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Abstract. We have proposed and analyzed a nonlinear mathematical model for the
spread of carrier dependent infectious diseases in a population with variable size structure
including the role of vaccination. It is assumed that the susceptibles become infected by
direct contact with infectives and/or by the carrier population present in the environment.
The density of carrier population is assumed to be governed by a generalized logistic
model and is dependent on environmental and human factors which are conducive to the
growth of carrier population. The model is analyzed using stability theory of differential
equations and numerical simulation. We have found a threshold condition, in terms of
vaccine induced reproduction numberR(φ) which is, if less than one, the disease dies out
in the absence of carriers provided the vaccine efficacy is high enough, and otherwise the
infection is maintained in the population. The model also exhibits backward bifurcation
at R(φ) = 1. It is also shown that the spread of an infectious disease increases as the
carrier population density increases. In addition, the constant immigration of susceptibles
makes the disease more endemic.

Keywords: carrier dependent, infectious diseases, vaccination, environmental discharge,
modified carrying capacity, backward bifurcation.

1 Introduction

Many infectious diseases are spread by direct contact between susceptibles and infectives.
Other diseases are spread in the environment and are transmitted to the human population
by insects or other vectors. Here we develop and analyze a model for diseases that are
transmitted in both ways. This is the case for typhoid fever and other enteric diseases.
There are many carrier dependent infectious diseases whichafflict human population
around the world. However, the third world countries are most affected by such diseases
due to lack of sanitation, wide occurrence of carriers such as flies, ticks, mites, etc. which
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are generally present in the environment [1]. For example, air-borne carriers or bacteria
spread diseases such as tuberculosis and measles; while water-borne carriers or bacteria
are responsible for the spread of dysentery, gastroenteritis, diarrhea, etc. [2–4]. These
carriers transport infectious agents of diseases from infectives to susceptibles and thus
spread such diseases in human population. In this paper, we have used the term carriers as
a mode of transmission only, which transmit infectious agents of diseases from infectives
to susceptibles, without having clinical symptoms.

The modeling and analysis of infectious diseases have been done by many workers,
see for example [5–11]. In particular, Hethcote [10] discussed an epidemic model in
which carrier population is assumed to be constant. But, in general, the size of the carrier
population varies and depends on the natural conditions of the environment as well as
on various human related factors. The effect of variable carrier population has not been
considered in these studies, however the spread of such diseases is very much dependent
on the carrier population, the density of which increases due to environmental factors such
as temperature, humidity, rain, vegetation, etc. in the habitat [3,12–14]. In particular,
Ghosh et al. [13] studied the spread of carrier dependent infectious diseases with environ-
mental effects using variable carrier population. The density of carrier population further
increases as the human population density increases. With increase in human popula-
tion density, the effects of human population related factors like discharge of household
wastes, open sewage drainage, industrial effluents in residential areas, open water storage
tanks and ponds etc. leads to further growth of carrier population density. This provides
a very conducive environment for the growth of these carriers which enhances the chance
of carrying more bacteria from infectives to the susceptibles in the population leading
to fast spread of carrier dependent infectious diseases. Thus, unhygienic environmental
conditions in the habitat caused by human population becomeresponsible for the fast
spread of an infectious disease. It is, therefore, reasonable to assume that the carrier
population density is governed by a generalized logistic model. The per capita growth
rate and the modified carrying capacity of carrier population are taken to be functions
of human population density and assumed to increase as the human population density
increases [3,14–16]. In particular, Singh et al. [16] studied the spread of malaria by taking
into account mosquito population density governed by a generalized logistic model.

It may be noted that the outbreak of infectious diseases cause mortality of millions
of people as well as expenditure of enormous amount of money in health care and disease
control. It is, therefore, essential that adequate attention must be paid to stop spreading
of such diseases by taking control measures. Vaccination isan important control measure
to reduce spreading of such diseases. Various modeling studies have been made to study
the role of vaccination on the spread of infectious diseases[17–22]. In particular, Shulgin
et al. [21] studied a simple SIR epidemic model with pulse vaccination and showed that
pulse vaccination leads to epidemic eradication if certainconditions regarding the magni-
tude of vaccination proportion and on the period of pulses are satisfied. Kribs-Zaleta and
Velasco-Hernandez [20] presented a simple two dimensionalSIS model with vaccination
exhibiting backward bifurcation. Farrington [18] analyzed the impact of vaccination
program on the transmission potential of the infection in large populations and derived
relation between vaccine efficacy against transmission, vaccine coverage and reproduction
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numbers. Gumel and Moghadas [19] proposed a model for the dynamics of an infectious
disease in the presence of a preventive vaccine consideringnon-linear incidence rate and
found the optimal vaccine coverage threshold needed for disease control and eradication.

