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Abstract. The concept of the model row goods is introduced. These are the
interchangeable goods differing by quality and price. Cognacs of various vintage years
produced on one cognac factory are a typical example of such goods. For the indicated
kind of the goods the method of the cost price determination of the goods of competitors
is worked out and realized. The initial information for determination is the data on the
prices of the goods and sales volumes.
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1 Introduction

In [1,2] the class of the goods convenient for economic research is introduced. This class
of the goods has received a name the “model row goods”. The stated class is made of
the interchangeable goods distinguished by the price and quality. A typical example of
such goods is cognacs of various vintage years produced on the same cognac factory. The
quality in this case is determined by the vintage year. The price of cognac too depends on
its age.

For the model row goods the problem is solved [1,2] which in this work we shall call
a “direct problem”. This problem is formulated as follows. It is necessary to find such
change of the prices on the goods being sold that will providewith both profit increase
and profitability growth. Thus cost prices of the goods, the buyer prices and volumes of
the sold goods are considered known.

In the current work the problem which we name the “inverse problem” is solved.
This problem consists in the cost price definition of the competitors goods. Thus the
prices of the goods for the buyer and volumes of the sold goodsare considered known.

In the following paragraph we shall cite the necessary factsfrom the direct problem
theory. In the paragraph 3 the algorithm of the solution of the inverse problem is given.
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2 Approximation of sales volumes dependences

Let a model row consist of the k goods, where each subsequent good is of a better quality
than the previous one.

Let:

ci – be the cost price of thei-th goods unit,

pi – be the buyer price for thei-th goods unit,

Qi – be the quantity of the soldi-th goods units for the certain period

(month, year, ...),1 ≤ i ≤ k.

We assume, that cost pricesci are constants, and sales volumesQi are functions of
the pricespj . More precisely:Qi = Qi(pi−1, pi, pi+1), 2 ≤ i ≤ k−1, Q1 = Q1(p1, p2),
Qk = Qk(pk−1, pk), i.e. the sales volume of goodsQi depends only on the goods prices
of almost the same quality.

Let’s explain validity of the made assumptions on an exampleof cognac sale. The
sales volume of 5-year-old cognac depends on the very price for 5-year-old cognac, and
also on the prices for4- and6-year-old cognac. The prices of other cognacs practically
do not influence the sales of 5-year-old cognac. For example,15-year-old cognac is too
expensive from the point of view of the consumer of 5-year-old cognac. And three-year-
old cognac in his opinion has poor quality.

Certainly, external factors have an effect on sales volumesalso: a parity of euro/dollar,
the price for petroleum etc. We assume that, in the considered model, all these factors are
fixed.

Let us assume that at present the prices of the goods are equalp
(0)
i , and the sales

volumes appropriate to them are equalQ
(0)
i , 1 ≤ i ≤ k.

Some obvious economic and mathematical reasons allow to describe functionsQi

rather precisely. For example, let’s consider functionQ1 = Q1(p1, p2) – a sales volume
of the1-st kind goods.

Let’s fix the valuep1 = p
(0)
i . As result we have function of one variablep2: Q1(p1 =

p
(0)
i , p2). We shall consider this function on the closed intervalp

(0)
1 ≤ p2 ≤ p

(0)
3 . That is

the situation when the price of the1-st kind goods does not vary, and the price of the2-nd
kind goods has changed. One value of this function is known:Q1(p

(0)
i , p2 = p

(0)
2 ) =

Q
(0)
1 . For the pricep2 = p

(0)
1 value of function too can be named: it is equal to zero.

Indeed, nobody buys less qualitative goods if the prices areequal.
Let’s find still another value:Q1(p

(0)
i , p2 = p

(0)
3 ), i.e. when the price of2-nd kind

production will be equal to the3-rd kind price. What will happen to the sales of the1-st
kind goods? In this case there will be no buyers of less quality kind of the goods (2-nd).
Then consumers of the2-nd kind of production will break into three categories. Thefirst
(α) – will proceed on consumption of the1-st kind of production (of the less quality and
cheaper). The second (β) – will buy the3-rd kind of production. The third (γ) will leave
the market of the given manufacturer. Coefficientsα, β, γ satisfy to conditions:

α ≥ 0, β ≥ 0, γ ≥ 0, α + β + γ = 1.

326



The Method of Prime Costs Determination of the Model Row Goods

Concrete values of these coefficients depend on production and a situation in the
market. To the market of cognacs these coefficients have the following values:α = 0.6,
β = 0.3, γ = 0.1. They are received as a result of the analysis of sales statistics.
Cases when on sale there is no cognac of some kind (for example, 4-year-old cognac)
are studied. Then sales volumes of adjacent grades of3- and5-year-old cognacs grow.
This gain enables to determine coefficientsα, β.

