 = 2 B 2 — ) 2= - .
ag bQ’UQUQ V2 bQUQ
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Then, system (1) becomes

dz 9 xy

R

dr a+z’

dy — may 2 yz

= _ — — Sy —

ot By — 0y oty (6)
de_ 5o 22

dr ay +y

with 2(0) = 29 > 0, y(0) = yo > 0 andz(0) = zo > 0.

2.2 Boundedness of the solutions

Lemma 1. The positive conént(R?) is invariant for systen(6).

The proof is very simple and hence omitted.
To proof the boundedness of the solution of the system (6)ktved first recall the
following comparison lemma given in [1].

Lemma 2. Let¢ be an absolutely continuous function satisfying the difigal inequa-
lity:

d
ko) ks, £20,

where(ki, ky) € R2,ky # 0. Then, forallt > T > 0,

Theorem 1. Let us assume

N 2
’Yl+4ﬁ +a; < = 3 (7)

and letA be the set defined by:

A{(x,y,z)eRi: 0<z<1, 0<x+—<1+—

M 46’
0<e+ L talz<ly— + M}
x4+ = +az — 4+ =
7 481 B
where
1 1

o = and M = o )
BE (1 + & -+ o) 4(v2 — (m + a t 1) B2)

(i) A s positively invariant;
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(ii) all non-negative solutions (i.e. solutions initiating &) of (6) are uniformly
bounded forward in time, (thus they exists for all positiveets), they eventually
enter the attracting sed;

(i) systen(6) is dissipative.

Proof. (i) Let (x(0),y(0), 2(0)) € A, obviously, from Lemma 1(z(t), y(t), z(t)) remain
non-negative; we will show thadi:(¢), y(t), z(t)) € Aforall¢ > 0, we then have to prove
that for allt > 0,

e Step (i-a):x < 1;

. 1 1
e Step (i-b): z(t) + %y(t) <1+ 7

oyt att) + Loy(t) + o 1M
e Step (i-c): z(t) + 71y(zf) +a'z(t) <1+ R

e Step (i-a). We first prove that(¢) < 1 forall ¢t > 0. Sincex > 0, y > 0 and
z > 0in Int(R%), and solutionp(t) = (x(t), y(t), z(t)) of (6), which starts ifnt(R?),
satisfies the differential equatic%ff < z(1 — z), this is obvious by considering the first
equation of (6), moreover, due to the Lemma 1, these solwim@in non-negative. Thus,
x(t) may be compared with solutions of

ds(t
% =s(t)(1—s(t)), s(0)==z(0)>0,
to getz(t) < Hc—le,t fort > 0 (wherec = 1/z — 1). It follows that any non-negative

solutiong(t) of (6) satisfiesc(t) < 1 forall ¢ > 0.

» Step (i-b). We now prove that(t) + Z-y(t) < 1+ g forall ¢ > 0.
We define functiom (t) = x(t) + 5-y(t), the time derivative of which is

1
P . Y B

do dzx 1 dy
At~ dt oy dt 1o m Yo +y

Since all parameters are positive, and solutions initiptin (R3 ) remain in the non-
negative cone then,

do b1
< )2
3 = z(1—2) - y

holds for allz, y, andz non-negative. Thus,

%gx(lx)Jrﬂl:cﬂl(:ch%).
So
diTit)-FﬁlU(ﬁ) §61+i7

310



Density Dependent Predator Death Prevalence Chaos inTadphic Food Chain Model

since in4, 0 < z < 1 andmaxgj(z(1 — z)) = 1. Using Lemma 2, we get, for all
t>T >0,

()<1+ZE~—(-+@Z—waOeﬁ4“ﬂ, (8)
then, ifT = 0,
1 1 YO\ —pi-7)
s <1+ g, {”451 <x(0)+ 71 )]e o

Hence, sincéz(0),y(0), 2(0)) € A, =(t) + %y(t) < 1+ g forallt > 0.

e Step (i-c). We finally prove, provideg + 75~ - +a; < 22 that

0<z+ + <1+ ! +M
X —_— OéZ —_— —_—
vy 15, B

holds, if
, 1 1

and M =
61 (m+ 75 + o) A(y2 = (m + 5 +a1)Ba)

