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Antiplane shear deformations are one of the simplest exasgfldeformations that solids
can undergo: in antiplane shear of a cylindrical body, tlspldicement is parallel to the
generators of the cylinder and is independent of the axialdinate. For this reason, the
antiplane problems play a useful role as pilot problemswaiig for various aspects of
solutions in Solid Mechanics to be examined in a particylsirhple setting. Considerable
attention has been paid to the analysis of such kind of pnodleee for instance [1-5]. In
particular, the last two references deal with antiplanélems for piezoelectric materials.
Piezoelectric materials are characterized by the coupletgveen the mechanical
and electrical properties. This coupling leads to the aygrez of electric potential when
mechanical stress is present and, conversely, mechatriesd $s generated when electric
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We consider a mathematical model which describes the angpkhear

deformation of a cylinder in frictionless contact with aiddoundation. The adhesion of
the contact surfaces, caused by the glue, is taken into atcdhe material is assumed
to be electro-viscoelastic and the foundation is assumbd &ectrically conductive. We
derive a variational formulation of the model which is giviey a system coupling an
evolutionary variational equality for the displacemenltdfja time-dependent variational
equation for the electric potential field and a differentéguation for the bonding field.
Then we prove the existence of a unique weak solution to trieind he proof is based
on arguments of evolution equations with monotone opesatnd fixed point.
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potential is applied. The first effect is used in mechanieaksrs and the reverse effect is
used in actuators, in engineering control equipment. Riertric materials for which
the mechanical properties are elastic are called eletasiie materials and those for
which the mechanical properties are viscoelastic aredellectro-viscoelastic materials.
General models for electro-elastic materials can be fouf@H8]. Static frictional contact
problems for electro-elastic materials were studied inlf8-and contact problems for
electro-viscoelastic materials were considered in [13, 14 all these references the
foundation was assumed to be electrically insulated.

Processes of adhesion are important in many industriahgetivhere parts, usually
nonmetallic, are glued together. For this reason, adhesivtct between bodies, when a
glue is added to prevent the surfaces from relative motiag racently received increased
attention in the literature. General models with adhesamlze found in [15-18]. In all
these references the idea is the introduction of a surfaemial variable, the bonding field
B € [0, 1], which describes the fractional density of active bondshendontact surface.
At a point on the contact surface, wh@n= 1 the adhesion is complete and all bonds are
active; whens = 0 all the bonds are inactive, severed, and there is no adhestmn
0 < B < 1the adhesion is partial and only a fractigrof the bonds is active.

Existence and uniqueness results in the study of modelsifeesive contact were
obtained by several authors, by using various functionahods. A partial list include
[19-23], among other references. The method used in [1@{dedbon time-discretization
and compactness arguments and the method used in [20] eedb# application of a
compactness lemma and the Faedo-Galerkin discretizalfiba.existence of a solution
for a delamination problem is obtained in [21] by using a tagmed interface model and
arguments of nonsmooth analysis; the lack of convexity efftinctional governing this
problem leads to a new and nonstandard mathematical moohalllyi-the unique weak
solvability of the adhesive problems studied in [22] and][®3based on arguments of
evolution equations with monotone operators and fixed point

In this paper we study an antiplane frictionless contacbjem with adhesion for
electro-viscoelastic materials, in the framework of thetihdanatical Theory of Contact
Mechanics, when the foundation is electrically conducti@eir interest is to describe a
physical process in which both antiplane shear, contabgsidn and piezoelectric effect
are involved, leading to a well posedness mathematical@mobTaking into account the
piezoelectric effect, the conductivity of the foundatiordahe adhesion in the study of an
antiplane problem for viscoelastic materials represdrwsrtain novelty of this work. We
rarely actually load piezoelectric bodies so as to causa thaedeform in antiplane shear.
However, the governing equations and boundary conditionaritiplane shear problems
are beautifully simple and the solution has many of the festof the more general case
and may help us to solve the more complex problem too.