In the case of carrier dependent infectious diseases like cholera, measles, etc., the
vaccination can be an important tool to help control the spread of such diseases especially
when the density of carrier population increases with humanpopulation density related
factors. It is pointed out here that in above models, vaccination has been studied without
considering the effective role of variable carrier population which depends on human
population related factors and is responsible for spreading the infectious diseases. In
this paper, we extend the model presented by Singh et al. [14]and Ghosh et. al [15]
by incorporating the effect of vaccination on the spread of carrier dependent infectious
diseases and assuming a generalized logistic model governing the growth of carrier popu-
lation. In addition, we use more realistic standard mass action type interaction for direct
contact between susceptibles and infectives instead of simple mass action. However, we
assume that susceptibles are infected by carriers in directproportion to the density of
carrier population (bilinear interaction). The model is analyzed qualitatively to determine
the stability of its associated equilibria and the optimal vaccine coverage level needed to
control effectively or eradicate the disease. The numerical simulation of the model is also
given to see the influence of certain key parameters on the spread of the disease.

2 Mathematical model

We consider the human populationN(t) at timet with immigration of susceptibles at a
constant rateA. The total population is divided into three subclasses: thesusceptibles
X(t), the infectivesY (t) and the vaccinated individualsV (t). In the modeling process, it
is assumed that the susceptibles are infected by the direct interaction with infectives and
also by the carrier population of densityC(t), which is governed by a generalized logistic
model. It is further assumed that the susceptibles are vaccinated at a constant rate and
some of them may again become infected while coming in contact with infectives or with
carriers due to inefficacy of vaccines. It is also consideredthat the infected individuals,
after being recovered, may again become susceptible. The block diagram of the model is
given in Fig. 1.

Fig. 1. Block diagram of the model.
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Thus, by assuming standard mass action interaction for direct contact between sus-
ceptibles and infectives and simple mass action interaction between susceptibles and car-
rier population density, the model dynamics is governed by following system of nonlinear
ordinary differential equations:

dX

dt
= A−

βXY

N
− λXC + νY − dX − φX,

dY

dt
=
βXY

N
+ λXC − (ν + α+ d)Y +

γV Y

N
+ ν1V C,

dV

dt
= φX −

γV Y

N
− ν1V C − dV,

dN

dt
= A− dN − αY,

dC

dt
= s(N)C −

s0C
2

L(N)
− s1C,

X + Y + V = N,

X(0) = X0 > 0, Y (0) = Y0 ≥ 0, V (0) = V0 ≥ 0,

N(0) = N0 > 0, C(0) = C0 ≥ 0,

(1)

whereβ and λ are transmission coefficients due to infectives and carrierpopulation
respectively. The parametersφ, ν, and d represent the vaccination coverage (of sus-
ceptibles), therapeutic treatment coverage (of infected individuals) and natural deaths
respectively,α is the disease related death constant,γ andν1 denote the transmission
coefficient of vaccinated individuals due to interaction with infectives and carrier popu-
lation respectively. However, the rate with which vaccinated persons become infected is
very small as compared to the rate with which susceptibles get infected i.e.,γ ≪ β and
ν1 ≪ λ. The constants1 is the death rate coefficient of carriers due to natural factors
as well as by control measures. Here,s(N) denotes the growth rate per capita of the
carrier population density such thats(N) − s1 is its intrinsic growth rate. It may be
noted that if the growth rate and death rate due to natural as well as control measures of
carrier population are balanced, then it may tend to zero. Similarly,L(N) is the modified
carrying capacity of the carrier population and its value isL(N)[ s(N)−s1

s0
] as compared to

usual logistic model.
It has been pointed out in the introduction, that as the humanpopulation increases,

the effects of human population related factors/activities enhance the chances of growth
of carrier population. Thus, in the model,s(N) andL(N) are taken to be functions of
total human population instead of infective population. Since we assume that the growth
rate per capita increases as the human population density increases, we have

s(0) = s0 and s′(N) ≥ 0, (2)

wheres0 is the value ofs(N) atN = 0 and()′ denotes the derivative of the function with
respect to its argument. We also assume that the modified carrying capacity increases
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with human population density, so that

L(0) = L0 > 0 and L′(N) ≥ 0, (3)

whereL0 is the value ofL(N) whenN = 0.
From equations (1), (2) and (3), we see that even if human population related factors

are absent, carrier population density increases in its natural environment and it tends to
L0(1−

s1

s0
) which may become zero ifs1 → s0. In the model, all the dependent variables

and parameters are assumed to be non-negative.

3 Equilibrium analysis

It is sufficient to consider the reduced system of model (1) (sinceX + Y + V = N ) as
follows:

dY

dt
=
β(N − Y − V )Y

N
+ λ(N − Y − V )C − (ν + α+ d)Y +

γV Y

N
+ ν1V C,

dV

dt
= φ(N − Y − V ) −

γV Y

N
− ν1V C − dV,

dN

dt
= A− dN − αY,

dC

dt
= s(N)C −

s0C
2

L(N)
− s1C.

(4)

The equilibrium analysis of the model system (4) has been carried out and the results
are given as follows. There exist following three non-negative equilibria of the system (4).

1. Disease free equilibrium,E0(0,
φA

d(φ+d) ,
A
d , 0) exists, without any condition. The exis-

tence ofE0 is obvious.