Let’s assume, that functionQ1(p
(0)
i , p2) is differentiable. Then it is easy to see, that

the derivative of this function in pointsp2 = p
(0)
1 , p2 = p

(0)
3 equals zero. It is also obvious,

thatQ1(p
(0)
i , p2) is strictly increasing function on the closed intervalp

(0)
1 ≤ p2 ≤ p

(0)
3 .

Thus, we have the following information on restriction of the functionQ1(p1, p2) on

a straight linep1 = p
(0)
1 .

Q1(p
(0)
1 , p2 = p

(0)
2 ) = Q

(0)
1 , Q1(p

(0)
1 , p2 = p

(0)
1 ) = 0,

Q1(p
(0)
1 , p2 = p

(0)
3 ) = Q

(0)
1 + αQ

(0)
2 ,

∂Q1

∂p2
(p

(0)
1 , p2 = p

(0)
1 ) = 0,

∂Q1

∂p2
(p

(0)
1 , p2 = p

(0)
3 ) = 0,

Q1 = Q1(p
(0)
1 , p2) – strictly increasing function on the closed intervalp

(0)
1 ≤ p2 ≤ p

(0)
3 .

Certainly, this information does not determine function uniquely, but allows to ap-
proximate function precisely enough.

Let’s note, that in a similar situation, in the economic theory logistic functions are
used. There the argumentp2 varies on all numerical axis. Therefore exponents participate
in function record. In a considered situation the argument varies on the closed interval.
Therefore the use of trigonometric functions appeared to bemore convenient. As a result
the following approximation is chosen:

Q1(p
(0)
1 , p2) =

1

2

(
Q

(0)
1 + αQ

(0)
2

)(
1 − cos(πt)

)
, (1)

where

x(0) =
p
(0)
2 − p

(0)
1

p
(0)
3 − p

(0)
1

, t(0) =
1

π
arccos

(
1 − 2

Q
(0)
1

Q
(0)
1 + αQ

(0)
2

)
, x =

p2 − p
(0)
1

p
(0)
3 − p

(0)
1

and

t = x, if t(0) = x(0),

t =
(1 − b)x

x − b
, where b =

(1 − t(0))x(0)

x(0) − t(0)
, if t(0) 6= x(0).

The indicated representation of functionQ1 enables to calculate a derivative∂Q1

∂p2

in a

point(p(0)
1 , p

(0)
2 ). Similar reasoning allows to approximate restriction of functionQ1(p1, p2)

on the straight linep2 = p
(0)
2 . This enables to calculate a derivative∂Q1

∂p1

in a point

(p
(0)
1 , p

(0)
2 ). The same reasons are applied to other functionsQi.
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Let:

C(p1, p2, . . . , pk) – be the general cost price of manufacture of a model row goods,

P (p1, p2, . . . , pk) – be the general profit received as a result of realization of model

row goods,

r(p1, p2, . . . , pn) – be profitability of manufacture of model row goods.

According to the assumptions these functions are related bythe following formulas.

C(p1, p2, . . . , pk) =

n∑

i=1

ciQi(p1, p2, . . . , pk),

P (p1, p2, . . . , pk) =

n∑

i=1

(pi − ci)Qi(p1, p2, . . . , pk),

r(p1, p2, . . . , pk) =
P (p1, p2, . . . , pk)

C(p1, p2, . . . , pk)
.

(2)

Let cost prices of the goodsci be known. Then the values of functionsC, P, r in a point
M0 = (p1 = p

(0)
1 , p2 = p

(0)
2 , . . . , pk = p

(0)
k ) are also known. Moreover, due to the

explicit form of (1), partial derivatives of these functions in pointM0 are also known.
Hence, in this point it is possible to find gradients of functionsP, r.

According to the sense of a gradient, any small enough changeof arguments of func-
tion in half-space from pointM0 results in increase of function value. Hence, change of
variablesp1, p2, . . . , pn in half-space in which specifiesgradP , results in increase of the
profit. Change of variablesp1, p2, . . . , pn in half-space in which specifiesgrad r, results
in increase of profitability. Therefore, small enough change of the pricesp1, p2, . . . , pn in
the dihedral angle (crossing of two indicated half-spaces)from pointM0 results both in
increase of the profit and in increase of profitability.

The solution of a direct problem, that is of optimization of the prices of the model
row goods, is based on the above- mentioned reasoning [1,2].