The proof is similar as done above; we define the following:fiom:

n(t) = a(t) + %ya) + a2 (),

the time derivative of which is
dy e 1dy de
a - At gAY

0 1
Zx(l—w)—&y——zf—— v +a’(ﬁ2— ic )22.
94! 94! Yoty a1+ Yy

Similarly to the previous Step (i-b), since every solutiaitiating in Ri remains non-
negative, all parameters are positides = < 1 andmazo 1)(z(1 — z)) = §, we get,

dn(t) _
at =

A~ =

+ 61— Bun(t) + o' frz + o <52 - yJZ—Qal)ZQ,

thus,asin Ay <y + & 15, One gets

dﬂ(t) 1 / / Y2 2
Y < — t S . B
g S gt Bun(t) + bz + o B ST z%,
hence
dn(t 1
O | ity < + 1+ 01 ©
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where

V2 2
M—max O/ Z+O/( —7)2 .
zERT ( b & Y+ +a
The maximum M exists since, from the formula (7), one easigsg

V2

fo — ———— <0,
TR

and simple algebraic computations show that with

1 o 1
T B+ o) A(v2 = (m + 75 + 1) f2)

/

Therefore, from equation (9), and using Lemma 2, we getfdr & « > 1,

1 M LM B (t-T)
) <1 g+ 5= (1 g+ 5 0D 4o
then, if T = 0,
L % _ L % _ —p1t
O T A (+4ﬂl+ﬂl ”(0)) '

Thus sincgz(0), y(0), 2(0)) € A,
T+ 1 +az2<1+ = + %
n’ B B

Consequently, we get the result

z 1 1 1
51(’714- +041) §1+4—51+E4( (71-1- +a1)ﬁ2)

1
:c+—y

forall ¢t > 0.

(i) We must prove that, fofx(0),y(0),2(0)) € R3, (z(t),y(t),2(t)) — A as
t — 00.
We will follow the steps:

e Step (ii-a): limsup z(¢t) < 1;

t—o00
. . y(t) 1
Step (ii-b): 1 4+ 22) <14 —;
- Step (R0 Hnawp(alt) + S5 < 1+ g5
. . y(t) , 1 M
Step (ii-c): 1 t) + ==+ <1+ —+—.
e Step (ii-c) 138;}13(30( ) Y T z(t)) % a
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e Step (ii-a). This results follows directly from Step (i-aj)chLemma 2, since
solutions of the initial value probled# = z(1—=z), z(0) > 0, satisfytlim supz(t) < 1.
—00

o Step (ii-b). Lete > 0 be given. Then there existsla > 0 such thats(t) <1+ 5
forall ¢ > Ty. From (8) withT = T, see Step (i-b), we get, for all> T} > 0,

o(t) = a(t) + % <1+ 4%1 — {1 + 4%1 — (x(Tl) - @)}e—w—m

- BTy _ s y(Tl)) 51T1:| —pit
<1+ 451 K )e bigg(xz(Th) + o e e

- _ y(Tl) BTy | ,—Ba
<1+4ﬁ1 |:< 4ﬁ1) <LL‘(T1)+ o’ >€ T:|e t.
Then

:c(t)+% (Hﬁ%ﬁﬁ) [(1+4%31+) (x(T1)+y€yj:1))eﬁlTl}e‘ﬁlt.

forall t > T;. LetT, > T} be such that

f1r2508)- e 22)o

Then

e Mt < % forall ¢ > Ty.