2. Carrier free equilibrium,E1(Y , V ,N, 0).

This equilibrium may be obtained by solving the following algebraic equations,

β(N − Y ) − (β − γ)V − (ν + α+ d)N = 0, (5)

Y =
A− dN

α
, (6)

V =
φN [(α + d)N −A]

α(φ + d)N + γ(A− dN)
. (7)

Using equations (6) and (7) in equation (5), we get an algebraic equation in single variable
N , i.e.,F (N) = 0, whereF (N) is given by the following equation,

F (N) = [β − (ν + α+ d)]N − (β − γ)V − βY. (8)

Keeping in mind equations (6) and (7), we note thatY andV will be positive only when
F (N) = 0 has a root in the interval( A

α+d ,
A
d ). From equation (8) it is easy to observe
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that,F ( A
α+d) < 0 andF (A

d ) > 0, if βd+γφ
(ν+α+d)(φ+d) > 1 (i.e.,R(φ) > 1, see Section 4).

Thus, there exists a rootN of F (N) = 0 in A
α+d < N < A

d . Also F ′(N) > 0 in
A

α+d < N < A
d . Hence, there exists a unique positive rootN given byF (N) = 0.

Knowing the value ofN , we can compute the values ofY andV from equations (6) and
(7), respectively.

Thus there exists a unique carrier-free equilibriumE1(Y , V ,N, 0), provided the
conditionR(φ) > 1 is satisfied.

3. The endemic equilibrium,E2(Y
∗, V ∗, N∗, C∗).

The endemic equilibriumE2 is given by the solution of the following set of algebraic
equations,

(βY + λCN)(N − Y − V ) + (γY + ν1CN)V − (ν + α+ d)Y N = 0, (9)

Y =
A− dN

α
, (10)

V =
φN [(α+ d)N −A]

αN(φ+ d+ ν1C) + γ(A− dN)
, (11)

C =
L(N)[s(N) − s1]

s0
, (12)

We may reduce equation (9) in a single variableN i.e.,F (N) = 0 by using equations
(10), (11) and (12), where

F (N) = (βY + λCN)(N − Y − V ) + (γY + ν1CN)V − (ν + α+ d)Y N. (13)

It is clear from equation (13) thatF ( A
α+d ) < 0 andF (A

d ) > 0. This implies that there

exists a rootN of F (N) = 0 in A
α+d < N < A

d . Also,F ′(N) > 0, provided,[αν1NC′−

γA] > 0. Hence, there exists a unique positive rootN∗ given byF (N) = 0 in A
α+d <

N < A
d . Knowing the value ofN∗, the values ofY ∗, V ∗ andC∗ can be computed

from equations (10), (11) and (12), respectively. Thus, theequilibriumE2 exists provided
s(N∗) − s1 > 0 andF ′(N) > 0. From equation (13) it is easy to note thatF (N) > 0.
Keeping in mind the above analysis of equation (13) we haveN > N∗. From equation
(12), it may be noted thatdC∗/dN∗ > 0 in view of equations (2) and (3). Thus, the
equilibrium value of carrier population density increaseswith increase in the equilibrium
value of human population.

4 Stability analysis

Now, we analyze the stability of equilibriaE0, E1 andE2. The local stability results of
these equilibria are stated in the following theorem:
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Theorem 1. The equilibriumE0 is unstable wheneverE1 or E2 exists,E1 is unstable
wheneverE2 exists and the equilibriumE2 is locally asymptotically stable provided the
following conditions are satisfied,

α

[

(β − γ)Y ∗

N∗
+ (λ− ν1)C

∗

]2

<
1

4
b1b

2
2b3 min

{

b1

4b3
(

φ+ γV ∗

N∗

)2 ,
d

3
(

φ+ γV ∗Y ∗

N∗

) ,
k3s0C

∗

3ν2
1V

∗2L(N∗)

}

, (14)

3αL2(N∗)[λ(N∗−Y ∗−V ∗)+ν1V
∗]2

[

s′(N∗)+
s0C

∗L′(N∗)

L2(N∗)

]2

<
8

27
b1b3ds

2
0, (15)

where

b1 =

[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

,

b2 =

(

φ+ d+
γY ∗

N∗
+ ν1C

∗

)

,

b3 =

[

βY ∗

N∗
+

(β − γ)V ∗Y ∗

N∗2
+ λC∗

]

.

Proof. The general variational matrixM for the system (4) is given as follows:

M=











m11 m12 m13 m14

−
(

φ+ γV
N

)

−
(

φ+d+ν1C+ γV
N

)

φ+ γV Y
N2 −ν1V

−α 0 −d 0

0 0 s′(N)C+ s0C2

L2(N)L
′(N) s(N)−s1−

2s0C
L(N)











,

where

m11 =
β(N − Y − V )

N
−
βY

N
− λC +

γV

N
− (ν + α+ d),

m12 = −
βY

N
− λC +

γV

N
+ ν1C,

m13 =
βY

N
−
β(N − Y − V )Y

N2
+ λC −

γV Y

N2
,

m14 = λ(N − Y − V ) + ν1V.

