Nonlinear Analysis: Modelling and Control, 2008, Vol. 139 \8, 351-377

On the Dynamics of Controlled Magnetohydrodynamic
Systems

S. S. Ravindran

Department of Mathematical Sciences
The University of Alabama in Huntsville
Huntsville, AL 35899, USA
ravinds@uah.edu

Received:01.02.2008 Revised:20.05.2008 Published online:28.08.2008

Abstract. In this paper we study the long time behavior of solutionsfooptimal control
problem associated with the viscous incompressible éedlyr conducting fluid modeled
by the magnetohydrodynamic (MHD) equations in a boundeddiwensional domain
through the adjustment of distributed controls. We firststarct a quasi-optimal solution
for the MHD systems which possesses exponential decay i tivie then derive some
preliminary estimates for the long-time behavior of all askible solutions of the MHD
systems. Next we prove the existence of a solution for themaptcontrol problem for
both finite and infinite time intervals. Finally, we estahlite long-time decay properties
of the solutions for the optimal control problem.

Keywords: dynamics, optimal control, MHD systems.

1 Introduction

Magnetohydrodynamics (MHD) is the branch of continuum naeits that studies the
macroscopic interaction of electrically conducting fluadgl electromagnetic fields. The
subject is of great interest for its numerous practical igpfibns which includes motion
of liquid metals, fusion technology, design of novel subimapropulsion devices and
plasma physics. The motion of Newtonian fluids is governethkyNavier-Stokes equa-
tions and electromagnetic effects are governed by Maxsvetjuations. Under a number
of physical assumptions valid for the problems of interbest two general systems can
be reduced to the MHD systems, see for e.g. [1-6].

The main goal of this paper is to study the dynamics of sohgtito an optimal
control problem in magneto-hydrodynamics. Optimal cantfofluids to alter flows to
achieve a desired effect remains an active research aretodtgimportance for the
design and performance of fluid dynamical systems. The astd® has seen significant
developments in theoretical and computational analysikigarea, see for e.g. [7-10].

*This research was supported in part by National Science datiom under grant DMS 0421945 and by
National Aeronautics and Space Administration under g238¢42.
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The study of long-time behavior of solutions of optimal gohtproblems associated
with MHD systems is of great importance in many fluid dynanppl&cations such as
stabilization and drag minimization. There has been annsite study in the literature
of the asymptotic behaviors and dynamics of solutions fesigative systems including
Navier-Stokes systems and coupled Navier-Stokes systeaimsas MHD systems. The
asymptotic behavior of solutions for the controlled Navi#okes system was studied
in [11,12]. In this article we study the long time behaviosofutions for optimal control
problems associated with the magneto-hydrodynamic expgti his work was motivated
by the desire to match a candidate flow field and magnetic fidtld avdesired one by
appropriately controlling the applied current and disitda force.

We formulate the optimal control problem as follows. Let gswame that a viscous
incompressible and electrically conducting fluid fills a tdimensional bounded simply
connected regiof? of classC? or convex with boundary whose unit normal will
be denoted byn. We further assume that the magnetic field lies in the planerevh
the fluid motion occurs and the electric current density i®etar field hormal to this
plane. The macroscopic state of the fluid can be describethdyluid velocityu =
(u1(x,t),u2(x,t),0), pressure = p(x,t), magnetic fieldB = (B;(x,t), B2(x,1),0)
and electric current densify= (0, 0,j(x, t)). The non-dimensional form of the viscous
incompressible MHD equations is (see for e.g. [1])

@fiv2u+(u~V)u+foS(curlB)xB:f in  x (0, 00),
ot Re
B, I (curl B) 1(u x B) = curlj in Q x (0,00)
ot t R curl (cur curl (u = curlj ,00),

: 1)
V-u=0 in  x (0, 00),
V-B=0 in © x (0, 00),

whereu, B, j andp are non-dimensional quantities corresponding to the nlizaten by
reference units denoted I8y, 7*, U* := ¢* /T*, %, B*, p* for lengths, times, velocities,
currents, magnetic fields and densities. Moreadvandj are the applied distributed force
and current, respectively. The three non-dimensional ressthat appear in (1) aRe

— Reynolds numbeiRe := ve wherey is the kinematic viscosityRe,, — magnetic
Reynolds numbetRe,, := uoocU*(*, wherepg is the magnetic permeability andthe
electrical conductivity; and — Alfan number or coupling numbes, := #’}j*?.

The system of equations (1) has to be supplemented with itied tonditions

u(x,0) =up(x) and B(x,0) =Bp(x) in Q, (1a)
along with proper boundary conditions. For the velocity wedafy
u=0 on 9N x (0,00), (1b)

that is, there is no flow through the boundaries and a no-sipntary condition is
satisfied at the boundaries. For the magnetic field we specify

B-n=0 and (curlB) xn=0 on 90 x (0,00), (1c)
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that is, we assume the boundary is perfectly conductinggngential electric field and
no normal magnetic field), see [5].

Our objective of matching the candidate flow field and magnféid with the de-
sired ones in ideal setting means matching the desired flavactt time instance. This
warrants minimizing a cost functional defined in terms of enpwaise norm int. However,
such anideal cost functional is too costly to realize ptaisi@and to compute numerically.
Therefore it is natural to consider the time-averaged fonel _# defined by

Z(u,B, f, curlj)

;:%//al|u—ud\2+5a2|B—Bd|2+ﬁl\f—fd\2+52|cur1j—cur1jd|2dxdt,
0Q

whereu? is some desired velocity field3? is some desired magnetic fielff is some
desired distributed force arjd is some desired current density. Alga,, as, 51, 52 > 0

are given constants, the functiongl j andf are the distributed controls ahd| denotes

the usual Euclidean norm. We wish to find the contraisl j, f and the associated pair
(u, B) such that the cost functiong¥ is minimized subject to MHD equations (1). The
first term in the cost functional? measures the deviation between the candidate states
and the desired states. Therefore, the physical objectitlésominimization problem is

to match a desired flow and magnetic field by adjusting therotstturl j andf. The cost
functional reflects a trade-off between achieving the ptalsibjective and minimizing

the work involved in the control effort.

We will show in this paper that for large the time averaged optimizer will indeed
give pointwise matching in. We like to note here that exact controllability [13] is seme
what related to the problem of controlling the pointwise ibehavior for the solutions.
But the controllability approach does not give informatmmthe matching of the flow
and magnetic fields over a time period, nor does it give aryrinétion beyond = 7.

