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Abstract. Such physical processes as the diffusion in the environments with fractal
geometry and the particles’ subdiffusion lead to the initial value problems for the non-
local fractional order partial differential equations. These equations are the generalization
of the classical integer order differential equations.

An analytical solution for fractional order differential equation with the constant
coefficients is obtained in [1] by using Laplace-Fourier transform. However, nowadays
many of the practical problems are described by the models with variable coefficients.

In this paper we discuss the numerical vector decompositionmodel which is based on
a shifted version of usual Grünwald finite-difference approximation [2] for the non-local
fractional order operators. We prove the unconditional stability of the method for the
fractional diffusion equation with Dirichlet boundary conditions. Moreover, a numerical
example using a finite difference algorithm for 2D fractional order partial differential
equations is also presented and compared with the exact analytical solution.

Keywords: fractional order partial differential equations, vector decomposition methods,
unconditional stability.

1 Introduction

In this paper we use the Riemann-Liouville fractional derivative

Dα
Lf(x) =

dαf(x)

dxα
=

1

Γ(n− α)

dn

dxn

x∫

L

f(ξ) dξ

(x− ξ)α+1−n
, (1)

wheren is an integer, and theαth order is in the following intervaln − 1 < α ≤ n.
Following [3] the caseL = 0 of the formula (1) is called the Riemann form and the
caseL = ∞ is called Liouville form for the fractional derivatives. With the boundary
conditions offered below the Riemann and Liouville forms become equivalent.

Grunwald-Letnikov formula for solving the one-dimensional diffusion equation is
used in [2] by M.Meerschaert et al. According to the author the application of this formula
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leads to the unstable algorithm. This fact is the reason for the appearance of the important
and interesting scientific results for the numerical methods theory to solve the fractional
order differential equations [2]. Allowing for [2], in the present paper we use the right-
shifted Grünwald approximation which is of the following form at1 < α ≤ 2

Dα
x1 =

1

Γ(−α)
lim

N1→∞

N1∑

k=0

Γ(k − α)

Γ(k + 1)
u
(
x1 − (k − 1)h1, x

2, t
)
,

whereN1 is a non-negative integer,Γ(p) is the gamma function andh1 =
x1−x1

H

N1

.

2 Statement of the problem

On finite rectangular domainΩ = {x1
H < x1 < x1

K , x
2
H < x2 < x2

K} we consider a
two-dimensional fractional dispersion (diffusion) equation

∂u

∂t
= c1

(
x1, x2

)
Dα

x1u+ c2
(
x1, x2

)
D

β

x2u+ f
(
x1, x2, t

)
, (2)

whereu = u(x1, x2, t), ci = ci(x1, x2), ci > 0, 1 < α ≤ 2, 1 < β ≤ 2.
We assume that the differential equation (2) has a unique andsufficiently smooth

solution under the following initialu(x1, x2, 0) = ϕ(x1, x2) for all xi
H < xi < xi

k

and Dirichlet boundary conditionsu(x1, x2, t) = Q(x1, x2, t) on the perimeter of the
rectangular regionΩ with the additional restrictionQ(x1

H , x
2, t) = Q(x1, x2

H , t) = 0 for
Q(x1, x2, t).

We replace the domainΩ by a discrete domain and definetn = nτ, 0 ≤ tn ≤ T ,

h1 =
x1

K
−x1

H

N1

, x1
i = x1

H + ih1, i = 0, . . . , N1, h2 =
x2

K
−x2

H

N2

, x2
j = x2

H + jh2,
i = 0, . . . , N2.

Function values in the discrete points are written in the following form
u(x1, x2, tn+1) = ûij = un+1

ij . We assume that the solution functionu(x1, x2, tn) is
sufficiently smooth and vanishes on the left and lower boundary of the rectangular region.
We define the finite difference operator using the right shifted Grünwald formula of these
type

Aα
1 yij

n =
c1ij

hα
1

i+1∑

k=0

gα,ky
n
i−k+1 j , (3)

where

gα,k =
Γ(k − α)

Γ(−α)Γ(k + 1)
= (−1)k

(
α

k

)
. (4)