Our paper is structured as follows. In Section 2 we presentibdel of the antiplane
frictionless adhesive contact for an electro-viscoedastiinder. In Section 3 we introduce
the notation and list the assumptions on problem’s datayelére variational formula-
tion of the problem and state our main existence and unigseresult, Theorem 1. In
Section 4 we provide a proof of the theorem which is carrietliowseveral steps by
constructing three intermediate problems for the dispted field, the electric potential
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and the bonding field, respectively. We prove the uniqueadmlity of the intermediate
problems, then we consider a contraction mapping whoseuerfiged point leads us to
construct the solution of the original problem.

2 Themodd

We consider a piezoelectric bodyidentified with a region irR? it occupies in a fixed
and undistorted reference configuration. We assumefhiata cylinder with gener-
ators parallel to thers-axes with a cross-section which is a regular regidrin the
x1, zo-plane,Ox1xox3 being a cartesian coordinate system. The cylinder is assume
to be sufficiently long so that the end effects in the axia¢clion are negligible. Thus,
B = Q x (—o0,4+00). The cylinder is acted upon by body forces of densityand
electric charges of density. It is also constrained mechanically and electrically am th
boundary. To describe the boundary conditions we denotéby- I" the boundary of)
and we assume a partition bfinto three open disjoint parts;, I'; andI's, on the one
hand, and a partition df; U Iy into two open part§’, andI',, on the other hand. We
assume that the one-dimensional measuie, aindI',, denotedneasI'y andmeasT,,,
are positive. The cylinder is clamped B x (—oo, +00) and therefore the displacement
field vanishes there. Surface tractions of dengjtyact onI'y x (—oo, +00). We also
assume that the electrical potential vanishe§'px (—oo, +00) and a surface electrical
charge of density,, is prescribed o', X (—oo, +00). The cylinder is in adhesive contact
overI's x (—oo, +00) with a conductive obstacle, the so called foundation.

Below in this paper the indiceisand j denote components of vectors and tensors
and run froml to 3, summation over two repeated indices is implied, and thexrbHat
follows a comma represents the partial derivative with eeso the corresponding spatial
variable. Also, a dot above represents the time derivathe useS? for the linear space
of second order symmetric tensorsRhor, equivalently, the space of symmetric matrices

of order3; “-” and|| - || will represent the inner products and the Euclidean nornigbn
ands?, i.e.

u-v=uw;, |v]=w-v)/? foral u=(u;), v=(v)eR>

o1 =0Ty, |7l = (- -7)Y? foral o= (o), T=(m;)cS

We assume that

fo = (0,0, fo) with fo = fo(z1,22,t): Q@ x[0,T] — R, D
fo = (0,0, fo) with fo = fo(z1,22,t): Ta x[0,T] = R, (2)
qo = qo(x1,x2,t): Q@ x[0,T] = R, 3)
G2 = qa(z1,x2,t): Tp x [0,T] — R, 4)

where[0, T'] denotes the time interval of intere$t,> 0.
The forces (1), (2) and the electric charges (3), (4) wouleXmected to give rise
to deformations and to electric charges of the piezoetectdinder corresponding to a
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displacement: and an electric potential fielgd which are independent ary and have
the form

UZ(O,O,U) with U:U(Jh,xg,t): Q x [O,T]—>R7 (5)
o =@(x1,22,t): Qx[0,T] = R. (6)

Such kind of deformation, associated to a displacementdietde form (5), is called an
antiplane shear, see for instance [2, 3] for details.

We denote by (u) = (¢;;(u)) the strain tensor and by = (o,;) the stress tensor;
we also denote bl (p) = (E;(p)) the electric field. Here and below, in order to simplify
the notation, we do not indicate the dependence of varioostifons onzy, o, x3 ort
and we recall that