The rest of the paper is structured as follows. In the reshefsection, we present
some preliminary material. In Section 2, we construct a gapsmal control solution
and obtain some preliminary estimates for optimal solidn Section 3, we prove the
existence of an optimal solution on both finite and infinitadiintervals and derive the
optimality-system. Finally, in Section 4, we prove the deo&the controlled dynamics
to the desired dynamics.

1.1 Preliminaries

1.1.1 Notations, function spaces and inequalities

We denote byL.7(Q2), 1 < ¢ < oo, (L*°(f2)) the space of real functions defined on
Q with g-th power absolutely integrable (or essentially baesh functions) and that are
equipped with the normju||e := [, |ul? dx]i or ||ul|Le := ess.supq |u(x)|. For

q = 2, L*(Q) is a Hilbert space with inner produg, uv dx and||u|| := [[,, [u[? dx]=.
The standard notatioH™ (Q2),m = 0,1,2,..., is used for the Sobolev space of func-
tions in L?(Q2) with square integrable derivatives of orderm (H°(Q2) = L?(Q2)). In
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particular form = 1, H}(Q2) denotes the space of functions Iitf (2) which vanish
on the boundary)), whereas int} (Q2) only the normal component of the function is
assumed to vanish along the boundary. These spaces havestiuated nornfjul|; =
Nl + 37, ||%||Q]%. We shall be concerned with two dimensional vector functions
with components in one of these spaces. We shall use thdamlat(Q) := L4() x
L1(Q), H™(Q) := H™(Q) x H™(Q), H}(Q) = H{(Q) x H}(Q). For integer
m > 0, H™(Q) is equipped with the normju|,,, := [>7_, ||lui||2,]? . Also, the inner-
product for functions belonging th?(Q) = HY(Q) := L*(Q) x L%() is given by
fQ u-v dx. For details, concerning these spaces, see for e.g. [141&hd~or the purpose
of dealing with the linear constraints in the MHD equations,introduce the following
spaces of divergence free vector fields

H,=Hp:={wel?():V-w=0andw-n=0 on 00},
V.:=H,NH}Q) and Vp:=HpnHLQ).

We then define the Hilbert spacks:= H, x Hg andV := V,, x Vp endowed with
the following inner-products and corresponding norms

((ul,Bl),(UQ,Bg))H ::/u1 'u2dX+S/B1-B2dX
@ @ V(ul,Bl),(UQ,Bg) EH,

1 S
((ul,Bl), (UQ,BQ))V = Te /Vu1 : Vug dx + e /cur1B1 - curl By dx
Q Q

V(ui,B1), (u2,Bs) €V,

where(Vu);; := g% is the Jacobian matrix andu : Vw := Zf:m:l g;;; gg’;. We
have the inclusio®V ¢ H which is compact and dense by Rellich theorem, see [16].

We next introduce the temporal spatial function sgat@®, T'; Z) defined orQr :=
Q% (0, T) equipped with the nortul| e (0, 7,2) = fOT [u(t)||Z dt]'/9, whereg € [1, 00)
andZ := H™(Q) or V. The solenoidal temporal-spatial function space

B
wien = {uB) er20.m:v): (552 ) erorivo)
with the norm||v{lwa g, = [IVIIE20.rov) + |\%||32(07T;V*)]%7 whereV* is the dual

of V. For functionsu and B in the temporal-spatial space, we often use the notation
u(t) := u(-, t) andB(t) := B(-, ) to stand for the restriction af andB at timet as a
function defined over the spatial dom&in

For (u,B) € V, we deduce from Poincare inequalitiga| < )\;%HVuH and
|B|| < A57|lcurl B|| that

(X B
B)|% < [(wB)|% V(uB h = B - @
Bl < [ B Y B) €V, where = min{ 224 (@2
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We will also make use of the Young'’s inequality

r

€ € a
ab< —a?+ —b", 1<q,r <oo, - +-=1, a,b>0.
q r q r

In addition to the well known Gronwall’s inequality [17], weill also use the uniform
Gronwall's inequality (see [18]):
Lemma 1 (Uniform Gronwall's Inequality) Assume that positively locally integrable
functionsy(t), g(t) andh(t) satisfy

dy
— < h, t>0
a =T =
and moreover

t+e t+e t+e

[owras<a [hods<a [y <a

t t t
wheree, a1, as andag are positive constants. Then

y(t +¢€) < (ag/e + az)e, t>0.

1.1.2 Weak Formulation of the MHD equations

The weak form of equations (1) is obtained using standandraegts. Under the assump-
tions of smoothness of solutions, multiplying the first aedand equations in (1) by
divergence free test functiors and Y, respectively, integrating by parts and adding the
results after multiplying the second equation$iead to

ou 0B
_uv ar | (W, T) + a’((uv B)a (W, T)) + b((uv B)a (ua B)v (Wa T))
ot’ ot H
= ((fa curlj), (Wa T))H
which by continuity holds for ablv € V,, andY € V g. Here

1
a((u1;B1>;(u2;B2>) = Re/vul VUQdX+
Q

/cur1B1 -curl Bo dx

e'rn
and

b((ul,Bl) (UQ,BQ u3,B3 / ug u3dx S CuI‘lBQXBl U3dX
Q Q

_S/UQ x B1 - curl By dx

forall (u;,B;) € V (i = 1,2,3). This suggest the following weak form for the MHD
equations (1):
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Definition 1. GivenT € (0,0), (ug,Bg) € H and {,curlj) € L?(0,7;V*), (u,B) is
said to be a solution of the MHD equations if and onlfif B) € W) (Q+) and(u, B)
satisfies

0
(30030, 1)) -l ), (w. 1)) +b((0 B) (0B, (w. )

= ((f,curlj), (w, X)) V(w,X) €V (almost everywhere) ¢ € (0,T)
and
(u(0),B(0)) = (ug,By) in H. (4)

Note that(u, B) € W (Qr) implies(u, B) € C([0, T]; H). Therefore(4) makes
sense. The bilinear form(-, -) is continuous and coercive dvi:

(I) |a((u7B)a (W7 T))‘ < QH(H,B)HvH(W, T)”V V(u,B), (W7 T) eV,
(i) |a((u, B),(u,B))| = [(u,B)[, V¥(u,B)€V.

Thereforea(-, -) defines a continuous positive operatgr: V — V* as
(¢ (u1,By), (2, B2)) = a((u1, By), (u2,Bs))  V(u1,By), (uz,Bz) € V.

It can be shown that7 extends to an unbounded self-adjoint operatdtinvith a
domainD(«) := {(u,B) € V: &/(u,B) € H} dense inV.