These normalized weights (4) depend on the indexk and the orderα only and, for
A

β
2y

n
ij , analogously.
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According to [4, Theorem 2.4] we can define

∂αuij

∂x1α
−Aα

1uij = O(h1),
∂βuij

∂x2β
−A

β
2uij = O(h2). (5)

Let a vectory = (y1, y2) be a solution on the time intervaltn < t < tn+1

with the operators (3). Granting this, we apply the modification version of the vector
decomposition scheme [5–8]

yn+1

1,ij − ỹij

τ
= Aα

1 y
n+1

1,ij +A
β
2y

n
2,ij + fn+0.5

ij , y0
1,ij = ϕij = ϕ

(
x1

i , x
2
j

)
, (6)

yn+1

2,ij − ỹij

τ
= A

β
2y

n+1

2,ij +Aα
1 y

n
1,ij + fn+0.5

ij , y0
2,ij = ϕij , (7)

ỹij =
1

2

(
yn
1,ij + yn

2,ij

)
, i = 1, N1 − 1, j = 1, N2 − 1.

Subtracting (7) from (6), we obtain

yn+1

1,ij − yn+1

2,ij = τAα
1

(
yn+1
1 − yn

1

)
+ τA

β
2

(
yn
2 − yn+1

2

)
(8)

y1,ij = y2,ij + ψij , ψij = O
(
τ2 + h1 + h2

)
.

The right terms have the following form

τ2Aα
1 y1,t ∼ O

(
τ2

)
, τ2A

β
2y2,t ∼ O

(
τ2

)
. (9)

According to [9, 10](σ = 0.5), the vector decomposition method (6), (7) has the
local truncation error of the formO(τ2)+O(h1)+O(h2), at summing (6), (7) and using
(9). It should be noted [4], that the fractional partial difference operators (3) are always
O(h) approximation to theαth fractional derivative.

Lets consider one of the parallel systems of the equations, for example (6). Using
(3), we obtain the algebraic equations’ system

yn+1

1,ij − τAα
1 y

n+1

1,ij = ỹij + τA
β
2 y

n
2,ij + fn+0.5

ij , (10)

y0
1,ij = ϕij , i = 1, N1 − 1, j = 1, N2 − 1,

yn+1

1,0j = Q
(
x1

H , x
2
j , t̂

)
= 0, yn+1

1,N1j = Q
(
x1

K , x
2
j , t̂

)
, t̂ = tn+1, (11)

yn+1

2,i0 = Q
(
x1

i , x
2
H , t̂

)
= 0, yn+1

2,iN2
= Q

(
x1

i , x
2
H , t̂

)
, (12)

y0
2,ij = ϕij , i = 0, N1, j = 0, N2.

The boundary conditions provide a required approximation.
Writing (10) so that its realization is convenient

yn+1

1,ij −
τc1ij

hα
1

i+1∑

k=0

gαky
n+1

1,i−k+1,j = ỹij +
τc2ij

h
β
2

j+1∑

m=0

gβmy
n
i,j−m+1 + fn+0.5

ij (13)

139



N. Abrashina-Zhadaeva, N. Romanova

or
(

1 −
τc1ij

hα
1

gα1

)
yn+1

1,ij −
τc1ij

hα
1

gα0y
n+1

1,i+1,j −
τc1ij

hα
1

gα2y
n+1

1,i−1,j −

i+1∑

k=3

gαky
n+1

1,i−k+1,j

= ỹij +
τc2ij

h
β
2

j+1∑

m=0

gβmy
n
2,i,j−m+1 + τfn+0.5

ij , i = 1, N1 − 1, j = 1, N2 − 1

with the conditions (11), (12).
On each time step algorithm (13), (11), (12) is realized by a forward sweep direction

due to re-arrangement of gridpoints in thex1-direction, thus it is economical. Analo-
gously, in thex2-direction.

Lets compose a matrixQk at the unknown[y1j0 , . . . , yN1−1j0 ]
T , at each fixed value

j = j0, (j = 1, N2 − 1), when the upper index is the line number and the lower index
is the column number




Q1
1 Q1

2 0 0 · · · 0
Q2

1 Q2
2 Q2

3 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QN1−1

1 QN1−1

2 QN1−1

3 QN1−1

4 · · · QN1−1

N1−1


 , (14)

Qi
l = δi

l −
τc1il
hα

1

gα,i−l+1, l = 1, . . . , N1 − 1, i = 1, . . . , N1 − 1,

whereδi
l is Croneker symbol.

