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Abstract. We have proposed and analyzed a nonlinear mathematicall rfardehe
spread of carrier dependent infectious diseases in a papulsith variable size structure
including the role of vaccination. It is assumed that theceptibles become infected by
direct contact with infectives and/or by the carrier pogiolapresent in the environment.
The density of carrier population is assumed to be goverryed deneralized logistic
model and is dependent on environmental and human factachatre conducive to the
growth of carrier population. The model is analyzed usirdpiity theory of differential
equations and numerical simulation. We have found a thtdstandition, in terms of
vaccine induced reproduction numbefe) which is, if less than one, the disease dies out
in the absence of carriers provided the vaccine efficacygis @hough, and otherwise the
infection is maintained in the population. The model alshileits backward bifurcation
at R(¢) = 1. Itis also shown that the spread of an infectious diseaseases as the
carrier population density increases. In addition, thestamt immigration of susceptibles
makes the disease more endemic.

Keywords: carrier dependent, infectious diseases, vaccination,amiental discharge,
modified carrying capacity, backward bifurcation.

1 Introduction

Many infectious diseases are spread by direct contact keetaugsceptibles and infectives.
Other diseases are spread in the environment and are ttgetstoithe human population
by insects or other vectors. Here we develop and analyze &Infaddiseases that are
transmitted in both ways. This is the case for typhoid fevet ather enteric diseases.
There are many carrier dependent infectious diseases vdffilott human population

around the world. However, the third world countries are tadfected by such diseases
due to lack of sanitation, wide occurrence of carriers sdfies, ticks, mites, etc. which
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are generally present in the environment [1]. For exampldh@ne carriers or bacteria

spread diseases such as tuberculosis and measles; wtalebmate carriers or bacteria
are responsible for the spread of dysentery, gastrodstetitirrhea, etc. [2—4]. These

carriers transport infectious agents of diseases frontiivis to susceptibles and thus
spread such diseases in human population. In this paperwvesised the term carriers as
a mode of transmission only, which transmit infectious agendiseases from infectives

to susceptibles, without having clinical symptoms.

The modeling and analysis of infectious diseases have ba@sloy many workers,
see for example [5-11]. In particular, Hethcote [10] disaasan epidemic model in
which carrier population is assumed to be constant. Buteireal, the size of the carrier
population varies and depends on the natural conditionke®hvironment as well as
on various human related factors. The effect of variableé&apopulation has not been
considered in these studies, however the spread of sudsésés very much dependent
on the carrier population, the density of which increasestd@nvironmental factors such
as temperature, humidity, rain, vegetation, etc. in thataaly3,12-14]. In particular,
Ghosh et al. [13] studied the spread of carrier dependestiiofus diseases with environ-
mental effects using variable carrier population. The dgé carrier population further
increases as the human population density increases. Wdthase in human popula-
tion density, the effects of human population related fesclike discharge of household
wastes, open sewage drainage, industrial effluents inewetad areas, open water storage
tanks and ponds etc. leads to further growth of carrier pdjor density. This provides
a very conducive environment for the growth of these cegnidrich enhances the chance
of carrying more bacteria from infectives to the suscepshih the population leading
to fast spread of carrier dependent infectious diseasess, Tmhygienic environmental
conditions in the habitat caused by human population bec@sonsible for the fast
spread of an infectious disease. It is, therefore, reaseriabassume that the carrier
population density is governed by a generalized logistid@ho The per capita growth
rate and the modified carrying capacity of carrier poputatice taken to be functions
of human population density and assumed to increase as tharhpopulation density
increases [3,14-16]. In particular, Singh et al. [16] staldhe spread of malaria by taking
into account mosquito population density governed by aigdized logistic model.

It may be noted that the outbreak of infectious diseasesecauastality of millions
of people as well as expenditure of enormous amount of monlegalth care and disease
control. It is, therefore, essential that adequate atiamiust be paid to stop spreading
of such diseases by taking control measures. Vaccinatiamiportant control measure
to reduce spreading of such diseases. Various modelingesthdve been made to study
the role of vaccination on the spread of infectious diseflses22]. In particular, Shulgin
et al. [21] studied a simple SIR epidemic model with pulsecimation and showed that
pulse vaccination leads to epidemic eradication if certaimditions regarding the magni-
tude of vaccination proportion and on the period of pulsessatisfied. Kribs-Zaleta and
Velasco-Hernandez [20] presented a simple two dimens®isimodel with vaccination
exhibiting backward bifurcation. Farrington [18] analgzthe impact of vaccination
program on the transmission potential of the infection mgéapopulations and derived
relation between vaccine efficacy against transmissiatina coverage and reproduction
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numbers. Gumel and Moghadas [19] proposed a model for thendips of an infectious
disease in the presence of a preventive vaccine considesimginear incidence rate and
found the optimal vaccine coverage threshold needed feadiscontrol and eradication.