It is well-known that if Q2 is Lipschitz continuous?" € (0,00), (f,curlj) €
L2(0,T;V*) and (ug,Bg) € H, then there exists a unique solution to (3), (4) and
it satisfies(u,B) € C([0,7];H) N L2(0,7;V) and (u;, B;) € L*(0,7;V*). If 0Q
is C?, (ug,Bg) € V and (f,curlj) € L2(0,7;H), then(u,B) € C([0,7]; V) N
L2(0,T; D(«)), see for e.g. [19].

ForT = oo, we define a solution of the MHD equations as follows.

Definition 2. Given(ug, By) € H and (curlj, f) € L2 (0,00; V*), (u,B) is said to

loc

be solution of the MHD equations f, o) if and only if (u,B) € L2 _(0,00; V) N

loc

L>(0,00; H), Z(u,B) € L (0, 00; V*) and (u, B) satisfieg3),(4) with ' = cc.

loc
The following properties of the trilinear form will be imptaint for the forthcoming
analysis. The skew symmetric propertybdf, -, -), i.e.,

b((u1,By), (uz, Ba), (u3, B3)) = — b((u1, B1), (uz, Bs), (uz, B2))
V(ul,B1> €cH and (UQ,BQ), (U3,B3) eV,

follows easily from the skew-symmetric property of theitrdar formb,, (a1, us, us) :=

fQ(ul -V)uz-uzdx forall (uy, us,u3) € H, x V,, x V,, and the algebraic cancellation
of the last two terms in the definition &f-, -, -). Moreover, the trilinear fornd(-, -, -)
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posses the following continuity properties:
() [6(P1, P2, P3)| < cal| P ll5 13| L2]I5 |7 P2 ]| P
VP, e V, P,y € D(JZ{),‘I’3 e H,
.. 1 1 1 1
(i) [6(D1, P2, @3)| < o Pull | oIV ol v I[Pl sl
VP, Py, P3€V

for some constants,, ¢, > 0.

1.1.3 Statement of the optimal control problem

In order that the optimal control solution of the MHD equagds close to the desired
(u?, B4), we must place some restrictions on the desired currenitgigfisand desired
distributed forcef? present in the cost functiong# . We therefore choose

£ .— _8ud - iV2ud + (ud . V)ud — S(curle) x B¢
" Ot Re ’
. OB 1
curl j¢ := 0 + mcurl (curl Bd) — curl (ud X Bd).

Furthermore, we will assume throughout this paper that
(u?, BY) € L>=(0,00;H) and (f¢,curlj¢) € L>=(0, 0o; L%(2))%.
For eachl” € (0, o], we define the cost functiong#r by

Ir(u,B,f, curlj)

T
1 5
::5//041|u—ud|2+SaQ‘B—Bd‘2—i—61|f—fd|2+ﬁg|cur1j—cur1jd‘2dxdt, ®)
00

forall (u,B) € (u?,B9) + L%(Qr), f € f + L2(Qr) andcurlj € curlj¢ + L2(Qr).
We will denote_#,, simply by 7.

We define the admissible elements as follows vith and Y denoting, respec-
tively, the function spaces

WO (Qr) it T e (0,00),

Xy = {(u,B) € L (0,00; V) N L>(0, 00; H):

%(U,B) GLIQOC(O,OO;V*)} if T=o0
and
L2(0,T;V™) if T € (0,00),
Y .=

L2

loc

(0,00; V*) if T = o0.
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Definition 3. Fora givenT € (0, o], a quadruplgu, B, f, curlj) € X x Y is called
an admissible element i (u, B, f, curl j) < co and(u, B, f, curl j) satisfieq(3), (4).
The set of all admissible elements is denote@hy(T").

Now for eachl” € (0, oo], we state the optimal control problem (h T') as follows:
(OP-CON) find(u, B, f,curlj) € U.q(T) such that the cost functiong¥r in (5) is
minimized.

We note here that our optimal control problem has nontrig@ltions since in
general the initial statéug, By) is certain distance away from the desired flow and thus
the cost functional generally has a positive minimum.

With the change of variablgsr, E) := (u,B) — (u?,B%), h := f — f¢ andg :=
curl j — curl j¢ system (3), (4) is equivalent &, 2) € X1 and(h, g) € Y7 satisfying

(502 01)) (02, (0.7) 4 5((5). (v,3), (. 7))
+b((wh, BY), (v, B), (w, 7)) +b((v. ), (u’, BY), (w, 1)) ©
= ((h,g),(w, X))y ¥(w,Y)ecV (amosteverywherey € (0,T)
and
(v(0),E(0)) = (uo,Bo) — (uf,Bi) in H. @)

This allows us to give another physical interpretation adptimal control problem;
i.e., one seeks a candidate flow field and magnetic fieJ&) and a candidate controls
h andg such that the time averaged total energy of the electricalhducting fluid and
the total work done by the control is minimized. Here we deflreetotal energy of the
electrically conducting fluid a& (v, E) := 1 [, [v|* + S|E|? dx, consisting physically
of two parts corresponding to the kinetic energy and the regenergy proportional to
the coupling paramete.

2 Preliminary estimates for the dynamics

2.1 A quasi-optimizer

In this Section, we will derive a sharp bound for the value of

inf B, f 1j
(u’B7f7CU1"?i)EUad(T) /T(u7 , I, cur .])

which is uniform inT'. This estimate will then be used to estimate the dynamichef t
optimal control solution. We next construct a quasi-opien{u, ﬁ,?, curﬁ) € Uaa(o0)

for Z.(-,-,-,-) and derive some preliminary estimates for the optimal swhst By a
quasi-optimizer we mean an eleméiit, B, f, curlj) € U,q(co) satisfying (1, B) —
(ui(t),B%(t))|lm — 0 ast — oo. The existence of such an element is shown in the
following theorem.
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Theorem 1. There exists a quadruplél, B, f, curlj) € U,q(co) such that

(@ = u(t), B —B(®))[% < [|(uo — ug, By — BY)||?

||H e~ (Y—w)t (8)

M

for somey > w, where

w = cj|(u?, Bd)”ioo(@,T;V) o

and
/T(ﬁaEa?aCUTI})SCOH(UO*U&B()*Bg)H;(l*e_m_w)T) VI €(0,00], (9)
where

(4a+72 max {61, 6—52 )
8(y —w)

anda := max{a1, az}.