1
Eu(u):ig(uaj%*ujJ% Ei(p) = —p,.

The material's behavior is modelled by an electro-viscat@gaonstitutive law of the
form

o=20e(t)+(tre(0) I+ 2ue(u)+ Nre(u)I — E'E(p), (7)
D = &e(u) + a E(yp), (8)
where¢ and@ are viscosity coefficients\ and . are the Lamé coefficientgy e(u) =

eii(u), Iis the unit tensor ik3, « is the electric permittivity constan£, represents the
third-order piezoelectric tensor adgd its transpose. We assume that

e(e13 +¢e31) (
Ee = | e(ea3 + £32) Ve = (g ) € S8, (9)
€E€33

wheree is a piezoelectric coefficient. We also assume that the cosits?d, i, o and
e depend on the spatial variables, x-, but are independent on the spatial variabje
Sinceft - v =7 - E*v forall T € S? andv €R3?, it follows from (9) that

E'v=[0 0 ev Vv = (v;) € R (10)

In the antiplane context (5), (6), using the constitutivaans (7), (8) and equali-
ties (9), (10), it follows that the stress field and the elealisplacement field are given

by

0 0 9@71 + pu +ep
o= 0 0 Oto+ pus+eps |, (11
9@71 + Hu 1 + €Y1 9@72 + HU 2 + €Y 2 0
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€U 1 — P
D=|euz—aps|. (12)
0

We assume that the process is mechanically dynamic andieddigt static and
therefore is governed by the balance equations

dive+fy=pi, Dji—q =0 inBx(0,7T), (13)

wherediv o = (o;;,;) represents the divergence of the tensor fieldnd p denotes the
mass density, assumed to be independentsorTaking into account (11), (12), (5), (6),
(1) and (3), the balance equations (13) reduce to the faigwcalar equations

div (Vi + pVu + eVo) + fo = pii in Q x (0,7, (14)
div(eVu —aVe) =qo in Qx (0,T). (15)

Here and below we use the notation

divr =m1+72 for 7= (m(z1,22,t), 72(z1,22,1)),

Vo= (v1,v2), Ow=v1v1+vave for v=uv(z,z2,t).

We now describe the boundary conditions. During the prattessylinder is clamped
onT'; x (—o0, 4+00) and the electric potential vanishesBpx (—oo, +00); thus (5) and
(6) imply that

u=0 onTyx(0,7T), (16)
=0 onT,x(0,7). a7

Let v denote the unit normal oh x (—oco, +o0). We have
v=(v,12,0) with v; =v(x1,29): T >R, i=1,2. (18)

For a vectorv we denote by, andv, the normal and tangential components on the
boundary, given by

Vy =V -V, V;=V—U,l. (29)

Also, for a given stress tenser we denote by, ando - the normal and the tangential
components on the boundary, that is

o, =(ov) v, or=0V—0,V. (20)

From (11), (12) and (18) we deduce that the Cauchy stressnaat! the normal compo-
nent of the electric displacement field are given by

ov =(0,0,00,4 + pdyu+edyp), D-v=edu—ad,e. (21)
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Therefore, taking into account (2), (4) and (21), the t@attondition o’y x (— oo, +00)
and the electric condition o, x (—oc, +00) are given by

00,1+ ud,u+ edyp = fo on Ty x (0,7, (22)
ed,u — adyp = qp on T’y x (0,7T). (23)
We now continue with the boundary conditions on the contagtfase
I's x (—oo,+00) in which our interest is. First, from (5) and (18) we infer thhe

normal displacement vanishasg, = 0, which shows that the contact is bilateral, i.e. is
kept during all the process. Using now (5), (11), (18)—(28)agnclude that

u, = (0,0,u), o, =1(0,0,00,4+ pud,u+ ed,p). (24)

Since the contact is adhesive, following [22, 23] we assumethe tangential tangential
stresso, satisfies

—o, =p(6)R(u;) on T3 x (—oo,+00) x (0,T). (25)

Herep is a given functiong is the bonding field an® is a truncation operator defined

by
" v it vl <L, "
(v) = Lﬁ it |v|>L (26)

v

with L > 0 being a characteristic length of the bond, beyond whichethi@mo any
additional traction (see, e.g. [18]). It follows from (23)at the shear of the contact
surface depends on the bonding field and on the tangentjaladeament, but only up
to the bond lengtil. The frictional tangential traction is assumed to be muchlEn
than the adhesive one and, therefore, omitted. Using nojvaf2d assuming that does
not depend ons, it is straightforward to see that the tangential boundarydition (25)
implies

—(00,u + ndyu + edyp) = p(B) R(u) on I's x (0,7, (27)

whereR is the real valued function defined by

—L if v<-—L,
R(v) = v if —L<v<L, (28)
L if v>L.