In the case of carrier dependent infectious diseases likeecd measles, etc., the
vaccination can be an important tool to help control theap such diseases especially
when the density of carrier population increases with hup@pulation density related
factors. Itis pointed out here that in above models, vaditindas been studied without
considering the effective role of variable carrier popigiatwhich depends on human
population related factors and is responsible for sprepthie infectious diseases. In
this paper, we extend the model presented by Singh et al.gdd]Ghosh et. al [15]
by incorporating the effect of vaccination on the spreadasfier dependent infectious
diseases and assuming a generalized logistic model gogettré growth of carrier popu-
lation. In addition, we use more realistic standard massmatype interaction for direct
contact between susceptibles and infectives instead gfleimass action. However, we
assume that susceptibles are infected by carriers in diregtortion to the density of
carrier population (bilinear interaction). The model iszed qualitatively to determine
the stability of its associated equilibria and the optimadaine coverage level needed to
control effectively or eradicate the disease. The numksigaulation of the model is also
given to see the influence of certain key parameters on tleadmf the disease.

2 Mathematical modd

We consider the human populatidi(¢) at timet¢ with immigration of susceptibles at a
constant rated. The total population is divided into three subclasses:silceptibles
X (¢), the infectives(¢) and the vaccinated individual$(t). In the modeling process, it
is assumed that the susceptibles are infected by the diecaction with infectives and
also by the carrier population of densi(t), which is governed by a generalized logistic
model. It is further assumed that the susceptibles are vat=d at a constant rate and
some of them may again become infected while coming in comtiglc infectives or with
carriers due to inefficacy of vaccines. It is also considehed the infected individuals,
after being recovered, may again become susceptible. Dok diagram of the model is
given in Fig. 1.

Fig. 1. Block diagram of the model.
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Thus, by assuming standard mass action interaction foctdigntact between sus-
ceptibles and infectives and simple mass action intenatt@ween susceptibles and car-
rier population density, the model dynamics is governedtigding system of nonlinear
ordinary differential equations:

%ng_@%K—AXC+VY—¢X—¢&
%%ZQ%Z+AXC—@+a+mY+1%Z+mVQ
C—ox L ve -,

%g:A—dN—MC @)
dc 500

e (V) _% 51C,

X+Y+V=N,
X(0)=Xo>0, Y(0)=Yy >0, V(0)=Vy >0,
N(0) = No >0, C(0)=Co >0,

where 8 and A\ are transmission coefficients due to infectives and capggulation
respectively. The paramete¢sr, andd represent the vaccination coverage (of sus-
ceptibles), therapeutic treatment coverage (of infectetividuals) and natural deaths
respectively,a is the disease related death constagngnd v, denote the transmission
coefficient of vaccinated individuals due to interactiothninfectives and carrier popu-
lation respectively. However, the rate with which vacoathpersons become infected is
very small as compared to the rate with which susceptiblesmfgcted i.e.;y <« 3 and

1 < A. The constant; is the death rate coefficient of carriers due to natural facto
as well as by control measures. HegéN) denotes the growth rate per capita of the
carrier population density such that/NV) — s; is its intrinsic growth rate. It may be
noted that if the growth rate and death rate due to naturaledisas control measures of
carrier population are balanced, then it may tend to zemil&ily, L(N) is the modified
carrying capacity of the carrier population and its vaIuEGN)[%] as compared to
usual logistic model.

It has been pointed out in the introduction, that as the hupogoulation increases,
the effects of human population related factors/actigigeahance the chances of growth
of carrier population. Thus, in the model,N) and L(N) are taken to be functions of
total human population instead of infective populatiomc®iwe assume that the growth
rate per capita increases as the human population densiaises, we have

5(0) = 59 and s'(N) > 0, 2

wheres is the value of(IV) at N = 0 and()’ denotes the derivative of the function with
respect to its argument. We also assume that the modifiedimgutapacity increases
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with human population density, so that
L(0)=Lo>0 and L'(N)>0, (3)

whereLy is the value ofL.(N) whenN = 0.