Cpo ‘=

Proof. Let ¢ € (0,00) be arbitrary. Let(ﬁ,ﬁ) € X be the solution to (3), (4) with
linear feedback:

fo=rl— %(ﬁf u?), curlj = curlj? — %(E - BY)

for some fixed constany > 0. Existence of such a solution can be shown using the
techniques for the MHD equations (see [19]). By using thengeaof variablegv, =) :=
(1, B) — (u?, B%), we see that the feedback controlled system is

o, ~ e .
(E(V,E), (w, r)) L a((%.B), (w, 1)) + (7. 8), (.B), (w, 7))
H
+b((u?,BY), (+,E), (w, 1)) +b((v,E), (u’, BY), (w, T)) (10)
= —%((V,é , (W, X))y V(w,X) eV (almosteverywhere) € (0, c0)
and
(v(0),E(0)) = (uo,Bo) — (u,Bj) in H. (11)

Settingw = vandY = Zin (10) and using the skew-symmetry propertyof -, -),
we obtain

L@ B B+ L B = 5. 8). (. BY). (7.5)). (12

By the contlnur[y property (iii) of the trilinear form, we tia

b((v ), (u?,BY), (V 2)) <2 HHH( HVH u’ Bd)HLw(o V)

i
—H Sy + 310 B) 0.2 7 D)4
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so that from (12) and the inequality (2), we obtain

dy~ .\ =

ZIE@OEON + (3 + 5= BB} o vy ) [(F(0, EO) 5 < 0.
Therefore ify satisfiesy > w we can apply Gronwall’s inequality to obtain

1. 25 < [I(wo — ug, Bo — BE)[[zy e "

which proves inequality (8). Moreover, we see that for €8ch (0, o], by (8),

T
< %/ det+5” /|\~|\ dt—i—ﬁﬂ /||~H dat

0
(4a+'y max{ﬂl, S}
8(y —w)

which proves the inequality (9). O

<

H U() — ud(), By — B(C)l) 2 (1 _ e*(“/fw)T)

s

We note here that from the results of Theorem 1, the quagnopr constructed
there satisfies||(u, B)(t) — (u,BY)|lg — 0 ast — oo exponentially and
o (1, ﬁ,f, curl}) is bounded. Also, it is quite straight forward to computs feedback
solution via an initial value solve. However, since the eahiy may be large, the work
required to implement this control may be large. We will tatieow that the true optimizer

only satisfieg| (1, B)(t) — (u¢, B4)(¢)||[m — 0 ast — oo but it also minimizes the work
involved to realize it.

2.2 Estimates for the dynamics of admissible elements

In this section, we will derive some preliminary estimatasthe dynamics of all solutions
of (3), (4). These estimates will allow us to derive preliamyestimates for the dynamics
of the optimal solutions. We begin with tHe* (0, 7; L?(€2)) estimates in terms of the
initial data and the functional values.

Theorem 2. LetT € (0, oo]. Assume thatu, B, f, curlj) € U,q(T). Thenvt € [0, T1,

(= u?, B = BY)|%, < [[(uo — ud, Bo — B,

o { AU 4D (@B 4D 1Y g

o ’ (%) ’ B B2

x _Zr(u,B,f, curlj).
If in addition, #7(u, B, f,curlj) < #r(u, B,f, curlj), then

[(u—u?,B = BY)|%;, < e [(wo — ud, Bo — BY)|I%,, (14)

360



On the Dynamics of Controlled Magnetohydrodynamic Systems

wherec; := (1 4 2max{ (CAICH D1?1‘71)||v+1) (CAICH D1?2‘71)”\/—%1) 1 ,B_SQ}CO) with ¢, defined
in Theoremt.

Q
=

Proof. Settingw = v andY = = in (6) and using the skew-symmetry and continuity
properties ob(-, -, -), we obtain
5 dtn(v,E)n +v 2R

—b((v,E), (u’,B?), (v, E)) +((h,g), (v, B))
< ol|(v, B)lull (v, B)llv][(ud, BY)|, + IhllIv] + SlgllE]

[I]

< %) w34, B, + S DI+ (gl + 5l D)

so that
d
v )i+ (v, B
2 2
e { @B ) @SB Y 1 S)
- (o1 ’ Qg "By B

x (ar|[ V] + Saz||El* + Bilh|* + Balgll).-
Multiplying this inequality bye"* and integrating ove(0, ), we obtain
(v, E) I < [1(vo, Bo) e

+2mx{(ch(llin)\ﬁ,+1) (c2]|(u, B2, + 1) iﬁ}

Y

o (6] ’ ﬁ17 ﬂQ

t
(6751 1 62 —k(t—s
< [ (SHIvIE + SIS+ b2 + gl? ) ds
0

which yields (13). Finally (14) follows from (13) and (9). O

Theorem 3. Let T € (0,00] and (u,B,f,curlj) € U,q(T). Assume that
Jr(u,B,f curlj) < #Zr(u, B, f,curlj). Then for each > 0,

(u—u’,B-B%) € L*0,T;V)NL>(c, T; V), (16)
T
/ ||(u(s) —u’(s),B(s) — Bi(s )||V ds < cl||(u0 —ul, By — Bg)”; a7
0
and
[[(u,B) — (u?, Bd)H < c1(e)||(uo — ud, By — Bg)HiI Vit > e (18)
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wherec;, is given in Theorer? and

B 65 4
10 =esp { Z5(uo — i, Bo - B
c 2
(2 Jert S B g 1 0 B

48 { 1 S }
Comax<{ —, —
0 B1 B2
6% 4 d gd 2 d gd 2
+ gcafﬁlH(u ) )HLOC(O,T;H)H(U ) )||L°°((),T;V) :
Proof. Let T € (0, oc]. We easily see that inequality (17) follows by integrating)(1
over the time interval0, T'). Let us now prove (18). Insertingv, ) = <7 (v, E) in (6),

yields

N =

Using the continuity and skew symmetry properties of théngar formb(-, -, ) (see

§1.1.1) yields that

1d — —
S B + (v, D)l

3 1
< all(v, BVl (v, E)lgll (v, E)llf

o (u, BY)|| 4117 (v, B) | m
HEAIH

1 1 1

+ea|(v E) 2] (v, B) |7 | (uh, BY) 2,
1 1

+ cal[(u?, BY)| | &l [(w?, BY)[| 1 (v, )

+[((h,g), (v, 8))|.