Since the foundation is electrically conductive and thetachis bilateral, we as-
sume that the normal component of the electric displacefieddtis proportional to the
difference between the potential on the foundation and tity’s surface. Thus,

D-v=Fk(p—pr) onTs3x (—oo0,+00) % (0,7T), (29)
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wherepp represents the electric potential of the foundation &nd the electric con-
ductivity coefficient, both assumed to be independentgn We use (21) and (29) to
obtain

edyu—adp =k(p—pr) onTsx(0,T). (30)

We describe the evolution of the bonding figlds by the first order ordinary diffe-
rential equation

B=—(B(3S(w,)’ +7IR(ur)|*) —€a), 0N Ty x (—o0,+00) x (0,T), (31)

already used in [22,23]. Her® v ande, are given adhesion coefficients which depend
only onz; andz,, R is defined by (26)S: R — R is a truncation operator such that
S(0) = 0 andr; = max{r,0}. We note that the adhesive process is irreversible;
indeed, once debonding occurs bonding cannot be reestatblisince < 0. Replacing
the differential equation (31) with a condition which allewhe adhesive process for
rebonding will represent an important extension of the ltesn this paper and will be
consider in a further paper. Using now equalitigs= 0, S(0) = 0, v, = (0,0, ) and

the definitions (26) and (28) of the operat®sand R, it is straightforward to see that
(31) implies

B=-(BR)’ ~ <), onlsx(0,T), (32)
In (32) and below we use the simplified notatid{u)? for the square ofR(u), i.e.

R(u)* = (R(u))*.
Finally, we prescribe the initial displacement, velocitddonding fields, i.e.

U(O) = Ug in Q, (33)
W(0) = vy in O, (34)
B(0) =B on I}, (35)

whereug, vo andgy are given.

We collect the above equations and conditions to obtaindhesing mathematical
model which describes the antiplane shear of an electmmelastic cylinder in friction-
less adhesive contact with a conductive foundation.

Problem P. Find a displacement field: 2 x [0, 7] — R, an electric potentiapp: Q x
[0,T] — R and a bonding field: I's x [0,7] — R such thaf{14)—(17), (22), (23), (27),
(30), (32)—(35ho0ld.

Note that once the displacement fieldand the electric potentigb which solve

ProblemP are known, then the stress tensoand the electric displacement fidlal can
be obtained by using (11) and (12), respectively.
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3 Variational formulation

In this section we derive a variational formulation of thelflem P. To this end we
introduce the function spaces

V={veH'(Q): v=0o0nT1}, W={peH (Q): ¢v=0o0nT,},

where, here and below, we write for the trace ol of a functionw € H*(f2). Since
meas'y > 0 andmeasT', > 0, it is well known thatl” andW are real Hilbert spaces
with the inner products

(u,v)V:/Vu-Vvdx Yu,v eV, (ap,w)W:/Vgo-dem YV, e W.
Q Q

Moreover, the associated norms
[vllv = [IVvlr2@z Vo eV, [¥lw=I[VYlrzq: VieW (36)

are equivalent o’ and W, respectively, with the usual norf- | 51 (q). Also, by
Sobolev’s trace theorem we deduce that there exists pgsitiastantsy, > 0, cyy > 0
such that

[ollL2re) < cvivlv Yo eV, |dllewy) < ewldllw Ve W (37)
We suppose that the mass density satisfies
p € L>(Q) andthere existp® > 0 such thatp(x) > p* a.e.x € Q. (38)

We use a modified inner product éh= L?(£), given by

(uv)g = (pu,v)%z(m Yu,v € H, (39)
that is, it is weighted wittp, and let|| - || z be the associated norm, i.e.