From equations (1), (2) and (3), we see that even if humanlptipn related factors
are absent, carrier population density increases in itgralénvironment and it tends to
Lo(1— 2—[1)) which may become zero iff — sq. In the model, all the dependent variables
and parameters are assumed to be non-negative.

3 Equilibrium analysis
It is sufficient to consider the reduced system of model (hcesX +Y +V = N) as
follows:

ay N-Y-V)Y vy
:5(—)+,\(NfY—V)Cf(v+a+d)Y+7—+V1VC’

dt N N

av %%

SNy -V) - L Ve —av,

dt N

dN (4)
—~ = A—dN —ay,

dt

dC 8002

—~ _g(N)C — 22— _ i

g” s(N)C V) 51C

The equilibrium analysis of the model system (4) has beenechout and the results
are given as follows. There exist following three non-nagatquilibria of the system (4).

1. Disease free equilibriuni (0, d(i—fd), %, 0) exists, without any condition. The exis-
tence ofEj is obvious.

2. Carrier free equilibriumg, (Y, V, N, 0).
This equilibrium may be obtained by solving the followingelbraic equations,

BN =Y)=(B=7)V-(r+atdN=0, (%)
A—dN ©)

dN[(a+ d)N — 4] Ko

T a(@+d)N + (A —dN)

Using equations (6) and (7) in equation (5), we get an aldebrpation in single variable
N,i.e,F(N) =0, whereF'(N) is given by the following equation,

F(N)=[8-(v+a+dN—(8-7)V-pY. (8)

Y =

Keeping in mind equations (6) and (7), we note thHaand1” will be positive only when

F(N) = 0 has a root in the intervdl—Z, 4). From equation (8) it is easy to observe
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that, F(;45) < 0andF(4) > 0, if o2Hae - > 1 (e, R(¢) > 1, see Section 4).

Thus, there exists a rod¥ of F(N) = 0in 45 < N < 4. Also F/(N) > 0in
—- < N < 4. Hence, there exists a unique positive raétgiven by F(N) = 0.
Knowing the value ofV, we can compute the values BfandV” from equations (6) and
(7), respectively.

Thus there exists a unique carrier-free equilibriiin(Y, V', N,0), provided the

conditionR(¢) > 1 is satisfied.
3. The endemic equilibriunfy (Y*, V*, N* C*).

The endemic equilibriunty is given by the solution of the following set of algebraic
equations,

(BY + A\CN)(N =Y =V)+ (7Y +iCN)V — (v + a+ d)Y' N =0, 9)
v Afade (10)
Vo dN[(a+d)N — A
 aN(¢p+d+vC)+~(A—dN)’
L(N)[s(N) — 51

C = , (12)
S0

(11)

We may reduce equation (9) in a single variabld.e., F'(N) = 0 by using equations
(10), (11) and (12), where

F(N)=(BY + \CN)(N =Y = V) + (7Y + nCN)V — (v + a + d)Y'N. (13)

Itis clear from equation (13) thaf(;4;) < 0 andF(4) > 0. This implies that there

exists aroofV of F(N) = 0in 45 < N < 4. Also, F'(N) > 0, provided o, NC' —
~A] > 0. Hence, there exists a unique positive rddt given by F(N) = 0 in a%d <

N < g. Knowing the value ofN*, the values ofY*, V* and C* can be computed
from equations (10), (11) and (12), respectively. Thusetingilibrium E» exists provided
s(N*) —s; > 0andF’(N) > 0. From equation (13) it is easy to note tHatN) > 0.
Keeping in mind the above analysis of equation (13) we Mdve N*. From equation
(12), it may be noted thatC*/dN* > 0 in view of equations (2) and (3). Thus, the
equilibrium value of carrier population density increagdth increase in the equilibrium
value of human population.

4 Stability analysis

Now, we analyze the stability of equilibri&y, £, and E>. The local stability results of
these equilibria are stated in the following theorem:
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Theorem 1. The equilibriumEj is unstable whenevel; or F, exists,FE; is unstable
wheneverE; exists and the equilibriunf; is locally asymptotically stable provided the
following conditions are satisfied,

AV 2
(% % + ()\ — V1)C*:|
1 . b1 d k35()0*
< =b1b2bs min —, O , (14)
47 {4b3(¢+% )27 3(¢+ 15 3v%V*2L<N*)}
C*L/(N*)1* 8
3al?(N*)NN*=Y*=V*) 41, V*]? [SI(N*HSOTN(*))] < 2—7b1b3d33, (15)
where
b AN*C* (A =—wm)V*Cr N BY*
1= Y* Y* N* ’
Y*
by = (¢+d+ ,;V* +l/10*),
b3|:N*+ Nz +ACT .