Using Young's inequality yields
d —_\ 12 —_\ (2 2 6%ca —_\ 12 —_ (4
|V EIV+HIZ V. E)la < 2|2l g)lla + — =1 (v, E)llal(v. E)liv+

26 (v =
MVANE B)IR|[(u?, BY)[|y 17 (u?, B)|

6 4 d pd\||2 d pd\||2 — |2
+ ICGH(U 7B )HHH(U 7B )HvH(Vv':)HV .
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Thus using (14), we have

[

|V BIR + (. B) &

< 4)(h g% + [

[

CCl 2

A%

v o,:o>||%1||<v,a>||v}|< =)

vl (u, Bl gy

ca||<ud,Bd>||;||<ud,Bd>||3,]|<vva>

v

We introduce

y(t) == 1(v. B3,
63c¢tey

o10) = [ £ (w0, 20l v 2

and

A 11 4 d rd 6%Ca 11 d pady(2 d ndy||2
ht) = | el B o (u, B + == [(a”, B | |(u”, By
< [[(v, ) + 4l (h, &)l
For eache > 0, by Theorem 2 and (17), we have

t+e
y(s)ds < c1 | (ug, Bo) — (uong)‘

H7
t
t+e

63ctey d pdy|[4
/ g(s)ds < 5 | u()aBo)*(uoaBo)HH

/h()ds<8max{ﬁ1 }/T

t

o {4_}’(11 Bd)HL“(O,T;V) ||;z{(ud, Bd)HL“(OvT:H)

Ol B

||L°°(O,T;H) ||(ud’ BY) :

||LOo (0,7;V)

x || (w0, Bo) — (u, BY) I3
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so that by (9)

c2 1 S
< [ert 0 B 1 (0 By 80 { - 2

- Ctey(u, BY

5 Ca 5
% [|(uo, Bo) — (u§. B3

Now (18) follows from the uniform Gronwall’'s inequality indmma 1 and the last three

estimates foy, g andh. O

I a0 B )|

The following theorem giving preliminary estimates for thjgtimal solutions is a
consequence of Theorem 2 and Theorem 3.

Theorem 4. LetT € (0, 00] and (u*, B*, f* curlj*) € U.q(T) be an optimal solution
for (OP-CON). Then

', BY) = (u’, B3 < col|(wo = g, Bo — B 5.
T
[l B~ (it B s < o — . 3o - B,
0

| (u*,B*) — (u®, BY)||;, < c1(e)](uo — uj, By — BY) Vit > e,

2 2
[ [

where all the constants are as defined in Theor2rasd 3.

3 Existence of optimal control

3.1 Finite time interval

In this section, we prove the existence of optimal solut@md derive some estimates for
the adjoint states.

Theorem 5. Let T € (0,00) and (u?, B¢, £, curl j4) € U,q(T). Then there exists an
optimal solution(u, ﬁ,?, curlj) € U,q(T) for optimal control problem (OP-CON). That
is, there existsf, curlj) € L2(0,T;L2(Q2))2 and (4, B) € C([0,T); H) N L2(0,T; V)
of the optimal control problem.

Proof. First note that the séJ,q(T") is non empty, for e.g.(u,B,0,0) € U,q. Let
{(f., curlj,)} be a minimizing sequence for the optimal control problem dadote
(un, B,) = (u(f,, curlj,), B(f,, curlj,)). The sequencé(f,, curlj,)} is bounded in
L2(0,7T;L?(£2)) and the corresponding soluti¢tu,,, B,,)} is bounded irC([0, 7]; H)N
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L2(0,T; V), see [19]. Therefore we can find subsequences, again dempoféd,,, B,,)}
and{(f,, curlj,)} such that

£, —f weakly in L*(0,7;L*(Q)),
curlj, — curl_/j\ weakly in L2 (O,T; LQ(Q)),
(u,,B,) — (4,B) weakly in L2(0,7;V),
(4,,B,) — (4,B) weak* in L®(0,7;H).

Using lower semi-continuity yields that
T T
/ ||ﬁ - udHth < lim inf/ ||un - udHth,
n—oo
0 0

T T
/||ﬁde||2dt§ lim inf/HanBdHZdt,
0 0

T T
/||?fde2dt§ lim inf/||fnfde2dt,
0 0

and

n—oo

T T
/||cur1§—cur1jd||2dt < lim inf/chrljn — curlj?|* dt,
0 0

which implies that
/T(ﬁ,ﬁ,,f, curlﬂ < lim inf #7(u,, By, f,, curlj,).

Now using the standard arguments as in the Navier-Stokes\tii20], we can show, by

using a fractional time-order Sobolev space a priori etésyahat{ (u,, B, )} converges

strongly inL?(0, T; H) and that(d, B) satisfies the weak form of the MHD equations.
([l

Theorem 6. LetT € (0,00) and (f, curlj) be inL2(0,7;L?(2))2. Then the mapping
(f,curlj) — (u,B)(f,curlj) is Gateaux differentiable as a function from
L2(0,T;L%(Q))? toL2(0, T; V). Furthermore its Gateaux derivatiéi, B))(¢, curl 1)

= % - (¢, curlap), for every (¢, curlp) € L2(0,T;L%(Q))?, is the solution of

the linear problem

(5 (@B).(wv.1)) +a((@B), (w, ) +0((a, B, (0.B), (w. )

+b((@,B), (u, B), (w, X)) = (¢, curlp), (w, 1)), V(w,X) eV, 19
(ﬁ(O), (0> :(070> in H,
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where(a, B) € L>(0,T; H) N L?(0,T; V).

Proof. Let (f, curlj) and(¢, curl ) be given inL?(0, T'; L%(©2))?. We need to prove the
following result

(u, B)((f, curlj) + e(o, curl'l/;)) — (u,B)(f, curlj)

€

lim
e—0

e(ﬁ, B) (¢, curlep) (20)

€

=0.
L2(0,T;V)

First note that@, B))((¢, curl4)) clearly satisfies equation (19) by direct differentia-
tion. The fact thafu, B)((fcurl j) + e(¢, curl+)) and(u, B)((f, curl j)) are two weak
solutions imply that(t, B) := (u, B)((f,curlj) + (¢, curley)) — (u, B)((f, curlj))
satisfies

(5 (@8) <w,r>)H+a((a, B). (w, 1)) +b((0,B), (u, B), (w, 1))
+b((w,B), (4,B), (w, X)) =¢((¢, curl ), (w, X)), ¥(w.X) eV, @D
(u(0),B(0)) = (0,0)
Setting(w, X) = (T, B) in (21) and using the skew adjoint property of the trilinear
formb(-, -, -) yields
@B + @ B)% +b((@.B), (w.B), (5.B))
= e((qb, curlw), (u, ))H

By using the continuity properties of the trilinear form arwung’s inequality it follows
that

2dt

1d,. = 1y, o
53 1@ B[y + 51, B[+
€ 2 1 b

Therefore by Gronwall's inequality we get

— 5\[12
[(CH=) [y
< [H(fﬁ, curl )17 0.1y €xp { T + ¢3 || (u, B)H%?(O,T;V)}} € =i e,
Now integrating the preceding differential inequality lgie

[[CH3 [

(22)
<é [H((ﬁa Curl?/’)”i%o,T;H)Jr (1+c§||(u, B)||2L2(O,T;V))C2} =: €2c3.
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Now note thai(ii, B) := (U, B) — (@i, B) satisfies the equation
(;<ﬁ B), (w,r)) +a((.B), (w, 1)) +b((2,B), (0, B), (w, )
H
+b((u,B), (1, B), (w,Y)) =b((0,B), (0,B), (w,Y)) V(w,Y)eEV.