The variational matrixM0 (M evaluated atE0) of model (4) is given by,

M0 =











βd+γφ
φ+d − (ν + α+ d) 0 0 A(λd+ν1φ)

d(φ+d)

−φ(γ+φ+d)
φ+d −(φ+ d) φ − ν1φA

d(φ+d)

−α 0 −d 0

0 0 0 s(A/d) − s1











.
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The eigenvalues ofM0 areψ1 = βd+γφ
φ+d − (ν + α + d), ψ2 = −(φ + d), ψ3 = −d and

ψ4 = s(A/d) − s1. Since all the model parameters are assumed to be nonnegative, it
follows thatψ2, ψ3 < 0. Thus, the stability ofE0 will depend on the sign ofψ1 andψ4.

We define a threshold parameterR(φ) = βd+γφ
(φ+d)(ν+α+d) (say vaccine induced repro-

duction number). The disease free equilibrium (DFE) is locally asymptotically stable if
R(φ) < 1 ands(A/d) − s1 < 0. Sinces(N) is an increasing function ofN , soψ4 < 0,
this always implies thats(N) − s1 < 0. Biologically s(A/d) − s1 < 0 implies the
absence of carrier population. Thus, DFE may be stable only in the absence of carrier
population because otherwise disease still persists even if there is no direct interaction of
susceptibles with infectives. Thus,E0 is unstable if eitherR(φ) > 1 or s(A/d)− s1 > 0,
keeping in mind that the necessary condition for the existence ofE1 isR(φ) > 1 and for
the existence ofE2 is s(N∗) − s1 > 0. Thus,E0 is unstable wheneverE1 orE2 exists.
Similarly one of the eigen values of the variational matrixM1 (M evaluated atE1) is
s(N) − s1. Now keeping in mind thatN > N∗, we have thatE1 is unstable whenever
E2 exists.

WhenR(φ) = 1, there exists backward bifurcation of the model system (4) without
carriers as explained below [20,23,24].

From equations (5), (6) and (7), we getφ as a function ofY alone

φ(Y ) =
d{[β − (ν + α+ d)](A − αY ) − βdY }

(

A− (α− γ)Y
)

{[(ν + α+ d) − γ](A− αY ) + γdY }(A− αY )
. (16)

From equation (16), we note that

φ(0) =
d[β − (ν + α+ d)]

(ν + α+ d) − γ
= d

R0 − 1

1 −R1
.

The expression forφ(0) is the threshold vaccination rate given by the termφC1 in equa-
tion (33).

We have already shown the uniqueness ofY for R(φ) > 1 in Section 3. Now here
we show the bifurcation analysis for the disease free equilibriumE0 whenR(φ) = 1. We
note that forR(φ) = 1, one eigenvalue ofM0 is 0, whereas other eigenvalues are negative
provideds(A/d) − s1 < 0.

From equation (16), we haveφ′(0) > 0 provided

(R0 − 1)

(

R1 −
d

(ν + α+ d)(1 −R1)

)

>
d

ν + α+ d
. (17)

Whend is very small,ν andα are large,R1 is far from both0 and1 andR0 is large. Then
there is a backward bifurcation atR(φ) = 1 for the model (4) as above inequality (17) is
satisfied.

For one set of parameters we have made a graph ofY ∗ versusR(φ) showing back-
ward bifurcation. In Fig. 2 we have shown the backward bifurcation of the model (4)
at R(φ) = 1 for the parameter valuesA = 1.0, α = 1.0, β = 5.0, d = 0.1, ν =
0.35, γ = 0.6. Fig. 2 also shows that there may exist two endemic equilibria of system (4)
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Fig. 2. Bifurcation diagram of the model system (4).

for R(φ) < 1. Out of these two equilibria one will be stable (solid line),whereas second
one will be unstable (dashed line).

To establish the local stability of endemic equilibriumE2, we consider the following
positive definite function,

U1 =
1

2

(

k0y
2 + k1v

2 + k2n
2 + k3c

2
)

, (18)

whereki (i = 0, 1, 2, 3) are positive constants to be chosen appropriately andy, v, n and
c are small perturbations aboutE2, as follows

Y = Y ∗ + y, V = V ∗ + v, N = N∗ + n and C = C∗ + c.

Differentiating (18), with respect tot, using the linearized system corresponding toE2,
we get,

dU1

dt
= − k0

[

β
Y ∗

N∗
+
λN∗C∗

Y ∗
+

(λ− ν1)V
∗C∗

Y ∗

]

y2

− k1

(

φ+ d+ γ
Y ∗

N∗
+ ν1C

∗

)

v2 − k2dn
2 −

k3s0C
∗

L(N∗)
c2

−

{

k0

[

(β − γ)
Y ∗

N∗
+ (λ− ν1)C

∗

]

+ k1

(

φ+ γ
V ∗

N∗

)}

vy

+ k1

(

φ+ γ
V ∗Y ∗

N∗2

)

vn− k1ν1V
∗vc

+

[

k0

(

β
Y ∗2

N∗2
+ (β − γ) +

V ∗Y ∗

N∗2
+ λC∗

)