Il = (pv,0) oy Vo€ H. (40)

It follows from assumptions (38) thét || 7 and|| - || .2 are equivalent norms off, and
the inclusion mapping ofV, || - ||v) into (H, || - || ) is continuous and dense. We denote
by (V.| - |lv) the dual space df. Identifying H with its own dual, we can write the
Gelfand triple

VCcHCcCV.

We use the notatioft, -)y v to represent the duality pairing betweBhand?” and we
recall that

(u,V)vixy = (u,v)g Yu e H, veV. (41)
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For a real Banach spadeX, || - ||x) we use the usual notation for the spaces
LP(0,T; X) andWkP(0,T; X) wherel < p < oo, k = 1,2,...; we also denote by
C([0,T); X) andC*([0, T]; X) the spaces of continuous and continuously differentiable
functions on[0, T'] with values inX, respectively, with the norms

||U||C([0,T];X) = max |lu(t)||x,

te[0,T)
Julloxqorix) = me [u(®llx + max. [at)]x-

Finally, we will use the set
Z={0eC([0,T;L*(I'3)): 0<0(t) <1 Vte[0,T], ae. onls}.

We now list the assumptions on the rest of the problem’s dAassume that the
viscosity coefficient and the electric permittivity coeiéint satisfy

e L>*(Q) and 36" >0 suchthatf(x)> 6" a.e.x e, (42)
a e L*() and Ja*>0 suchthata(x) > a* a.e.x €. (43)

We also assume that the Lamé coefficient and the piezoeleogfficient satisfy

pweL™®(Q) and p(x)>0 ae.xe, (44)
e € L*(Q). (45)

The tangential functiop satisfies

@ p: T's xR — R,
(b) There existd, > 0 such that

Ip(x,61) — p(x,02)| < L|B1 — fBa| V1,82 €R, ae.xels. (46)
(c) There existsM > 0 suchthat|p(x,5)| < M VpeR, ae.xels.
(d) The mappingx —p(x,3) is measurableo®'s V(€ R.

The adhesion coefficientsande, satisfy the conditions

ve L>*(s) and ~(x) >0 a.e.xel}, 47)
€ € L2(T'3) and e,(x) >0 ae.xecls. (48)

The forces, tractions, volume and surface free chargestaaisave the regularity

f() € L2 (07T7 LQ(Q))ﬂ f2 € L2 (Oa Ta L2(F2>)7 (49)
q € WH2(0,T; L*()), q, € WH2(0,T; L*(T)). (50)

The electric conductivity coefficient satisfies

ke L*(T3) and k(x)>0 aexeTl;s. (51)
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Finally, we assume that the electric potential of the fodiodeand the initial data
are such that

pr € WH2(0,T; L*(T'3)), (52)
up €V, wp € L*(Q), (53)
Bo € L*(T'3), 0<fo(x)<1 aexecls. (54)

Next, we define bilinear formg: VxV — R, a,: VXV — R, a.: VxW — R,
al: WxV —-R anda,: Wx W — R by equalities

ag(u,v) = /9 Vu - Vude, (55)
Q

au(u,v) = /u Vu - Voude, (56)
Q

() = [ e V- Vode = al(ou) 57)
Q

ao(ph) = | aVe-Vipdr + [ keipdr, (58)
[remees]

forall u,v € V, @, ¥ € W. Assumptions (42)—(45), (51) imply that the integrals above
are well defined and, using (36) and (37), it follows that twerfsas, a,,, a., a} anda,

are continuous; moreover, the formg, a, anda, are symmetric and, in addition, the
form ay is V- elliptic and the fornu,, is - elliptic, since

ap(v,v) > 0% ||v]|} VYo eV, (59)
() = o [}y Yy ew. (60)

Assumptions (49) allows us, for ae (0,7), to definef(t) € V' by

(f);v)vixv = [ fol)vdz+ [ fo(t)vda Vv eV, (61)
[rowees]

and, moreover, yields
ferL*0,T;V"). (62)