Proof. The general variational matrix/ for the system (4) is given as follows:

mii mio mis mig
. —(3+%) —(p+d+nC+Xf) o+ —nV
o —a 0 —d 0 ’
0 0 §'(N)C+ 255 L/ (N) s(N)—s1— 258
where
_BIN-Y-V) pBY YV
mi = N N )\CJrN (v+a+d),
Y v
mio = 7% 7)\C+PYW + 11 C,
_BY BIN-Y V)Y AVY
iz = T e +AC — N2

m14:)\(N—Y—V)—|—1/1V.

The variational matrix\/, (M evaluated atry) of model (4) is given by,

m AQd4116)
T ;( (V;g +d) 00 Sges
Y+o+ vipA
My = T e+ —(o+d) ¢ —aGia
—a 0 —d 0
0 0 0 s(A4/d)—s;
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The eigenvalues af/, arey, = % —(w+a+d), s = —(¢+d), 3 = —dand
¥y = s(A/d) — s1. Since all the model parameters are assumed to be nonregativ
follows thatis, 13 < 0. Thus, the stability ofsy will depend on the sign af; andy.

We define a threshold paramefefo) = % (say vaccine induced repro-
duction number). The disease free equilibrium (DFE) is lgaasymptotically stable if
R(¢) < 1ands(A/d) — s; < 0. Sinces(N) is an increasing function a¥, soy, < 0,
this always implies that(NV) — s; < 0. Biologically s(4/d) — s; < 0 implies the
absence of carrier population. Thus, DFE may be stable ontligé absence of carrier
population because otherwise disease still persists é#eere is no direct interaction of
susceptibles with infectives. Thuk, is unstable if eitheR(¢) > 1 ors(A/d) —s; > 0,
keeping in mind that the necessary condition for the exégteri F; is R(¢) > 1 and for
the existence of’; is s(N*) — s; > 0. Thus,Ej is unstable whenevdr; or E, exists.
Similarly one of the eigen values of the variational matki% ()M evaluated afF,) is
s(N) — s1. Now keeping in mind thalv > N*, we have thaf; is unstable whenever
FE5 exists.

WhenR(¢) = 1, there exists backward bifurcation of the model system (#)aut
carriers as explained below [20, 23, 24].

From equations (5), (6) and (7), we geas a function o™ alone

dB—-v+a+d)(A—-aY) —ﬁdY}(A— (c —W)Y)

{{lv+a+d) —7](A—aY)+~dY}(A—aY) (16)

oY) =

From equation (16), we note that

_dlf—(v+a+d] [ Ro—1
$(0) = v+a+d) —~ 7d1—R1'

The expression fog(0) is the threshold vaccination rate given by the tefm in equa-
tion (33).

We have already shown the uniquenes¥ dbr R(¢) > 1 in Section 3. Now here
we show the bifurcation analysis for the disease free dariilin £y whenR(¢) = 1. We
note that forR(¢) = 1, one eigenvalue af{; is 0, whereas other eigenvalues are negative
provideds(A/d) — s1 < 0.

From equation (16), we havg(0) > 0 provided

d d
(RO 1)<R1 (V+Oz+d)(1—R1)>>l/+oz+d' (17)
Whend is very smally anda are large R, is far from both0 and1 andRj is large. Then
there is a backward bifurcation &(¢) = 1 for the model (4) as above inequality (17) is
satisfied.

For one set of parameters we have made a grapfrrofersusR(¢) showing back-
ward bifurcation. In Fig. 2 we have shown the backward bétion of the model (4)
at R(¢) = 1 for the parameter valued = 1.0, « = 1.0, § = 5.0, d = 0.1, v =
0.35, v = 0.6. Fig. 2 also shows that there may exist two endemic equlibfisystem (4)
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Fig. 2. Bifurcation diagram of the model system (4).

for R(¢) < 1. Out of these two equilibria one will be stable (solid linehereas second
one will be unstable (dashed line).