1
=2 <14+—+¢€ forall t>T,.
7 45, 2

Hence

. y(t)> 1
limsup [ z(t) + =% | <14 —.
t~>oop < ( ) Y1 o 4ﬁ1

e Step (ii-c). This proof is similar to the previous one. ket 0 be given. Then there
exists a3 > 0 such that(t) + % <1+ ﬁ + 5 forall ¢ > T5.
From (10) withT = T, see Step (i-c), we get, for all> T5 > 0,

n(t) = x(t) + 7_111,@) + a2 (1)

1 M 1 M
iy L M LMy
16, " By m e 3)}
1 M [ 1 M
14—+ —— |14+ 7+ 5 | —n(T eﬁ1T3]e—ﬁ1t
168, " B ( 16, m) n(Ts)
1 M 1 M
<1+ — 4 ——[(14+—+ — (T emn]e‘ﬁlt.
168, " B ( 16, m) n(Ts)
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Then
1 M € 1 M €
) <TH—+ =+ — |1+ — + = + = —n(T5)e™ s |e Mt
W01+ gt g g [ g+
Let Ty > T3 be such that
1 M € €
14—+ — 4+ — —n(T3)ePBle=Pt < — forall t>1Ty.
Tam T g e s =1
Then
1 M
) <1+ —+—+¢ foral ¢>T,.
M=1t15*5 !
Hence
. y(t) ’ ) 1 M
limsup | z(¢t) + —= +a'2(t) | <14+ — + —.
t—>oop ( ( ) Y1 ( ) 451 B1
(iii) System (6) obviously dissipative iR? . O

3 Existence and stability of equilibria

The system (6) possesses the following biological feasigiglibria.

The trivial equilibrium pointEy (0, 0, 0), the axial equilibrium poinf; (1, 0,0) and
the planar equilibrium poinEs (z2, y2, 0), whereys = (1 — x2)(a 4+ x2) andz, is given
by the roots of following cubic equation:

62° — 0(1 — 2a)2”® + (6 — B+ da(a — 2))z — a(B + ad) = 0.

Remark 1. The equilibriaF, and E; exist for any parametric value, while an unigizg
exists ifzy < 1anddé(1 + a?) > 8+ 20a.

We now seek the regions of parameter space for which the nsgdedm (2) admits
feasible interior equilibrium (s). Any feasible equilibmn must correspond to a positive
rootz* of the quadratic equation

g9(x) =0,
where
g(x) =2+ Az + B (11)

andA, B are given by

(i) A=a—-1,
(i) B=y"—«
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for which, additionallyy* = W*T‘?'Bz, andz* = ("‘1+y*)h”“*;ﬁﬁ‘sy*)(“”*”. Now, we
describe the range of possibilities for which an interiosifiee equilibrium (equilibria)
exists.

If Yo > oy o, theny* > 0.

Casel. If A > 0andB > 0, then by Descartes’ rule of signs there is no positive root of
the equatiory(x) = 0 and hence the model system has no interior equilibrium point

Case2. If B < 0, then by Descartes’ rule of signs there exists exactly orséipe root
of equation (11). Alsoy* > 0. Now, if this positive root is denoted hy* and satisfy the

restrictionz* > %, thenz* > 0. Hence if B < 0, and the positive root of the

. . (B1+6y™) . . . . N
eqyatlon (11) is greater thaﬁ_lﬁlif{sy*, then there exists a unique interior equilibrium
point E*(x*, y*, z*).

Case 3. If A < 0 andB > 0,then by Descartes’ rule of signs, equation (11) has two
positive roots. For* > 0 these positive roots must be greater th%@%. Also

y* > 0. Now, if one positive root is greater thaH#’L=2% ). (assumingy, > 1 + dy*),

then there exists one interior equilibrium point, ancll_iﬂ%pbsitive roots are greater than

%, then there exists two interior equilibrium points. But @ root is greater than
a(B1+dy™)

oy 7l then no interior stationary solution exists.

3.1 Local stability of theinterior equilibrium point

The variational matrix for the system (6) &t is given by

1=2 - Ghy T 0
* 1Q 1xr _ 1z _
T = (e o~ (B +200) - i —w
V2%
0 Gito)? 0
Here,
traceJ = s — X +7—5 .
(at )2 (ar+ g2 Y
Now trace J* < 0 if
+ <z*+oy*.
(a+ a2 (o +y)? Y
Also,
" Y2(2a + 1)y 2" %2 X
det J* = — — |z — px™ 4+ qB],
(a+:c*)2(a1+y*)5[ p q }
where
2(y* — a?) a
p=—r—r,q=
20+ 1 20+ 1