− αk2

]

ny

+ k0

[

λ
(

N∗ − V ∗ − Y ∗
)

+ ν1V
∗
]

yc+ k3

[

s′(N∗)C∗ +
s0C

∗2

L2(N∗)
L′(N∗)

]

nc.
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Now dU1

dt will be negative definite under the following conditions,

k0

[

(β − γ)
Y ∗

N∗
+ (λ− ν1)C

∗

]2

< k1

(

φ+ d+ γ
Y ∗

N∗
+ ν1C

∗

)[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

, (19a)

k1

(

φ+
γV ∗

N∗

)2

< k0

(

φ+ d+ γ
Y ∗

N∗
+ ν1C

∗

)[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

, (19b)

{

k0

[

βY ∗2

N∗2
+ λC∗ +

(β − γ)V ∗Y ∗

N∗2

]

− αk2

}2

<
2k0k2d

3

[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

, (19c)

k0

[

λ
(

N∗ − Y ∗ − V ∗
)

+ ν1V
∗
]2

<
2k3

3

s0C
∗

L(N∗)

[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

, (19d)

k1

(

φ+
γV ∗Y ∗

N∗2

)2

<
k2

3
d

(

φ+ d+ γ
Y ∗

N∗
+ ν1C

∗

)

, (19e)

k1ν
2
1V

∗2 <
k3

3

s0C
∗

L(N∗)

(

φ+ d+ γ
Y ∗

N∗
+ ν1C

∗

)

, (19f)

k3

[

s′(N∗)C∗ +
s0C

∗2

L(N∗)
L′(N∗)

]2

<
4k2ds0C

∗

9L(N∗)
. (19g)

Choosingk0 = α
βY ∗2

N∗2 + (β−γ)V ∗Y ∗

N∗ +λC∗

, k2 = 1, we can choosek1 andk3 such that

4α
[ (β−γ)Y ∗

N∗
+ (λ− ν1)C

∗
]2

b1b2b3
< k1

< b2 min

{

b1

4b3
(

φ+ γV ∗

N∗

)2 ,
d

3
(

φ+ γV ∗Y ∗

N∗2

) ,
k3s0C

∗

3ν2
1V

∗2L(N∗)

}

,

3αL(N∗)[λ(N∗ − Y ∗ − V ∗) + ν1V
∗]2

2s0C∗b1b3
< k3

<
4ds0C

∗

9L(N∗)
[

s′(N∗)C∗ + s0C∗2L′(N∗)
L2(N∗)

]2 ,
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where

b1 =

[

λN∗C∗

Y ∗
−

(λ− ν1)V
∗C∗

Y ∗
+
βY ∗

N∗

]

,

b2 =

(

φ+ d+
γY ∗

N∗
+ ν1C

∗

)

,

b3 =

[

βY ∗2

N∗2
−

(β − γ)V ∗Y ∗

N∗2
+ λC∗

]

.

The stability conditions are then obtained as given in the theorem. Hence,dU1

dt is a
negative definite under the conditions (14) and (15) as stated in the statement of the
theorem, showing thatE2 is locally asymptotically stable.

To study the nonlinear asymptotic stability of endemic equilibrium E2, we require
the bounds of dependent variables. For this, we state the following lemma giving the
region of attraction, without proof.

Lemma. The region of attraction for the system(4) is given by,

Ω =

{

(Y,N, V, C) : 0 ≤ Y ≤ N ≤ A/d, 0 ≤ V ≤
φA

d(φ+ d)
, 0 ≤ C ≤ Cm

}

(20)

which attracts all solutions initiating in the positive orthant, whereCm = L(A/d)
s0

×
[s(A/d) − s1].

Theorem 2. In addition to assumptions(2) and (3), let s(N) andL(N) satisfy0 ≤
s′(N) ≤ p and 0 ≤ L′(N) ≤ q for some positive constantsp and q in Ω, thenE2 is
nonlinearly asymptotically stable inΩ provided the following inequalities are satisfied:

αN∗

[

β − γ

N∗
+
λCm

Y ∗

]

<
1

5
dβ, (21)

αN∗L2(N∗)
[

λ
(

N∗ − Y ∗ − V ∗
)

+ ν1V
∗
]2

[

p+
s0qCm

L2
0

]2

<
4

45
βds20Y

∗2, (22)

N∗

[

β − γ

N∗
+

(λ− ν1)Cm

Y ∗

]2

<
1

5
β

(

φ+ d+
γY ∗

N∗

)2

× min

{

β

5
(

φ+ γφA
d(φ+d)N∗

)2 ,
d

4
(

φ+ γA
dN∗

)2 ,
m3s0

3ν2
1V

∗2L(N∗)

}

. (23)

It is clear from (22) that in the absence of human related factors, i.e.,p = q = 0, the
inequality is automatically satisfied. This implies that human population related factors,
conducive to the growth of carrier population, have a destabilizing effect on the system.
Here we also note that due to presence of a vaccinated class, acondition (23) is required
for the nonlinear stability which further destabilizes thesystem.
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Proof. Consider the following positive definite function,