To establish the local stability of endemic equilibridty, we consider the following
positive definite function,

Ui = (k?()y2 + k11)2 + k2n2 + k302), (18)

|~

wherek; (i = 0,1, 2, 3) are positive constants to be chosen appropriatelyand. and
c are small perturbations abo#bt, as follows

Y=Y"+y, V=V*"4+v, N=N'4+n and C=C"+c

Differentiating (18), with respect tt using the linearized system correspondingtg
we get,

du; Y* OAN*C* (A—1)VECH]

a - Mo {61\[* Ty T Y+ Y
Y™ % 2 9 kgSoC* 2
k;l(qb—i—d—i—'yN*—i—VlC )v kodn L(N*)C

- {ko {(ﬁ—y);: + (A—ul)c*} + Ky ((]54—7;1)}1)3;

V*Y*
+ k1 <(,25 + 7W>vn — klylv*vc
Y*Q V*Y* .
+ [k()<ﬂw+(ﬂ’}/)+w+>\c ) ak2]ny
500*2 / *
T2 (N ( )} ne.

+ho[A(N* = V* =Y*) + 11 V*]yc+ ks [s'(N*)C* +
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Now 4% will be negative definite under the following conditions,

Y* 2
ko [(5 —Me T A 1/1)0*]
Y™ D [ANFC (A—n)VFC*r  pY™
o+ a3 +ne ) | M - B ] aoa
V*
(o)
Y+ D [ANTCT (A =—m)Vrer | pYT
<k:o(¢+d+7N + 10){ v v N*}’ (19b)
{kﬁo[ N2 +AC* + N*2
2kokad [AN*C* (A —v)V* 6Y*
< 3 [ v v N | (19¢)
ko[AN* = Y* —V*) 41, V*]°
2ks soC* [AN*C* (A—wv)V*C* pY*
3 LV { v y- N (19d)
~VrEY* ko Yy .
k1 (¢+ N2 ) —d(¢+ d+’}/N* +1nC ) (19¢)
ks soC* Yy
21%2 _ M3 20 *
kyviV 3 LV <¢+d+'yN +zx10) (19f)
2
ks[s (N*)C* + LV )L(N )] < OL(N") (199)
Choosingky = ko = 1, we can choosg; andks such that

(o]
2 — ¥y *
e+ R ac

404[7(5_]\731/* + (A= Vl)C*}Q
b1bobs

<k

b1 d kgS()C*

< by min { 4b3(¢ n A/V*) (¢ + 'y\]/v»;g* ) ) 31/12V*2L(N*)

3aL(N*)AN* — Y* — V*) + 1, V*]2

< k-
2800*()1[)3 3
< 4dSOC*
s *2 7/ * 2
OL(N*)[s'(N*)C + 2]
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where
by — [AN*C* 7 A =u)V=*C* " sy
1= | Y * Y * N* ?
Y*
by = (¢+d+ 3\7* +l/10*),
[BY*2 (B —y)V*Y* "
b3 = N*2 — N*2 +)\C .

The stability conditions are then obtained as given in treotbm. Hence; dUl is a
negative definite under the conditions (14) and (15) as ctatethe statement of the
theorem, showing thdf, is locally asymptotically stable. O

To study the nonlinear asymptotic stability of endemic &quum E», we require
the bounds of dependent variables. For this, we state th@niolg lemma giving the
region of attraction, without proof.

Lemma. The region of attraction for the systef) is given by,

oA

Q={(Y,N,V,0):0<Y<N<A/d, 0<V < —"_
{rvvo i 0sv s

OSCng} (20)

L(A/d)
S0

which attracts all solutions initiating in the positive bent, whereC,,, =
[s(A/d) — s1].

Theorem 2. In addition to assumptiong&) and (3), let s(IV) and L(N) satisfy0 <
§'(N) < pand0 < L'(N) < ¢ for some positive constantsand ¢ in Q, thenE; is
nonlinearly asymptotically stable i1 provided the following inequalities are satisfied:

B—~ ACp 1
N* - 21
o [N*+Y* < 1ap (21)
2 50¢Cm 17 4

aN*LA(N*)[M(N* = Y* = V*) + 11 V7] [er OEQ’”} < ZPdstY. (22)
0

JB=v O =m)Cn]? 1 RLAAN

N{N* T <5\t

B d m380 } (23)

X min ,
{<¢+dJ$uJ2 Ao+ )" VLI

Itis clear from (22) that in the absence of human relatedfaci.e.,p = ¢ = 0, the
inequality is automatically satisfied. This implies thatdan population related factors,
conducive to the growth of carrier population, have a deltaiy effect on the system.
Here we also note that due to presence of a vaccinated clesadéion (23) is required
for the nonlinear stability which further destabilizes gystem.
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Proof. Consider the following positive definite function,

Y
Us :mo(y—y* —Y*lnﬁ) + SV =v)
(24)

c
+%(NN*)2+m3<CC*C*1nE>,

where the coefficients:y, m1, ms andmg can be chosen suitably. Differentiating (24)
with respect ta and using (4), we get,