In this work we solve an inverse problem – of determination ofthe cost prices of the
model row goods.

3 Determination of cost prices for the model row goods made by
competitors

Let’s start with the following assumptions. The manufacturer of the model row goods
fixes the “optimum” prices for the goods. More precisely, thecriterion of an optimality
of the prices is formulated as follows: gradients of functions of the profit and profitability
gradP andgrad r are opposite directed.

Now we assume, that cost pricesci in formulas (2) are unknown to us. Then
for a point M0(p1 = p

(0)
1 , p2 = p

(0)
2 , . . . , pk = p

(0)
k ) we shall introduce function
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g(c1, c2, . . . , ck) = cos γ, whereγ is an angle between gradientsgradP, grad r. It’s
known [1], that it is possible to calculatecos γ through scalar product:

g(c1, c2, . . . , ck) = cos γ =

(
gradP (M0), grad r(M0)

)

| gradP (M0)|| grad r(M0)|
. (3)

Thus, for definition of cost pricesci, 1 ≤ i ≤ k, we have the equation

g(c1, c2, . . . , ck) = −1, (4)

where functiong is determined in (3).
Probably, it’s worth reminding, thatcos 180◦ = −1.
Inverse problems, as a rule, are incorrect (ill-posed) [3,4]. In full measure it concerns

a problem (4). As a rule, there is no exact solution to an incorrect problem, in particular
to the equations (4). It is necessary to consider so-called the quasi-solution.

For the equation (4) pseudo-solution is the point of a minimum of function
g(c1, c2, . . . , ck). The problem of defining a point of a minimum is unstable. To regularize
instability the additional information is usually involved in. This additional information
should provide uniqueness of the decision and a belonging ofthe solution to compact
set. For this purpose the number of required parameters is usually reduced and the limits
of their change are bounded. We shall assume, that cost prices ci linearly depend on
numberi. For cognacs manufacture this assumption is quite justified.

In the cost price of cognacs there is a part, identical to all sorts. It reflects cost of
grapes and some other expenses. The second part of the cost price is directly proportional
to the vintage of cognac. These are expenses for keeping cognac in oak barrels. The
following formula therefore is true: the cost price

ci = a + ib, (5)

wherea, b are some positive constants, andi is quantity of vintage years of cognac. The
restriction is obvious:

0 ≤ ci ≤ p
(0)
i , (6)

wherep
(0)
i – the price of the buyer fori-th sort of cognac.

Thus, it is necessary to determine two parametersa andb from (5). Thus restriction
(6) should be made.

Let’s consider a specific example. In Table 1 we are given the prices for wholesale
buyers and sales volumes for one of cognac factories of Armenia for concrete year of the
current century.

For these data approximations of functionsQi(pi−1, pi, pi+1), i = 4, 5, Q3(p3, p4),
Q6(p5, p6) under formulas of a kind (1) are made. With the help of these functions partial

derivatives∂Qi

∂pj
(M0), whereM0(p3 = p

(0)
3 , . . . , p6 = p

(0)
6 ) = M0(2.72, 3.11, 3.56, 4.17),

are calculated (Table 2).
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Table 1. Prices and sales quantities

Vintage (in years) 3 4 5 6
Price (USA dollars) 2.72 3.11 3.56 4.17
Sales quantity (thousand of bottles) 15 9 13 6

Table 2. Quotient derivatives∂Qi

∂pj
(M0), i, j = 3, 4, 5, 6 (thous. bottles/dollar)

p3 −60,415 30,207 − −

p4 30,540 −38,469 9,6269 −

p5 − 25,358 −27,0070 5,3375
p6 − − 6,4153 −6,7299

On these partial derivatives the function from (3) is made

g
(
c3(a, b), c4(a, b), c5(a, b), c6(a, b)

)
=g(a+3b, a+4b, a+5b, a+6b)= g̃(a, b). (7)

For function (7) the gradiential method finds a point of a minimum. It is numerically
established, that there is one point of a minimum. For this purpose, descent began from
several different, enough far points. In result valuesa = 1, 2, b = 0, 33 and cost prices
of cognacs are received (Table 3).

Table 3. Prices, sales quantities and costs

Vintage (in years) 3 4 5 6
Price (USA dollars) 2.72 3.11 3.56 4.17
Sales quantity (thousand of bottles) 15 9 13 6
Cost (USA dollars) 2.01 2.34 2.47 2.70

Thus, the information on the prices and sales volumes (Table1) can be added with
data on the cost price of the goods (Table 3).

The obtained result is used on several cognac factories of Armenia and Russia.
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