Setting(w, Y) = (u, ]§) in this equation and using the skew symmetric and continuity
properties of the trilinear form we obtain

d
dt

(1, B)HH + ||(u B)Hv

21, B) 5 [0 B + 262 (8. B)I(w. By -

From this, by using Gronwall’'s inequality, we obtain

H( )||Loo(0 7)< [QCbCQCg exp {20b|| u, B)||L2(0 T V)}} et =: cqet.

Integrating the preceding differential inequality we atdiain
H( )||L2 oT:v) S [2%04”(“ B) HL2 (o,15v) T 20b0203:|6 =: cgel. (23)

This easily implies that

‘ (ua B) ((fa Curlj) + €(¢a CUF1¢)) — (ua B)(fv Curlj)

€
Therefore the desired limit in (20) exists and thus the mags Gateaux differentiable.
O

e(ﬁ, B) (f, curlv)

€

< Wese.

L2(0,T;V)

Lemma 2. Assumel’ € (0,00). Let (¢, curlep) € L2(0,7;L2(2))? and let(u, B) be
defined as in Theoref Then, for everye, k) € L?(0,T; L?(92))?, we have

T T

/((e,k) ( B)) /(((b,curl'l/;) (C,H))Hdt, (24)

0 0

where(¢, II) € L2(0,7;H) N L2(0, T; V) satisfies

- (%@’H)’(Wﬂf)) +a((¢, ), (w, X)) +b((w, ), (u,B), (¢, TD))

H
+ b((ua B)v (Wa T)v (Cv H)) = ((ea k)v (Wa T))H V(W, T) € Vv

(C(T)a H(T)) = (07 0)

(25)
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Proof. We proceed as follows using integration by parts

T
/ (e,k), (u

0 T

,B))
/__ (a—((,H),(ﬁ,B)) +a((¢,10), (u,B))
b(

0

Il
O\q

Pl
2
(oo

z =
A
T

+

=)

~

=
2
[ws]l

:/(((ﬁ,curl"p)a(CaH))Hdt

by (19). O

Theorem 7. Let T € (0,00) and let(ti, B, f, curlj) € U.q(T) be a solution to the
optimal control problem. Then the following equality holds

C+B(E-£) =0 and T+ f(curlj — curlj?) =0, (26)

where adjoint state variable(sf, ﬁ) € L*(0,T;H) NL2%(0,T;V) is the solution of the
linear adjoint problem:

- (%(i i), (Wﬂf)) +a((CT0), (w, X)) + b((w, Y), (4, B), (G 11))
H
+b((@,B), (w,X), (¢, II)) -

(a1(8—u’),as(B-BY)), (w.T))  ¥(w,T) €V,

Proof. Let (u, ]A3,?, curl}) be an optimal solution. Then the Gateaux derivative

754 (u B f cur13
1
9(f curl/) (¢, curl9)

[ [fora- s ses(B- 98

+ B2 [(curlj— curljd)curl't,b] + 31 [G — fd)gb} dx dt,
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where(ii, B, curl +) is the solution of the system (19). Singe, ﬁ,?, curl_/j\) is an opti-
mal solution and the Gateaux derivative exists, this dévieanust be zero in all directions
(¢, curlyp) € L2(0, T; H). Therefore by settinge, k) = (a1 (i — u?), az(B — B%)) in
(24) yields

T
//[E+51@_fd)]¢+s[ﬁ+52(cur1§—curljd)}cumpdx dt =0,

This implies (26). O

For the adjoint state variablésf, ﬁ), we obtain the following estimates on finite
intervals.

Theorem 8. For T € (0, c0), let (4, B, f, curlj) € U,q(T) be a solution to (OP-CON)
and that(¢,II) € L°°(0,7;H) N L?(0,7T;V) be the solution tq26), (27). Then, for
eache > 0,

T
€M)+ [ ICTOas <200 70 Ve e [eT)

where

) == v/ci(e)]|(uo, Bo) — (ug’BLOi)HH + H(ud’Bd)HLoe(o,oo;v) <00
and

M = max{czl e ,Cipie )517505P%(5)52}~
Proof. Setting(w, Y) = (C,H) in (27), we have
IR + I T,
= (1%, 028), ({10)), — b((¢ T0), (8, B), (¢, 10))

< [l(en ¥, 02) (€. T + e |(C T (@ B | (S TD)
Now using Young’s inequality yields

~ 1 - o~ o~
SDE T+ SIETI < Lo 002 + IE ) B

From the estimate (18) and the triangle inequallity, )||V < p1(e). Using this and
(26) in the previous differential inequality yields

2 1 a2

- 5 IC T+ SIC DS,
1 . ~ N

< —[a391 + Sa3||Z]*] + ¢ pa () (32|

I&11°]-

3l1&ll?]
~ = A2
< M |[V])? + Saz||E[]* + 41[|h

369



S. S. Ravindran

Integrating both sides over the interyal T') yields the desired estimate. O

3.2 The infinite time interval case

In this section, we will utilize the results of the previo@sson to prove the existence of
optimal solutions to (OP-CON) in the infinite time interval.

Theorem 9. There exists an optimal solutidi, B.f, curl}) € U,a(c0) for (OP-CON)
with T = cc.

Proof. For eachT' € (0,c0), by using Theorem 4, we select(ar, By, fr, curl jr)
which solves (OP-CON) and satisfies

fT(UT,BT,fT,CU.rle)
/(W, Ta ¢a CuI‘l’l,[)), V(W, T, ¢7 Curl'l:b) € Uad(T>a

= inf
(W, X, p,curl p)eULq(T)

<g (uTv BT); (W, T)) +a’((uTv BT); (W, T)) +b((uT7 BT); (uTv BT); (W, T))

ot °
- ((fTa Curle)v (Wa T))Ha V(W, T) € Vv (28)
(uT(O),BT(O)) = (UQ,BQ) in H. (29)

For each finitel’, we obviously havgU 4 (c0)]|o,7) C Uaa(T). Therefore,

Ir(ur,Br, fr,curljr) < _Zr(w, X, ¢, curlyp) < _Zo(w, Y, ¢, curl yp) (30)