We also define the mappings [0,7] — W andj: L?(T3) x V x V — R,
respectively, by

(qt), V)w = [ t)ydr — [ @(t)pda+ [ kpripda, (63)
[y

'y s
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iBu0) = [ pBR@ v da, (64)
s
forallv € V¢ € W, 3 € L*(I'3) andt € [0, T)]. For the convenience of the reader we
recall that here and belo® is the real valued function defined by (28). The definition

of ¢ is based on Riesz’s representation theorem; moreovet)oiv® from assumptions
(50)—(52) that the integrals in (63) are well defined and

q € Wh2(0,T; W). (65)

Performing integrals par parts, using notation (55)—(&&)), (63)—(64) and recall-
ing (39), (41), we obtain the following variational formtitan of the antiplane contact
ProblempP.

Problem PV. Find a displacement fieldi: [0,7] — V, an electric potential field
¢: [0,7] — W and a bonding fiel3: [0,7] — L?(I'3) such that, for a.et € (0,7,

(i(t), w)yv xv + ag(a(t), w) + a, (u(t), w) + al(p(t), w)

+j(6(t>au(t)vw) = <f(t)7w>v/><v Vwe ‘/v (66)

aa (1), ) — ac(u(t), ) = (a(t),¥)y,, Vv W, (67)

B(t) = — (VB R(u(t)” — ea) , (68)
and

U(O) = Uy, u(O) = o, 6(0) = ﬂ(). (69)

The main existence and uniqueness result in the study FPnoBlé, that we state
here and prove in the next section, is the following.

Theorem 1. Assume thaf42)—(54) hold. Then, there exists a unique solution of Prob-
lem (66)—(69). Moreover, the solution satisfies

ue Wh20,T;V)NnCY[0,T]; H), i€ L*0,T;V"), (70)
p € WH(0,T; W), (71)
BewWhH>(0,T;L*(T3)) N Z. (72)

We conclude that, under the stated assumptions, Proljlelnas a uniqueveak
solutionwhich satisfies (70)—(72).

4 Proof of Theorem 1

The proof of Theorem 1 will be carried out in several steps.a&&uime in the following
that (42)—(54) hold and below in this sectierwill denote a generic positive constant
which may depend of, T'y, I's, I's, 0, u, e, « p, L andT', but does not depend an
nor on the rest of the input data, and whose value may changegtace to place. Let
n € L%(0,T; V') be given. In the first step we consider the following variasibproblem.
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Problem PV,!. Find a displacementfield,, : [0, 7] — V such that

<’U,.,](1f), w)V’XV + ag (U‘O(t)a w) + <77(ﬁ)a w)V’XV = <f(t)a w)V’XV

YweV, ae. te(0,T), (73)
uy(0) = ug, 1y(0) = vo. (74)
We have the following result.

Lemma 1. There exists a unique solution of Proble‘f’ﬁ/;]1 and it has the regularity
expressed if70).

Proof. We define the operatoty: V — V' by
<A9U7w>V’XV = ag(v,w) Vv,weV. (75)

It follows from (75), the continuity of the bilinear foray and (59) that the linear operator
Ay is continuous and positively definite, i.e.

<A9’LU,’LU>V/><V > 0* H’LU”%/ forall weV.

Recall also thatf —n € L?(0,T;V’) andvy € H. Then, from a classical result on
ordinary differential equations in abstract spaces (s@g,[24, p. 140]), it follows that
there exists a unique functiary which satisfies

v, € L2(0,T; V)N C([0,T); H), b, € L*(0,T; V"), (76)
On(t) + Aguy (t) +n(t) = f(t) ae.te(0,7), 77)
’U»,] (0) = 9. (78)

Letw,: [0,7] — V be the function defined by
t
uy(t) = / vy(s)ds+ug Vtel[0,T]. (79)
0

It follows from (75) and (76)—(79) that, is a solution of the variational proble]?ﬁ/n1 and

it satisfies the regularity expressed in (70). This condutle existence part of Lemma 1.
The uniqueness of the solution follows from the uniquendégbesolution of problem
(76)—(78). O

In the next step, we use the displacement figjabtained in Lemma 1 to define the
following variational problem for the electrical poteritiield.