In other words, the equations’ system (14), (12), (13) can bepresented as follows

i+1∑

k=0

Qi
ky

n+1

1,kj0
= ỹij0 + τF i

j0
, i = 1, N1 − 1, j = 1, N2. (15)

TheF i
k for eachx2

j0
are defined from the last two expressions on the right-hand side

of (13).

Theorem 1. Each problem, defined by(10)–(12), is unconditionally stable for all
1 < α, β ≤ 2.

Proof. Let matrixÃk consist of the coefficientsQi
l. For the theorem proof we will apply

the useful results described below.

(1 + z)α =

∞∑

k=0

(
α

k

)
zk =

∞∑

k=0

(−1)kgαkz
k, (16)

where the right side is the absolute convergent row at|z| ≤ 1. Placingz = −1 in (16),
we get

+∞∑

k=0

gαk = 0
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and hence

+∞∑

k=0

gαk < 0

for all N > 1. According to Greschgorin theorem [11], we have

Qi
i = 1 − C1(i, k)gα1 = 1 + C1(i, k)α.

Moreover, the termsQi
i are the centers of circles with radiuses

ri =

Nx−1∑

l=1,l 6=i

∣∣Qi
l

∣∣ ≤
i+1∑

l=1,l 6=i

C1(i, k)gαi−l+1 < C1(i, k)α.

ThusReλ(Ãk)>1 and the spectral radius of the inverse matrix is less than 1,ρ(Ã−1

k )<1.
We obtain the results fory2k, analogously. Therefore, all problems,defined by (10)–(12),
are unconditionally stable.

Example 1. Consider fractional order partial differential equation

∂u(x1, x2, t)

∂t
= c1(x1, x2)

∂1.9u

∂x1.9
1

+ c2(x1, x2)
∂1.6u

∂x1.6
2

+ f(x1, x2, t), (17)

here0 < x1, x2 < 1 for 0 ≤ t ≤ T with the known exact solution

u = x2.9
1 x2.6

2 e−t.

The diffusion coefficients are

c1 =
x3

1x
1.4
2

Γ(3.9)
, c2 =

x1.1
1 x3

2

Γ(3.6)

and the forcing function is

f(x1, x2, t) = −
(
1 + 2x1.1

1 x1.4
2

)
e−tx2.9

1 x2.6
2 .

The algorithm was implemented using the Mathematica 5.1 compiler on a Dell
Pentium PC.

Fig. 1 shows the exact solution of the equation (17) on the large grid. Fig. 2 shows
the numerical solution obtained by the discussed above method (13), with τ = 0.1,
h1 = h2 = h. Fig. 3, 4 show the typical property of modified vector decomposition
algorithms‖yn+1

1 − yn+1
2 ‖ → 0 asn → ∞. Numerical model (10)–(12) demonstrate an

appropriate numerical abilities on large-size and currentsize grids, see Fig. 3, 4.
It should be noted that this example problem does not meet therequirement for the

commutativity of the operators in (3) which was used to establish the stability of the
numerical decomposition model (10)–(12).

141



N. Abrashina-Zhadaeva, N. Romanova

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0

0.0001

0.0002

0.0003

0

0.0001

0.0002

Fig. 1. τ = 0.1, h = 0.1.
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Fig. 2. τ = 0.1, h = 0.1.
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Fig. 3. τ = 0.1, h = 0.1.
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Fig. 4. τ = 0.01, h = 0.1.

Indicate how one can check the exact solution. One simply substitutes back into (17)
and uses the fact that

∂α

∂xα
[xp] =

Γ(p+ 1)

Γ(p+ 1 − α)
xp−α

for the Riemann-Liouville fractional derivative (1) withL = 0.

3 Conclusions

The offered numerical vector decomposition model yields a numerical solution that is
O(τ2) +O(h1) +O(h2) accurate.

We emphasize that the vector additive methods do not meet therequirement for the
commutativity of the decomposition operatorsAα

1 andAβ
2 .
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