U2 = m0

(

Y − Y ∗ − Y ∗ ln
Y

Y ∗

)

+
m1

2

(

V − V ∗
)2

+
m2

2

(

N −N∗
)2

+m3

(

C − C∗ − C∗ ln
C

C∗

)

,

(24)

where the coefficientsm0,m1,m2 andm3 can be chosen suitably. Differentiating (24)
with respect tot and using (4), we get,

dU2

dt
= −

[

m0λNC

Y Y ∗
+
m0(λ− ν1)V C

Y Y ∗

]

(Y − Y ∗)2 −m1ν1C(V − V ∗)2

−

{

m0β

5N∗
(Y − Y ∗)2 +

m2d

4
(N −N∗)2

−m0

[

λC

Y ∗
+
β(Y + V )

NN∗
−

γV

NN∗

]

(Y − Y ∗)(N −N∗)

}

−

{

m0β

5N∗
(Y − Y ∗)2 +

m2d

4
(N −N∗)2 +m2α(Y − Y ∗)(N −N∗)

}

−

{

m0β

5N∗
(Y − Y ∗)2 +

m1

4

(

φ+ d+
γY ∗

N∗

)

(V − V ∗)2

−m0

[

(λ− ν1)C

Y ∗
+
β − γ

N∗

]

(Y − Y ∗)(V − V ∗)

}

−

{

m0β

5N∗
(Y − Y ∗)2 +

m1

4

(

φ+ d+
γY ∗

N∗

)

(V − V ∗)2

+m1

(

φ+
γV

N∗

)

(Y − Y ∗)(V − V ∗)

}

−

{

m0β

5N∗
(Y − Y ∗)2 +

m3S0

3L(N∗)
(C − C∗)2

−m0
λ(N∗ − Y ∗ − V ∗) + ν1V

∗

Y ∗
(Y − Y ∗)(C − C∗)

}

−

{

m1

4

(

φ+ d+
γY ∗

N∗

)

(V − V ∗)2 +
m2d

4
(N −N∗)2

−m1

(

φ+
γV Y

NN∗

)

(V − V ∗)(N −N∗)

}

−

{

m1

4

(

φ+ d+
γY ∗

N∗

)

(V − V ∗)2 +
m3s0

3L(N∗)
(C − C∗)2

+m1ν1V
∗(V − V ∗)(C − C∗)

}

−

{

m2d

4
(N −N∗)2 +

m3s0
3L(N∗)

(C − C∗)2

−m3[f(N) + s0Cg(N)](C − C∗)(N −N∗)

}

,

(25)
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wheref(N) andg(N) are defined as follows,

f(N) =











s(N) − s(N∗)

N −N∗
, N 6= N∗,

ds

dN
, N = N∗

(26)

g(N) =















L(N) − L(N∗)

(N −N∗)L(N)L(N∗)
, N 6= N∗,

1

L2(N∗)

dL

dN
, N = N∗.

(27)

Then by using the assumptions of the theorem and the mean value theorem, we have,

|f(N)| ≤ p and |g(N)| ≤
q

L2
0

. (28)

After choosingm0 = 1,m2 = 1
α , we choosem1 andm3 such that:

5N∗
[

β
N∗

+ (λ−ν1)Cm

Y ∗

]2

β
(

φ+ d+ γY ∗

N∗

) < m1

<

(

φ+d+
γY ∗

N∗

)

min

{

α

5
(

φ+ γφA
d(φ+d)N∗

)2 ,
d

4
(

φ+ γA
dN∗

)2 ,
m3s0

3ν2
1V

∗2L(N∗)

}

, (29a)

N∗L(N∗)[λ(N∗−Y ∗−V ∗) + ν1V
∗]2

s0βY ∗2
< m3 <

4

45

ds0
αL(N∗)

1
[

p+ s0qCm

L2
0

]2 . (29b)

The stability conditions can then be easily obtained, as given in the statement of the
theorem. Thus,dU1

dt is negative definite under the conditions (21)–(23). Hence proof.

The above theorem implies that under appropriate conditions, if the carrier popula-
tion density increases, then the number of infectives in human population also increases
leading to fast spread of carrier dependent infectious diseases.

5 Vaccine induced reproduction number

We defineR(φ), the vaccine induced reproduction number as, (see Section 4) .

R(φ) =
βd+ γφ

(φ+ d)(ν + α+ d)
=

β

ν + α+ d

[

1 −
(β − γ)φ

β(φ+ d)

]

, (30)

where

R′(φ) = −
(β − γ)d

(β + d)2(ν + α+ d)
< 0 (sinceβ ≫ γ). (31)
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Thus,R(φ) is a decreasing function inφ ≥ 0. This indicates the impact of vaccina-
tion in reducing the vaccine induced reproduction number. Moreover, in the absence of
vaccination i.e.,

φ = 0, R(φ) =
β

ν + α+ d
= R0. (32)

From the definition ofR(φ) andR0, it is clear that the introduction of vaccination implies
R(φ) ≤ R0 and, consequently, ifR0 < 1 thenR(φ) < 1 whenφ > 0. ThusE0 is locally
asymptotically stable as long asR(φ) is less than one.