315



M. Bandyopadhyay, S. Chatterjee, S. Chakraborty, J. Qbedioyay

and
D(J*) = trace J* x M(J*) — det J*,

whereM (J*) is the sum of the second order principle minors/of

Therefore
* %2 * *
Yoy*z 1 oz YT
D(J") = — + 20y* + - )
() (a1 +y*?) [(al +y*) (ﬁl YT lavy? (ato)
vy o 2"
+— + 22" + 20y + ——— 12
(a+ a)? (ﬁl A e P

oy” yiz”
+ —1- .
(a+z%)? (a+x*>ﬂ
To examine the local stability of the interior equilibriumquilibria), suppose that
there is one positive equilibriutB*(x*, y*, z*) or two positive equilibrial’; (7, y7, 27)
andE; (z5,y5, 23). Then(z}, yf, =) satisfy

glx})=a?+ Ax; + B=0
and

B2 (a+z7)

Let us define the functiomy(z}) = z}* — pa’ + ¢B, so that the signs ofi(z}) and
detJ* are opposite. It is useful to compare the two following g an8tppose these two
function coincide at = z. Then,

9(z) = h(z),
or, equivalently,
B _
s Bla=1)
A+p
= (= _ B%(¢=1)? | B(Ag+p)
ALZ, 9(Z) = g + )

ForA < 0andB > 0, p and g are positive and hengez) > 0.

Case l. If B < 0, recall that there exist exactly one interior equilibriuning £*. It can
easily be verified that foB < 0,

(i) traceJ* <0,
(i) D(J*) =traceJ* x M(J*) —det J* < 0.

Now we shall verify the sign oflet.J*. For that, letB’ = —B so thatB’ > 0. Here
two cases may arise:
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a) whenp > 0, hereE* is stable ifz*? > pz* + ¢B’, and
b) whenp < 0, or letp’ = —p > 0. HereE* is stable ifz*? + p/z* > ¢B'.

Case2.If A < 0andB > 0, then here also it can easily be verified that

(i) traceJ* <0,
(i) D(J*) =traceJ* x M(J*) —det J* < 0.

For the above conditions we observe that equation (11) viagositive roots. De-
note these roots by; and x5 with 0 < =z} < x5 (say), and corresponding
0 < 2§ < z3. Assume that there exists at least one equilibrium pointhat:; > 0. now
atr =z, g(Z) > 0. Henceld < a2} < Z < z} and therefore

7220 + 1)yi 27
(a+27)*(a1 +y7)?3
7220 + 1)yi 27

> — . ) =0.
@t a2 + gD

det J*(Zivyrvzr) = -

h(z7)

HenceE; (z7, 7, 27) is a saddle. If we have two interior equilibria, thén< = < 23
and

ety
(ot ) (a + g2
Y2 (20 + 1)y5 25 .
= 0.

(@t )% + P02

detJ* (x5, y5,25) = —

In this caseF; (x5, 3, 25 ) is a sink.
We are now in the position to write the following theorem.
Theorem 2. If there is exactly one interior stationary solutiafi*, then it is a sink
* 2
providedz*? — pz* 4+ qB > 0, wherep = 24 =2 4 — _a_andB = y* — q.

2a+1 2a+1
If there are two interior stationary solutions, then onedsldle and the other is sink.

Next we shall find the conditions for the global stability bétpositive equilibrium
point.

3.2 Global stability

In this section we shall prove the global stability of thexietng equilibrium pointE*.
We prove the global stability result with help of a suitabj@punov function. Global sta-
bility of coexisting equilibrium ensures that all trajed&s ultimately approaches towards
the equilibrium point starting from any point within the fitbse octant.