Problem PV,OQ. Find an electrical potential fielg,, : [0,7] — W such that

Ao ((,07](t),¢) - ae(u"l(t)?w) = (q(t)7w)w Vw € W’ te [OaT]v (80)

The well-posedness of ProbleRV/,” follows.
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Lemma 2. There exists a unique solutign, € W"2(0,T; W) of ProblemPV,2.

Proof. Lett € [0, T]. We use the properties of the bilinear foum and the Lax-Milgram
lemma to see that there exists a unique elemegyit) € W which solves (80) at any
momentt € [0, T]. Consider now, t5 € [0,7]; using (80) and (60) we find that

" [lon(tr) — en(t2) iy < llell oy lun(ts) — un(t2)[vllon(t) — en(t2)llw
+llg(t) = q(@)llw [leq(t1) = @q(t2)llw,

which implies that

10 (t1) = pn(t2)llw < e ((lug(tr) = un(t2)llv + llg(tr) = q(t2)[lw). (81)

We note that regularity,, € W'2(0,7;V) combined with (65) and (81) imply that
o, € WH2(0,T; W) which concludes the proof. O

We use again the solutian, obtained in Lemma 1 to construct the following Cauchy
problem for the bonding field.

Problem PV;?. Find a bonding field3, : [0, 7] — L*(T's) such that

By (t) = — (7 By (B R (uy (1) — €a) |, (82)
B,(0) = Bo. (83)

We have the following existence and uniqueness result.

Lemma 3. There exists a unique solution to Probleﬁv,?. Moreover, the solution
satisfiess, € W'>°(0,T; L*(I's)) N Z.

Proof. For the sake of simplicity, we omit the explicit display of the dependence of
various functions orx € TI's. Consider the mapping: [0,7] x L*(T's) — L*(Ts)
defined by

Fn(tvﬂ) = _(’VﬁR(u’n(t))Q - ea)+;

fort € [0,7] and3 € L*(T'3). It follows that F;, is Lipschitz continuous with re-
spect to the second argument, uniformly in time. Moreovarany3 € L?(I'3), the
mappingt — F,(t, 3) belongs toL>(0,T’; L*(I's)). Thus, using a version of Cauchy-
Lipschitz theorem (see, e.g. [23, p.48]), we obtain thatglexists a unique function
B, € Wh*(0,T; L*(T's)) which satisfies (82)—(83). The regularity, € Z follows
from (82)—(83) and the assumption (54). Indeed, equati@) {{Bplies that for a.e.

x € T's the functiont — f,(x,t) is decreasing and its derivative vanishes when
v By (t)R(uy(t))? < e,. Combining these properties with the inequality< 3(0) < 1

we deduce that < 3,(t) < 1forallt € [0,T7], a.e. o3, which shows that, € Z. O
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Now, forn € L*(0,T; V") we denote by, the solution of problenPV,! obtained
in Lemma 1, byy, the solution of problerrPVn2 obtained in Lemma 2 and by, the
solution of ProblerrPVn3 given by Lemma 3. LeA\n)(¢) denote the element & defined

by
(An(t), whvrxv = au(uy(t), w) + aZ(y(t), w) + 7 (By(t), uy(t), w), (84)
forallw € V andt € [0, T]. We have the following result.