As indicated earlier thatβ ≫ γ, therefore, we can writeγ = σβ, where
0 ≤ σ < 1. From equation (30), we can deduce thatσR0 = σβ

ν+α+d ≤ R(φ) ≤ R0.

Thus if σβ
ν+α+d > 1 thenσ > σc ≡ ν+α+d

β . This implies thatR(φ) > 1 and, therefore,
no amount of vaccination can bringR(φ) below one. Henceσc defines the critical value
for the vaccine-related reduction rate of infection.

Also limφ→∞R(φ) = γ
ν+α+d = R1 which implies thatR1 < R0 asβ ≫ γ. Thus,

if the vaccination rate is sufficiently high thenR1 can be made less than one ifγ → 0.
Furthermore, we can writeR(φ) = dR0+φR1

φ+d usingR0 andR1. SettingR(φ) = 1 and
solving forφ, we get a threshold vaccination rate,φC1, given by (see Fig. 3)

φC1 =
d(R0 − 1)

1 −R1
. (33)

Fig. 3. Variation of vaccine induced reproduction numberR(φ) with vaccination
coverageφ.

Now considerR1 < 1 < R0, we getφC1 positive. HereR0 < 1 andR1 > 1 is
not admissible asβ ≫ γ. If φ > φC1, thenR(φ) < 1 asR(φ) is a decreasing function
for φ ≥ 0. Thus, if the vaccination coverage levelφ exceeds the thresholdφC1 then the
disease can be eradicated provided vaccine efficacy is high enough, i.e.γ = 0.

From equations (10)–(12), we also find that,

φ =
dV ∗[(d+ ν1C

∗)(A− αY ∗) + γdY ∗]

(A− αY ∗)[(A− αY ∗) − d(V ∗ + Y ∗)]
. (34)
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The critical vaccination level that ensures disease eradication, when carrier population
remains at its equilibrium is obtained as,

φC2 =
dV ∗[d+ ν1C

∗]

A− dV ∗
. (35)

Therefore, if critical vaccination levelφ is such thatφ > max(φC1, φC2), then disease
eradication is possible in the population.

6 Numerical simulation

It is noted here that our aim is to study, through a non-linearmodel and its qualitative
analysis, the role of vaccination on the spread of carrier dependent infectious diseases. It
is, therefore, desirable that we must show the existence of equilibrium values of variables
of the model as well as the feasibility of stability conditions numerically for a set of
parameters.

To study the dynamical behaviour of the model, numerical simulation of the system
(4) is done by MAPLE 7.0 using the parameters [9, 25]:β = 0.001, λ = 0.001, γ =
0.0001, ν1 = 0.00003, φ = 0.65, α = 0.45, ν = 0.4, d = 1/60, A = 1000, s0 = 0.8,
s1 = 0.75,L0 = 10000, a = 0.0001, b = 0.01, which satisfy stability conditions.

In the model,s(N) andL(N) are the growth rates and modified carrying capacity
of carrier population and are functions of human populationdensity. Thus, for numerical
simulation it is assumed thats(N) andL(N) are linear function ofN i.e.,s(N) = s0 +
aN andL(N) = L0 + bN , satisfying conditions (2) and (3).

The equilibrium values are computed as follows:

N∗= 3603.244658, Y ∗= 2088.768716, V ∗= 1198.816861, C∗= 5147.537066.

The eigen values corresponding to variational matrix of endemic equilibrium are:

−6.199634202, −0.5019151699, −0.1509347167, −0.0001247976042.

Since all the eigen values are found to be negative, therefore, endemic equilibrium is
locally asymptotically stable for the above set of parameters.

The computer simulations are performed for different initial starts in the following
four cases and displayed graphically in Figs. 4, 5. In these figures the variation of
infectives and vaccinated population with total human population respectively is shown.
The trajectories starting with different initial starts reach equilibrium pointE2. Hence we
infer that the system (4) may be nonlinearly asymptoticallystable about this equilibrium
pointE2 for the above set of parameters.

(i) Y (0) = 3200, V (0) = 300, N(0) = 4000, C(0) = 5000,

(ii) Y (0) = 1000, V (0) = 100, N(0) = 2000, C(0) = 5000,

(iii) Y (0) = 500, V (0) = 2000, N(0) = 3000, C(0) = 5000,

(iv) Y (0) = 2000, V (0) = 2500, N(0) = 5000, C(0) = 5000.
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Fig. 4. Variation of total human population
with infective population.

Fig. 5. Variation of total human population
with vaccinated population.

The results of numerical simulation are displayed graphically in Figs. 6–14. In
Figs. 6, 7, the variation of infective and vaccinated population is shown respectively
for different values of vaccination rateφ. It is found that as vaccination rate (φ) in-
creases, the infective population decreases, whereas the vaccinated population increases
tremendously. This signifies that only by increasing the vaccination rate, spread of carrier
dependent infectious disease cannot be significantly controlled.