Theorem 3. Suppose the following conditions haltl < a(a+2*), 2* < daq (a1 +y™*),
andys > fBa2(a1 + M'y1)(a + y*), then the coexisting equilibrium poift* is a global
attractor.
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Proof. Let us consider the following Lyapunov function,
V()= [x—x —x 1n—] —|—A2[y y -y lny—] —|—A3[z—z —z 1n§},

whereA; andA; are two positive constants to be defined later. Taking the terivative
of V(¢) along the solution of (6), we get

’ * Yy * YT z
V=(x- 1—2— —2—|+As(y — — 0y —
(x —x )[ T a+:c]+ 2(y y)[aer Yy a1+y} 2
Aa(z — 2* _ ez
+A3(2 Z)[ﬁgz o +y]
Using the following results
. y* M . z" V2
1= + , = + oy + , = ,
* o+ x* o+ z* & 4 ay + y* & oz +y*
the time derivative o¥” becomes
o+ x* a+x
o | Mz N z* P
+ Aoy —y") | —— — —— =B — 6 + — 14
2= 9) | B = by ) | 9
. . 22" Yoz
As(z — - - .
sz Z)[ﬁQ(Z Z)+041+y* a1+y]
After some algebraic calculations, we obtain,
*\2
V: k2 * (l‘*l‘ ) — A56 _%)2
(x —z%) +y—(a+x*)(a+m) 20(y —y")
(y*y*)Q 2
4+ Aqz* + A z—2"
g 1) T ET )
(z — 2%)? (z —2%)?
— Asa — Asyoy* (15)
R D R e G A [T
(z x*)(y )
» 2 J ) |
+ ( )(Z_Z |:—A2051 —Agy*+A3’ng*:|.
(o1 +y)(a1 +y*)
Assuming,4, = “(;ﬁ andAs; =
V — |:_ 1+y—*:| ($—$*)2+A2 |:_ (5—{— z* :|(y_y*)2
(a+z)(a + 2%) (a1 +y)(a+y*)

a1y2 + 72y” 2
+A3|:ﬁ2_ (a1+y)(a+y*):|(2_z ) .
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From Theorem 1, we observe that sup,_, . (z(t)+ %) < M',where, M’ = 1+ ﬁ.

So, we can say that(t) < M’ andy(t) < M’ for all timet. So, > —— > —1

X ) 4 Z otz Z at M’
anda—1 2o 2 e Substituting, we get

* *

V< [—1+m](m—m*)2+zﬁlg[—5+m (y — y*)?
R e e eyl GREEI

if y* < ala+z*), 2* < dar(aq +y*), andye > Fa(ar + M) (o + y*).

Therefore by LaSalle’s theorem [24F* is globally asymptotically stable in the
xyz-space.

Hence the theorem. O

4 Numerical simulations

We began our numerical simulation with the set of parametdues taken from [1]
exceptd. We integrate the model system (1) numerically using the MAB code ode45
available in the MATLAB 6.5.

We have performed the numerical simulations for differeaitigs of the parameter
ag With d = 0 and keeping the other parameters fixed as given in Table lulRex
numerical simulations show that with increase in the vafug othe trajectory approaches
towards a strange attractor through period doubling ratteting from a periodic limit
cycle. Forag > 2.95 the system exhibit chaotic oscillation and trajectory apighes the
chaotic attractor. Projection of the phase-space trajgco X Y -plane is presented in
Fig. 1 for four different values ofy as mentioned in the labels.

Table 1. Hypothetical parameter values taken from [1]

Parameters bo Vo do V1 al d1 ds V2 V3 c3
Defaultvalues 0.06 1 10 2 1 10 20 0405 1 0.038

Now we shall prove that the strange attractor shown in Figs &ctually chaotic
in nature. For this we will first calculate all the Lyapunowexents associated with
the strange attractor shown in Fig. 1(d). The spectrum opluyav exponent is shown
in Fig. 2. One can see that the largest Lyapunov exponentdhlasilated is positive,
showing that the strange attractor is chaotic in nature. rtteioto show the sensitive
dependence of the trajectories on the initial conditions #nestablish the divergence
of two trajectories starting from two nearby points in theapérspace one can take help
of the functionS(¢) defined below. LetX(t) = (X1(t), X2(t), X3(t)) andY (t) =
(Y1(¢),Ya(t), Y5(t)) are two solution trajectories of the model system (1) stgrfrom
two nearby point say,, andy, such that|zy — yol|| is very small then S(t) stands for

S(t) =/ [(X2(t) - Va(0)2 + (Xa(t) - Va(0)2 + (Xs(t) — Y3(1))].
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For detailed discussion on this functig{¢), please see [25]. The Plot &f(¢)
against the time is given in Fig. 3. It clearly shows that the difference besw¢he two
trajectories starting with two different initial point Wias randomly with time. Thus we
may conclude that the trajectory shown in Fig. 1(d) is clwiptinature. The Fig. 1 is
obtained by keeping = 0. Next, we shall observe the role of the parameteon the
model system (1), which we have introduced in this article.