N —
dU2 _ |:m0)\ C mo()\ V1)VCi| (Y—Y*)Q—mlle(V—V*)Q

dt YY* YY*
_moB iy _yeyp g mad ey
5N+ 4

—mo[;e + ﬁ(;;*v) - JX*}(Y—Y*)(N—N*)}

- {m(’ﬁ(y—Y*)%L mjd(N N*)? +m2a(Y—Y*)(N—N*)}

—{ané(Y—Y*) +—(¢>+d+ ;:)(V—V*)Q
o (—111)0 B— 7(Y YV
{mOﬁi;) ++( } )V V*}
nor )
+my - ) (Y - Y )(
{?&f(y;’iﬂﬁﬁi)@ o -
Ay ;*V*)wlv* (YY*)(CC*)}
{%<¢+d+’g*)(v V)4 m2d(N N*)?
Sy <¢+ NAQ*)(VV*)(NN*)}
{%(mw’;\n)(v VOt i € - O
+m11/1V*(VV*)(C’C*)}

sl f(N) + 50Cg(N))(C — C*)(V — N*)},
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wheref(N) andg(N) are defined as follows,

S(N)*S(.’]k\f)’ N#N*,
fN)=q NN (26)
=2 N =N*
dN’
L(N) — L(N™)
" ~, N#N7,
g(N) = (Nf N &%(N)L(N ) (27)
L2(N*) dN’ N=N
Then by using the assumptions of the theorem and the meaa tvedarem, we have,
[F(N) <p and |g(N)| < 2. (28)

on

After choosingng = 1, mg = % we choosen; andms such that:

* —V1 m 2
5[ + BpiC]
Y *
B(p+d+2)

YN o d m3sg
< <¢+d+ *> mm{ 3 YRVAE WIS " }, (29a)
N 5(o+ qtane) . 4o+ ag)” SvIVIELINT

N LINONN* =Y V) 4V 4 dsg 1
* 3 e * S
soBY 2 45 aL(N ) [p_|_ OZ%',”}Q

< ma

. (29b)

The stability conditions can then be easily obtained, asrgin the statement of the

theorem. Thus{&L is negative definite under the conditions (21)—(23). Hemoefp O

The above theorem implies that under appropriate conditidthe carrier popula-
tion density increases, then the number of infectives indupopulation also increases
leading to fast spread of carrier dependent infectiousadise

5 Vaccineinduced reproduction number

We defineR(¢), the vaccine induced reproduction number as, (see Section 4

B Bd + o _ B _(B=7)¢
R(¢>(¢+d)(u+a+d)V+a+d{1 ﬁ(¢>+d)]’ o
where
R'(¢) = — GTaE0 ot d <0 (sinced > ). (31)
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Thus, R(¢) is a decreasing function ip > 0. This indicates the impact of vaccina-
tion in reducing the vaccine induced reproduction numbeorédver, in the absence of
vaccination i.e.,

g

vt+a+d Ro (32)

¢=0, R(¢)=
From the definition oR(¢) andRy, it is clear that the introduction of vaccination implies
R(¢) < Rp and, consequently, iRy < 1thenR(¢) < 1 wheng¢ > 0. ThusEy is locally
asymptotically stable as long & ¢) is less than one.

As indicated earlier that3 > ~, therefore, we can writey = o3, where

0 < o < 1. From equation (30), we can deduce thdt, = VJF"Tﬁer < R(¢) < Ry.
Thus if#id > 1theno > 0. = %*d This implies thatR(¢) > 1 and, therefore,

no amount of vaccination can brirfg(¢) below one. Hence. defines the critical value
for the vaccine-related reduction rate of infection.

Also limg o0 R(¢) = m = Ry which implies thatk; < Ry asg > ~. Thus,
if the vaccination rate is sufficiently high the®, can be made less than oneyif— 0.
Furthermore, we can writ&(¢) = 4 using Ry and R, . SettingR(¢) = 1 and
solving for¢, we get a threshold vaccination rate;,, given by (see Fig. 3)

_d(Ro—1)
$cr=— 7 (33)
"
& 1 Ry =1

R(9) =Ry

Pey ¢o

Fig. 3. Variation of vaccine induced reproduction numbgf$) with vaccination
coveragep.

Now considerR; < 1 < Ry, we getpc; positive. HereRy < 1 andR; > 1is
not admissible ag > ~. If ¢ > ¢¢1, thenR(¢) < 1 asR(¢) is a decreasing function
for ¢ > 0. Thus, if the vaccination coverage levekexceeds the thresholtl; then the
disease can be eradicated provided vaccine efficacy is higigh, i.ey = 0.