Fig. 6. Variation of infective population for
different values of vaccination rateφ.

Fig. 7. Variation of vaccinated population
for different values of vaccination rateφ.

Figs. 8, 9 depict the role of decay coefficient (s1) of carrier population on carriers
and infectives. When there is a rise in the decay coefficient either due to natural factors or
control measures, carrier population density decreases significantly, and consequently the
infective population declines. This decline in infective population is not much significant.
It seems, it is due to the fact that disease spreads not only through carriers but also through
direct interaction of susceptibles with infectives. It is,therefore, speculated that not only
the growth of carrier population be curbed using effective control mechanism but the
direct interaction of susceptibles with infectives be alsorestricted. This is also clear from
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Fig. 10, where variation of infective population is shown for different values of contact
rates of susceptibles with carrier population density. Theinfective population increases
with the increase in the contact rate of susceptibles with carrier population.

Fig. 8. Variation of carrier population for
differents1, the control parameter.

Fig. 9. Variation of infective population for
differents1, the control parameter.

Fig. 10. Variation of infective population
for different values of contact rateλ.

As is pointed out earlier that due to inefficacy of vaccines, some of the vaccinated
population may again become infected due to interaction with infectives as well as with
carriers. In Figs. 11, 12, the effect ofγ andν1, the contact rate of vaccinated population
with infectives and with carrier population density respectively, is shown on vaccinated
and infective populations. It is found that with increase intransmission rateγ andν1, the
vaccinated population decreases, which in turn, increasesthe infective population. Thus,
we conclude that vaccine efficacy should be high enough so that vaccinated individuals
do not get infected either by direct interaction with infectives or with carrier population
density (see Figs. 11, 12 forγ = 0, ν1 = 0). In Fig. 13, the effect of disease induced
death rate is shown and it is found that with increase inα, the infective population also
decreases. Fig. 14 shows the effect of immigration rate of susceptibles and it is seen
that the infective population increases with increase in the rate of immigration. Thus, the
constant migration of susceptibles make the disease more endemic.
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Finally from the above discussion, we infer that in order to keep the spread of carrier
dependent infectious diseases under control, a proper vaccination campaign (as discussed
in Section 5) dependent on the critical vaccination rate, beintroduced. Moreover, the
vaccine efficacy be high enough to ensure that vaccinated persons while coming in contact
with infectives or carriers, are not infected again. A suitable control mechanism like
elimination of carrier breeding sites, larvaciding, adulticiding, etc. may be devised so
that the carrier population density is diminished which otherwise increases due to human
population related factors and other unhygienic environmental conditions leading to fast
spread of infectious diseases.

Fig. 11. Variation of vaccinated population
for different values ofγ andν1.

Fig. 12. Variation of infective population
for different values ofγ andν1.

Fig. 13. Variation of infective population
for different values of disease induced-

death rateα.

Fig. 14. Variation of infective population
for different rates of immigrationA.

7 Conclusions

In this paper, a nonlinear vaccination model is proposed andanalyzed to study the spread
of carrier dependent infectious diseases with vaccinationin a population with variable
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size structure. It is assumed that the disease spreads by direct contact of susceptibles
with infectives and by carrier population density present in the environment. The density
of carrier population, which increases by environmental and human population related
factors, is assumed to be governed by a generalized logisticmodel. The growth rate per
capita and the modified carrying capacity of the carrier population are also assumed to
increase as the human population density increases. Some inferences have been drawn
regarding the spread of the disease by establishing local and global stability results and
numerical simulation. The model exhibits three equilibria, namely disease free, carrier
free and endemic equilibrium. The first two equilibria are found to be unstable, whereas
third equilibrium is locally stable. It is also found to be nonlinearly asymptotically
stable under certain conditions. We have found a threshold condition in terms of vaccine
induced reproduction numberR(φ) which is, if less than one, the disease dies out, in
the absence of carrier population otherwise the infection is maintained in the population.
And atR(φ) = 1, the model exhibits backward bifurcation. The results showthat in the
absence of carrier population into the community, if vaccination rate is above the critical
vaccination level (to ensureR(φ) < 1) then the disease can be eradicated. The presence
of human population related factors, causing the growth of carrier population, have a
destabilizing effect on the system. Moreover, if the vaccination rate is above a critical
level φC2, then carrier dependent infectious disease does not take a form of epidemic
provided the density of carrier population remains at its equilibrium level.

Thus, three main control strategies against the spread of carrier dependent infectious
diseases in the human population are carrier (such as flies, ticks, mites etc.) reduction
policy, vaccination against the disease and the vaccine efficacy. The carrier reduction
strategies may include elimination of carrier breeding sites, larvaciding, adulticiding,
keeping surroundings clean and hygienic. On the other hand,vaccinating the susceptibles
such that vaccination level is maintained above the critical vaccination levelφC i.e.,
max(φC1, φC2) and the vaccine efficacy be high enough so that vaccinated individuals
are not infected again either by infectives or by carriers.
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