15 40
30
10
20
5
10
0 0
16 18 20 22 24 10 20 30 40
(a): a0=1.5 (b): a0=1.85
40
30
20
10
0 0
0 10 20 30 40 0 20 40 60
(c): a0=1.95 (d): a0=3.0

Fig. 1. Phase portrait in th&¥Y'-plane, for the system (1), showing the transition to
chaos, via period-doubling from a limit cycle to strangeaattors, withd = 0, the set
of other parameter values are given in Table @b)is varied as given under each figure.

Dynamics of Lyapunov exponents

0.3712

o ﬁ -0.004

Lyapunov exponents

-19.39

o) 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Fig. 2. The spectrum of Lyapunov exponent calculated forsthenge attractor shown
in Fig. 1(d).
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To see the effect of intra-specific density dependence dfialig predator on the
dynamics of the model system (1), we again integrate modsésy (1) numerically for
different values ofl keepingag fixed at 3 and all other parameter values as mentioned in
Table 1. We observe that that the chaotic nature of solutagjadtory disappears with the
increasing magnitude of intra-specific density dependeattdrate of specialist predator
(see Fig. 4). The chaos in the system can also be controle@drgaking the value of
growth rate of the generalist predatgr(see Fig. 5).

L L L L L L
o 100 200 300 400 500 600 700 800 900 1000
time t —

Fig. 3. separation between two nearby trajectories witraadement of time.

100 100
80
60 f
40
ol
0 S SO 0
0 20 40 60 0 20 40 60
(a): d=0.0005 (b): d=0.0008
100 60
80
40
60
40
20
201\
0 0
0 20 40 60 20 30 40 50 60
(c): d=0.001 (d): d=0.007

Fig. 4. Phase portrait in th& Y -plane, for the system (1), showing the transition from
chaos to stable period-1 limit cycle, via period-halvingthws = 0.038 andao = 3.0,
the other parameter values are given in Tablé is.varied as given under each figure.
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(a): a0=2.963 (b): a0=6.0

Fig. 5. Phase portrait in th& Y -plane, for the system (1), showing the transition from
chaos to stable period-1 limit cycle, via period-halvingthws = 0.03 andd = 0, the
other parameter values are given in Tabledis varied as given under each figure.

5 Discussion

In the present work we have observed the significant changgramical behavior of a
three species food-chain by introducing density deperdi=ath rate of specialist predator
population without altering the growth equation of the topdator. We have obtained the
boundedness condition for the solutions, the local and kblead) stability conditions for
the extended model system. In the present model we find twastoey equilibrium point
for a certain restriction on the parameters and it is intarg$o note that one of which is
unstable whenever other one is stable. Then we establishekbtal asymptotic stability
imply the global stability of it under some parametric rizsion.

Finally, we carried out numerical simulations to substetihe analytical findings.
Our findings established the fact that the density depentierih rate for one of the preda-
tor species has ability to control the chaotic dynamics.sKimd of dynamical change
occur due to the reason that introduction of density depetindieath rate in the growth
equation of specialist predator have a negative feedback@®evolution of the model
system with advancement of time. All solution trajectoégrting from various points
within the positive cone ultimately settle down to the catirig equilibrium point leaving
the chaotic oscillatory mode with the increasing magnitatimtra specific competition
parameter indicating’* is a global attractor. Hence, we may finally remark that the
density dependent death rate of predator population hae stahilization effect on the
three dimensional model system, otherwise system showaictdynamics in a certain
range of biological feasible parametric space.
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