Lemma4. Forall n € L?(0,T;V’) the element\n belongs taC ([0, T]; V'). Moreover,
the operatorA: L%(0,7; V') — L?(0,T;V’) has a unique fixed point*.
Proof. Letn € L2(0,T;V’) and lett;, t, € [0,T]. Using (84), the continuity of the
bilinear formsa,, anda} and (64), we obtain
[An(t1) = An(ta)llv: < c(llug(tr) —uy(t2)llv + 1@y (t1) —n(t2) lw
+ Hp(ﬁn(tl))R(“n(tl)) _p(ﬁn(t?))R(un(t?)) ||L2(F3))'
Now, keeping in mind (37), assumptions on the funcjipthe inequalityd < 5, < 1and
the properties of the operaté&we find
[An(t:) — An(t2)llv: < e (lug(te) — un(t2)llv + llon(ts) — oy (t2)llw
+ ||ﬁ'r7(t1) - ﬁn(tQ)HH(Fg))-
Sinceu,, € WH2(0,T;V), ¢, € WH2(0,T; W) and 8, € W1>°(0,T; L*'3)) we
deduce from inequality (85) thatn € C([0,T]; V).
Let nowny, 2 € L2(0,T; V') and lett € [0, T]. In what follows we use the notation
Ui = Uy, Vi = Up, = Uy, @i = ©p, anNdG; = By, fori = 1, 2. Using arguments similar
to those in the proof of (85) we find that
[An(t) = Ana(t)llvr < e(llus(t) = ua(®)llv + 1 (t) = 2(t)]lw
+[161(t) = Ba ()]l L2 (rs)) -

On the other hand, (80) and arguments similar as those ugbd proof of (81) yield
le1(t) = pa(B)llw < ¢ lua(t) —ua(@)]lv- 87)

Moreover, using (82), (83) and the properties of the fumctait follows that

(85)
(86)

t t
181() — Bo(t) | ey < € / 181(5) — Ba()l|z2(rsy ds + ¢ / lua () — ua(s)]ly ds
0 0

and, by using Gronwall's inequality, we find

181(8) = B2 L2(rs) < C/Hul(S) — uy(s)|v ds. (88)
0
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We combine now the inequalities (86), (87) and (88) to obtain
t
[An1(8) — Ana(8)[lve < cllua(t) — ua(t)]lv + c/ [u1(s) — ua(s)||v ds.
0
Also, sinceu; andus have the same initial value it follows that
t
Jur () — uz(t)|lv < /Hvl(s) — v2(s)[|v ds.
0
We use now the last two inequalities to obtain
t
[An1(£) — Ana(t) Iy < c/ [v1(s) = v2(s)llv ds
0

which implies

[Am () = A} < C/ [v1(s) = va(s) [T ds. (89)
0

Next, we obtain from (73)
(01 — V2,01 — V2)vrxv + ao(v1 — v2,v1 — V2) + ()1 — N2, V1 — Vo) vixy =0

a.e. on(0,7). We integrate this relation with respect to the time and hseinitial
conditionsv; (0) = v2(0) = v and (59) to find

< / Im(s) = n2(s)llv[[vr(s) — va(s)llv ds

t t
1 o*
<5 [ I - m@ds+ T [ oats) = o)l ds.
0 0

Therefore, from the previous inequality we obtain

[lloa(s) = wals)1 ds < [ () = ()l ds, (90)
0 0
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and from (89), (90) we deduce that

A () — Ama(B)] < ¢ / I (s) — ma(s)[3 ds.
0

Reiterating this inequalityn times yields

m
C

A1 — A" 2|72 0,70y < — lm = n2llZ20.1:v7)
which implies that forn sufficiently large a powek™ of A is a contraction in the Banach
spaceL?(0,T;V"); therefore there exists a unique elemghtc L2(0,7;V’) such that
An* =n*. O

Proof of Theoreni. ExistencelLetn* € L?(0,T; V") be the fixed point of the operator
A and letu, ¢, ( be the solutions of ProblemBV,, PV,> and PV’ respectively with
n=n"1.e.u = u;, p = gy, f = Fy-. Clearly, equalities (67)—(69) hold frouﬁvnl,
PV;? and PV,}. Moreover, since;* = An* it follows from (73) and (84) that (66) holds
too. The regularity of the solution expressed in (70)—(6#pfvs from Lemmas 1-3. We
conclude thatu, ¢, 3) is a solution of ProblenPV and it satisfies (70)—(72).
Uniqueness. The uniqueness of the solution follows from the uniquendsh®
fixed point of A combined with the unique solvability of Probler?¥/,, PV,? andPV,?

no n

guaranteed by Lemmas 1-3. O
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