From equations (10)—(12), we also find that,

AV*[(d + 11C*)(A — aY™*) 4+ vdY*]

(A—aY*)[(A—aY*) —d(V*+Y*)] (34)

o=
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The critical vaccination level that ensures disease ea#idit, when carrier population
remains at its equilibrium is obtained as,
bon = dV*[d + 11 C*]

T T A—avr

Therefore, if critical vaccination levet is such thaty > max(¢c1, dc2), then disease
eradication is possible in the population.

(35)

6 Numerical simulation

It is noted here that our aim is to study, through a non-limeadel and its qualitative
analysis, the role of vaccination on the spread of carripeddent infectious diseases. It
is, therefore, desirable that we must show the existencegulilerium values of variables
of the model as well as the feasibility of stability conditsonumerically for a set of
parameters.

To study the dynamical behaviour of the model, numericalstion of the system
(4) is done by MAPLE 7.0 using the parameters [9, 253]= 0.001, A = 0.001, v =
0.0001, v1 = 0.00003, ¢ = 0.65, « = 0.45, v = 0.4,d = 1/60, A = 1000, so = 0.8,
s1 = 0.75, Ly = 10000, a = 0.0001, b = 0.01, which satisfy stability conditions.

In the model,s(N) and L(NN) are the growth rates and modified carrying capacity
of carrier population and are functions of human populatiensity. Thus, for numerical
simulation it is assumed thatN) and L(V) are linear function ofV i.e.,s(N) = so +
aN andL(N) = Lo + bN, satisfying conditions (2) and (3).

The equilibrium values are computed as follows:

N*=3603.244658, Y* = 2088.768716, V* = 1198.816861, C* = 5147.537066.
The eigen values corresponding to variational matrix ofesenid equilibrium are:
—6.199634202, —0.5019151699, —0.1509347167, —0.0001247976042.

Since all the eigen values are found to be negative, thexgtardemic equilibrium is
locally asymptotically stable for the above set of paramsete

The computer simulations are performed for different &isitarts in the following
four cases and displayed graphically in Figs. 4, 5. In thepardis the variation of
infectives and vaccinated population with total human paipon respectively is shown.
The trajectories starting with different initial start@od equilibrium point,. Hence we
infer that the system (4) may be nonlinearly asymptoticstifple about this equilibrium
point E for the above set of parameters.

(i) Y(0)=3200, V(0)=300, N(0)=4000, C(0)= 5000,
(i) Y(0)=1000, V(0)=100, N(0)=2000, C(0)=5000,
(i) Y(0)=500, V(0)=2000, N(0)=3000, C(0)= 5000,
(iv) Y(0)=2000, V(0)=2500, N(0)=5000, C(0)=5000.
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Fig. 4. Variation of total human population  Fig. 5. Variation of total human population
with infective population. with vaccinated population.

The results of numerical simulation are displayed graplyida Figs. 6—-14. In
Figs. 6, 7, the variation of infective and vaccinated popoitais shown respectively
for different values of vaccination rate. It is found that as vaccination rate)(in-
creases, the infective population decreases, whereastioehated population increases
tremendously. This signifies that only by increasing thecireation rate, spread of carrier
dependent infectious disease cannot be significantly aibex

1200
= g

2 ‘S 10004
= -

E 2 ]

E pc_,' 800
z =

z 2 500
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k| S am]
= 2
=2

2004

i] 0 n an an a0 a 10 20 a0 40 a0
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Fig. 6. Variation of infective population for Fig. 7. Variation of vaccinated population
different values of vaccination rage for different values of vaccination rate

Figs. 8, 9 depict the role of decay coefficient) of carrier population on carriers
and infectives. When there is a rise in the decay coefficiémeedue to natural factors or
control measures, carrier population density decreaga#isantly, and consequently the
infective population declines. This decline in infectivepilation is not much significant.
It seems, it is due to the fact that disease spreads not awlygh carriers but also through
direct interaction of susceptibles with infectives. Ittiserefore, speculated that not only
the growth of carrier population be curbed using effectisatml mechanism but the
direct interaction of susceptibles with infectives be alsstricted. This is also clear from
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Fig. 10, where variation of infective population is shown #ifferent values of contact
rates of susceptibles with carrier population density. ififiective population increases
with the increase in the contact rate of susceptibles withiezgpopulation.
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Fig. 8. Variation of carrier population for
different s, the control parameter.