V(W7 Ta ¢a Cllrl'l/)) eUad (OO)
Since/oo(ﬁ,f%,i curl.]T) < 00, (ﬁ,ﬁ,?, curl}) € U,a(o0), Where(ﬁ,f%,f, curl.]T) is
a quasi-optimizer constructed in Section 2. It then folldizat

ur, By, fp, curljr) < inf (W, Y, ¢, curly) < co.
Fr(ur,Br, fr jr) (w,T,(b,curlw)GUad(oo)/ ( o} )

For each integekt > 0, we denote by(ug, By, fi, curl ji) a solution of (28), (29) for
T = k. We set(vy, Zx, hy,gx) = (up — u?, By — B £, — £9 curlj, — curljé).
Then (v, B, hy, gi) satisfies (6), (7) withl' = k. Using the standard estimates of
the MHD equations on the finite time interval and (30), we obthat||fx||1.2(o,k;1.2 (2))>

lleurljk|lL2(0,ksL2(0)) ||k, Bi)llww @,y and [|(ux, Br)llLe(o,r;m) are uniformly
bounded for allk. By induction, we can choose successive subsequences iif/@os

integers{kﬁ;’”)},?LO=1 form =1,2,...such that{k,(f)},,"f=1 D {k,(f)},,"le D...and

(Vo Bpom) = (vO,EM) in W(Q,,) as n — oo,
(VkELm) , Ekgm)) N (v(m), E("”)) in L>(0,m;H,) asn — oo,

hy o) — h(™ in L? (0,m;L*(Q)) asn — oo,
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and
g o — g™ in L2(0,m; LA(Q)) asn — oo
for some
(vim 2m) e W(Q,,), h™ e L?(0,m;L*()) and g™ € L?(0,m; L*(Q2)).

Hence, by extracting the diagonal subsequence, we haviottersichm/’,

(Vi s By ) = (v, 2 in WO(Q) asm — oo, (31)
(Viom, Epom) S (vm) ED)in L0, m'; Hy as m — oo, (32)
" —h) and g™ — g™ in L?(0,m;1*(Q)) asm —oo.  (33)

For eachn’ > 0, using (31)—(33), standard techniques for the MHD equatioompact-
ness results and density arguments (see [19]) allow us ®tpdke limit asn — oo in
the equation below

110
J (506000 Z) 00 ) 100+ (¥ 01,0, S D))
0

H

+ b((vkm(m),Ekm(m)),( \s (m.),\—lk (m)), (w, T)) (t)

m

+ b((vkm(m> ) Ekm(m) )7 (u Bd) )X (34)

+b((ud,Bd) (Vi om)5 By, () )X }

= /(hkm(m) ) gkm(”"))a (W7 T)HX(t) dt V(Wa T) € Va X € C(()xn ((Oa ml))
0

to obtain

<%(u(m’),B(m')),(w,T)> +a((u™) B w, )
H

+ b((u(m/), B(m/)), (u(m’), B(m/)), (W, —r))
= (£, curlj™)), (w, X))y, V(W,Y) €V, te (0,m),

(35)

where (u(™), B(m)) .= (V(m ,2mY) 1 (u?, BY). For all my, my with m; < ms,
we have that(v(™) 2m)|q .,y = (v(m2) Bm2)) flm)], = fm2) and
curl j) | (g my) = Cuﬂj<m2) because of the uniqueness of weak limits. Therefore the
functions(v, E) := (u(™ (¢), B (1)) if t < mand(f, curlj) := (£0™) (), curl j(™ (¢))
if + < m are well defined o0, o), and furthermore(@, B) € W (Q) and(f, curlj) €

loc
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L2(0, 00; L2(€2))2. Upon settindt, B) = (v, E)+(u?, BY), h+f? = f andg+curl j¢ =
curl j and noting thatn’ is arbitrary in (35), we have

(2 (@.B), (w, r>) ra((8.B), (w, 1)) +b((8. B), (8, B), (w, 7))

ot (36)

= ((£. curlj), (w, X)) ¥(w,Y)€V almost everywhere € (0, c0).

We next examine the initial condition f¢@, B). The continuous embedding () (Q) <
C(]0,T); H) implies that(ti(0), B(0)) is well-defined inH. Replacingy in (34) by a
continuously differentiable function 0, cc) with a bounded support, integrating by
parts using the fact thaug’j) (0), Bé’”) (0)) = (up, Bp) and then passing to the limit, we
obtain

o0 (37)
— [ (@ curtd). (v, 1))t + (0, Bo). (w. 7)) x(0)
0
Y(w,X) e V.
On the other hand, multiplying (36) by(t) and integrating by parts, we obtain
/ [— ((@B), (W, X)) X () + (G, B), (w, X)) x(t)
+b((@,B), (8, B), (w, 1))x(t)| at a8)

— [ (@ curtd). (w2, 1) 0 + ((3(0), BO)). (w. 7)) x(0)
0
V(w,Y) e V.
By comparing (37) with (38) and then choosigpgvith x(0) = 1, we havgu(0), ]§(0)) =
(up,Byg) in H Finally, usmg the lower semi- contlnuny of the functiongr (-, -) and the

fact that(v, E) = (1, B) — (u?,B4) € L(0,00; V), h = f — £ € L2(0, 00; L%(2)),
andg = curlj — curlj¢ € L2(0, 00; L2(£2)), we obtain

/kﬁ,i") (ﬁ,ﬁ,/f\ cur1}< hm inf /k< o (u u; o), B ),f(( )),curlj('n) )
S/OO(W,T,qb,curlw) V(w, Y, ¢, curlyp) € Uyg(c0)
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so that by lettingn — oo,

I (ﬁ, ]A3,,f, curlﬂ < Foo(W, X, ¢, curltp) V(w, Y, ¢, curlep) € Uyq(o0).
Hence we have proved that, ﬁ,?, curl}) is the desired optimizer for (OP-CON) with
T = oo. O

4 Dynamics of optimal control solutions on the infinite time nterval

Using the preliminary estimate (14) thgtu(t), B(t)) — ( 4(t),B4(t))| | stays bounded,
we will prove much stronger resulf{u(t), ( )) — (ui(t), B(t))| approaches zero
ast — oo.