Fig. 9. Variation of infective population for
different s, the control parameter.
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Fig. 10. Variation of infective population
for different values of contact rate

As is pointed out earlier that due to inefficacy of vaccinesne of the vaccinated
population may again become infected due to interactioh imfiectives as well as with
carriers. In Figs. 11, 12, the effect fandv, the contact rate of vaccinated population
with infectives and with carrier population density regpesty, is shown on vaccinated
and infective populations. It is found that with increaséramsmission rate andv,, the
vaccinated population decreases, which in turn, incretageimfective population. Thus,
we conclude that vaccine efficacy should be high enough sovétteinated individuals
do not get infected either by direct interaction with infees or with carrier population
density (see Figs. 11, 12 for = 0, v; = 0). In Fig. 13, the effect of disease induced
death rate is shown and it is found that with increasa,ithe infective population also
decreases. Fig. 14 shows the effect of immigration rate s€equiibles and it is seen
that the infective population increases with increase érétie of immigration. Thus, the
constant migration of susceptibles make the disease mdengn.
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Finally from the above discussion, we infer that in order¢efxthe spread of carrier
dependent infectious diseases under control, a propeinaim campaign (as discussed
in Section 5) dependent on the critical vaccination rateintreduced. Moreover, the
vaccine efficacy be high enough to ensure that vaccinatstpskvhile coming in contact
with infectives or carriers, are not infected again. A shligacontrol mechanism like
elimination of carrier breeding sites, larvaciding, ahidiing, etc. may be devised so
that the carrier population density is diminished whichesthise increases due to human
population related factors and other unhygienic enviramadeconditions leading to fast
spread of infectious diseases.

v= 0001, v, =0.0001
5000
2000
g 4000 =
ke =
£ £ 1800
) 2
R 3000 £ 18004
Z a
z 5
-8 2000 £ 1400
£ = 0.0001, vy = 0.00003 =
10004 — e — — = 1200
¥=0.001 v, = 0.0001
1DDD_ T T T T T T
0 10 20 30 40 50 60 n] 10 20 30 40 a0 60
Time Time

Fig. 11. Variation of vaccinated population  Fig. 12. Variation of infective population
for different values ofy andv;. for different values ofy andv;.
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Fig. 13. Variation of infective population Fig. 14. Variation of infective population
for different values of disease induced- for different rates of immigratiom.
death rate.

7 Conclusions

In this paper, a nonlinear vaccination model is proposedaaadlyzed to study the spread
of carrier dependent infectious diseases with vaccindtiosm population with variable
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size structure. It is assumed that the disease spreadsdwst dontact of susceptibles
with infectives and by carrier population density preserthie environment. The density
of carrier population, which increases by environmental haman population related
factors, is assumed to be governed by a generalized logistitel. The growth rate per
capita and the modified carrying capacity of the carrier pepon are also assumed to
increase as the human population density increases. Sdearerines have been drawn
regarding the spread of the disease by establishing locagipal stability results and
numerical simulation. The model exhibits three equilipriamely disease free, carrier
free and endemic equilibriumThe first two equilibria are foundo be unstable, whereas
third equilibrium is locally stable. It is also found to be mimearly asymptotically
stable under certain conditions. We have found a threslandition in terms of vaccine
induced reproduction numbét(¢) which is, if less than one, the disease dies out, in
the absence of carrier population otherwise the infec8anaintained in the population.
And at R(¢) = 1, the model exhibits backward bifurcation. The results skiwat in the
absence of carrier population into the community, if vaation rate is above the critical
vaccination level (to ensurB(¢) < 1) then the disease can be eradicated. The presence
of human population related factors, causing the growthaofier population, have a
destabilizing effect on the system. Moreover, if the vaation rate is above a critical
level 2, then carrier dependent infectious disease does not takeradf epidemic
provided the density of carrier population remains at itsildsrium level.

Thus, three main control strategies against the spreadéicdependent infectious
diseases in the human population are carrier (such as fli&s, tnites etc.) reduction
policy, vaccination against the disease and the vaccineaeffi The carrier reduction
strategies may include elimination of carrier breedingssitlarvaciding, adulticiding,
keeping surroundings clean and hygienic. On the other haattdjnating the susceptibles
such that vaccination level is maintained above the ctitie&cination levelgq i.e.,
max(¢c1, dc2) and the vaccine efficacy be high enough so that vaccinateddndls
are not infected again either by infectives or by carriers.
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