Lemma 3. LetT € (0, c0]. Assume thatu, B, f, curlj) € Unq(T). If ||(u(t),B(t)) —
(ud(t),B%(t))||lm > 0 forall t € (t1,t2) C [0, 7], then

[(u(t2), B(t2)) — (u’(t2), BY(t2))[ | g
<|(u(tr), B(t1)) — (ul(t1), BY(t1))|| g +eov/Tz b1 (P (u, B, £, curlj)) ?,

where

1 S 1 521
06::[(—+—)Cb||( w B+ -+ 2]

g (&%)

(39)

K\JlH

If, in addition, Zr(u, B,f,curlj) < _#7(1,B,f,curlj), where(w, B, f, curlj), is as
defined in Theorem 5, then

(). B(t2)) = (1), B 1) )
< t2), B(t1)) — (), B o /B (10, Bo) — (i, B g
wherew is as defined in Theorefin

Proof. Setting(w,Y) = (v,E) in (6) and using the skew symmetric property of the
trilinear form yields

v B e v, B+ [, IR+ (v, Z), (u, B, (v, ) )
(v,

= ((h,g),(v,8))q4
Using the continuity property of the trilinear form and Yagminequality yields

= Lo =
1tv, Bl H( v, 8)llm + 5V Bl

2
i+ 2 (v, 2) 0, B,

[1]

< (Ihf + SlglDll v,
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It |(v(t),E())|lm > 0forall t € (t,t,), then we may divide this inequality by
|(v(t),E(t))||m to obtain

d
SN D)+ 51(v.E)u
‘ = d pdy||2
< (] + Sligl) + 211 (v.=) = (a”, BY,
1 S c? 2 2 1 52 3
() () <5 5)
<((£+2)(ZI0nmly) + 5+ 5

x (arllv()]* + Saol|E(®)]* + Si[bl* + B2llgll*)* Vit € (tr,ta).

(42)

Multiplying the last inequality by 2" and integrating oveft1,ts) yields

IN

(v(tl), E(h))HHe*%(t?*“)

[2)

teo [ VI + Saz|E@) + Al + Gallgl] e 5 as

t1 to %
< ||(V(t1),E(t1))HH + cﬁjT(u,B,f,curlj)% [/e"(tzs) ds]

t1

1— e—K(tQ—t1)‘| %

[1]

< Jvie), ;

(tl))HH + 06/7“(11, ]37 f, curlj)% l

< ||(V(t1), E(tl))HH + V2 — tlcﬁ(/T(ua B.f, curlj))%

where we used the inequality— e~¥ < y for y > 0. This proves inequality (39). Finally
the inequality (40) follows from the bound (9). O

Theorem 10. Assume thatu, B, f, curl j) € U,q(c0). Then
Jim [(u(®),B(t)) — (u(t), B4(t))||; = 0 (43)

Proof. The theorem is trivially proved if Zo(u, B, f, curlj) = 0. Therefore we as-
sume _#..(u,B,f, curlj) > 0 and proceed to prove (43) by contradiction. Assume
thatlim; . ||(u,B) — (u¢,B9)||m # 0. Then for any givere > 0 we defines :=

2

12 7iuBrenty > 0 This allows us to choose a sequer{eg} such thatt, — oo,

tn—f—l - tn > dand
(u(tn), B(tn)) — (u(tn), B4 (t))|| g = € > 0.
We claim that for each

[(u(t),B(t)) — (u(t),BY(1))||yg >0 VtE (tn — 6,tn). (44)
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We prove this as follows. We set

fi=sup {t € (ta1,ta): [[(u(®), B®) — ('), B(®))| = 0

and assume that, — ¢ < 4, thatis,t € (¢, — d,t,).Then itis clear that
[(u(t),B(t)) — (u(t),B4(t))|| g >0 V€ (L,tn)

so that by (39)
[(u(®), B®) - (ud<f>,Bd<a)uH
> [(ultn), B(tn)) — (u (1), BYtn))] g — c0? #F > 5

which contradictd| (u(¢), B(t)) — (u¢(¢), B4(¢))||m = 0. This proves the claim in (44).
Now using (39) and (44), we haygu(t), B(t)) — (u?(t), B(t))|lu > § Vt € (tn —
d,t,) and we are led to

Foo(u, B, f, curlj)

[e%s} tn 2 00
« e
>5[ l:Bw) - (w0 BU0)far = 5= s - o
n:2tn_6 n=2
which is a contradiction and thus (43) is proved. O

We next study the asymptotic behavior|gfi(t), B(¢)) — (u(t), B(t))|v, where
(u(t),B(t)) is the optimizer of (OP-CON) witil" = cc.

Lemma 4. LetT € (0, co]. Assume thatu, B, f, curl j) € Ug4(T') is a solution of (OP-
CON). Assume further thd{(u(t), B(t)) — (u(t), B4(t))|[v > 0forall t € (t1,t2) C

[e,T]. Then
[(u(t2), B(t2)) — (u’(t2), B%(t2))||y,
< H(u(zn),B(m))f(udm),Bd<t1>)||v+cu<trt1>+%<2M/T>%mv
whereM is defined in Theore®and

c12 1= creio(€)’edy + esen[|(u, BY) HLOC(() 005 V) H"Q{(ud’ Bd)HLoe(o,oo;H)

+ 09010(6)||(ud, Bd) u Bd)

||L°°(()00H)||( ||L°°((),00;V)'

Proof. Setting(w,Y) = &/ (v, E) in (6) yields as in the proof of Theorem 3 that

d 1
2Dy + 51 S)lv
< | (v, BNV, B) 7 + sl (v, B)[la|(ud, BY)| [ A (ud, BY)

e Lys o
+ eof[(u?, B g a, By (v Bl + 5 (S 1)y
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where = max{z-, -}. By (14) and (18),
sup |[(v, B)|lv < vV éi(e)||(vo, Zo)|lu = ciole),
sup [|(v, B)lu < Vel (vo, Bo)[la == c11.

Therefore we have
d — 1 — 1,,~~
NV E)lv + SI(v. E)llv < e12 + B”(C’H)HV Vt € (t1,t2).

Multiplying both sides by:*/? and integrating oveft, t5) yields

(vt

=
|._.|

)|
(v (tl) E(t1))||y exp{—(t2 — t1)/2} + c12(1 — exp{—(ta — t1)/2})

2}
1 P »
g [ € Mye?as
t1

By Cauchy-Schwartz inequality and by the estimate for thgiatl variables in
Theorem 8,

t t bot 4
el < ( femfia) ( foo)
/ / /

< (2M 7r) % [exp(tz) — exp(tr)]®.

Combining the last two inequalities yields the desired ursdity. O

2),
<

We can now establish the long time behavior ffou(t), B(t)) — (u(t), B4())|v
based on Lemma 4.

Theorem 11. Let (u, B, f, curl j) be a solution for (OP-CON) witll" = co. Then

lim {|(u(t), B(®)) — (u’(#), BY(1))]ly, =0.

t—o0

The proof of this theorem is omitted as it is similar to theqfrof Theorem 10 with
the help of the bound in (17).
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