Nonlinear Analysis: Modelling and Control, 2008, Vol. 130\, 137-143

Vector Additive Decomposition for 2D Fractional
Diffusion Equation

N. Abrashina-Zhadaeva, N. Romanova

Belarusian State University
Nezavisimosti ave 4, BY-220050 Minsk, Belarus
zhadaeva@bsu.by; natalaromanova@yahoo.com

Received: 06.03.2008 Revised: 17.04.2008 Published online: 02.06.2008

Abstract. Such physical processes as the diffusion in the envirorsneith fractal
geometry and the particles’ subdiffusion lead to the ihit&lue problems for the non-
local fractional order partial differential equations.€Be equations are the generalization
of the classical integer order differential equations.

An analytical solution for fractional order differentiabeation with the constant
coefficients is obtained in [1] by using Laplace-Fouriens@rm. However, nowadays
many of the practical problems are described by the modélswariable coefficients.

In this paper we discuss the numerical vector decompositiodel which is based on
a shifted version of usual Grunwald finite-difference apgmation [2] for the non-local
fractional order operators. We prove the unconditionabita of the method for the
fractional diffusion equation with Dirichlet boundary aitions. Moreover, a numerical
example using a finite difference algorithm for 2D fractiboneder partial differential
equations is also presented and compared with the exagtianhtolution.

Keywords: fractional order partial differential equations, vectecdmposition methods,
unconditional stability.

1 Introduction

In this paper we use the Riemann-Liouville fractional dative

o dof@ 1A [ f(O)dE
DLf(x) T dxe F(n _ Oé) dxm / (.I _ €)O¢+1—n’
L

)

wheren is an integer, and thath order is in the following intervah — 1 < « < n.
Following [3] the casel. = 0 of the formula (1) is called the Riemann form and the
casel = oo is called Liouville form for the fractional derivatives. Withe boundary
conditions offered below the Riemann and Liouville formsdme equivalent.
Grunwald-Letnikov formula for solving the one-dimensibddfusion equation is
used in [2] by M.Meerschaert et al. According to the autherapplication of this formula
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leads to the unstable algorithm. This fact is the reasorhtappearance of the important
and interesting scientific results for the numerical meghibeory to solve the fractional
order differential equations [2]. Allowing for [2], in thergsent paper we use the right-
shifted Grinwald approximation which is of the followingrin atl < o < 2

'k — )

== 1i — Zu(xt — (k — 1)hy, 2%t

T T(ma) M & Tk + 1)“(”” (k= 1)k, 2%, 1),

whereN; is a non-negative integdr{p) is the gamma function andy = %

2 Statement of the problem

On finite rectangular domaift = {z}, < 2! < zk, 2%, < 2? < 2%} we consider a
two-dimensional fractional dispersion (diffusion) eqaoat

% =ct (Jcl, acQ)Dg‘lu + 02(1‘1, acQ)szu + f(ml, ac2,1f), (2)
whereu = u(zt,22,t), ¢ =ci(zt,2?), ¢¢ >0, 1<a<2, 1<p<2

We assume that the differential equation (2) has a uniquessfitiently smooth
solution under the following initiak(z', z2,0) = (z!,2?) for all 2%, < 2' <
and Dirichlet boundary conditions(x!, 2%,t) = Q(z', 2% t) on the perimeter of the
rectangular regiof with the additional restrictio® (z,, 2%,t) = Q(z!, 2%, t) = 0 for
Q(zt, 2% t).

We replace the domail by a discrete domain and defitte = nr, 0 <" < T,

1 1 2 2
_ g TH 1 _ .1 . s — Tk TH 2 _ .2 .
hl—T; x; = xy +ihy, 1 =0,..., Ny, h2—N—2, xj_xH+jh21

ZZO,...,NQ.

Function values in the discrete points are written in thelofeihg form
u(zt, 2%, ") = 4y = u;;.“. We assume that the solution functiafiz!, 22, ") is
sufficiently smooth and vanishes on the left and lower bognaothe rectangular region.

We define the finite difference operator using the right sdifsriinwald formula of these
type

Czl- 1+1
ATy = h_i Zga,kyﬁkﬂ s (3)
1 k=0
where
I'k— ) !
S k. S | . 4
Jok = T ome 1)~ Y <k;> @)

These normalized weights (4) depend on the indexd the ordery only and, for
AJy?, analogously.
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According to [4, Theorem 2.4] we can define

0“uij
axla

— Afuy; = O(ha), — ASuij = O(hs). (5)

Let a vectory = (y1,y2) be a solution on the time interval < ¢ < t*+!
with the operators (3). Granting this, we apply the modifaratversion of the vector
decomposition scheme [5-8]

n+1

Y165 — ??ij ]
“ - = A(lyy?;zl + Agygw + f;fro 5a y?,ij = Pij = 90(3%1739?)7 (6)
yn+1 _ ?j
2,ij ij )
“ - = Agyg;zl + ATyt + f;fro ’, yg,ij = @ij, (7)

Yij = %(yf” +yg,ij)5 t=1,N -1, j=1,N -1
Subtracting (7) from (6), we obtain
it =yt = TAS (g — ) + AL (- ) ®)
Yl,ij = Y2,i5 + Vij, Wi = 0(7'2 +h1 + hz)-
The right terms have the following form
Ay, ~ O(77), 2 A ys s ~ o(r?). 9)

According to [9, 10](c = 0.5), the vector decomposition method (6), (7) has the
local truncation error of the for®(72) + O(hy) + O(hs), at summing (6), (7) and using
(9). It should be noted [4], that the fractional partial diffince operators (3) are always
O(h) approximation to thexth fractional derivative.

Lets consider one of the parallel systems of the equati@ngxample (6). Using
(3), we obtain the algebraic equations’ system

U = TATY = T+ A+ T, (10)
y?,ij =i, i=1,N1—1, j=1,Ny—1,

yie) = Qe al,t) =0, yih, = Qak,@,t), t=1t"", (11)
yg;rol - Q(:Czl,x%[,?) =0, yg,:'r]\llg - Q(levx%[a?)v (12)

Y9 =ij, i=0,N1, j=0,Ny.

The boundary conditions provide a required approximation.
Writing (10) so that its realization is convenient

TCl o T02 i+l
n+1 i n+1 o~ i n n+0.5
i~ Tpa D Gkt = Uit 5 D 9pmimir £ (13)
1 k=0 2 m=0
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or

1 1 i+1
TC,; TC,; TC:;
() n+1 1) n+1 () n+1 n+1
(1 - —h‘f gal)yLij - h‘f‘ "9a0lY1 41,5 — h(f_ga2y17i717j - E Jak¥1i—k+1,5
k=3

2 Jj+1
. TC; . . .
= Yij + —Z; E gg7nyg7i,j_.,”+1 + 7 ;;+0'57 1 = 1,N1 — 1, 7= 1,N2 -1
2 m=0

with the conditions (11), (12).

On each time step algorithm (13), (11), (12) is realized byravrd sweep direction
due to re-arrangement of gridpoints in thé-direction, thus it is economical. Analo-
gously, in thez2-direction.

Lets compose a matrig;, at the unknowryi ., .. .,yn,—15,]" , at each fixed value
j =jo, (j =1, Ny — 1), when the upper index is the line number and the lower index
is the column number

Q1 Q3 0 0 0
2 2 2 0 0
o @@ , 14)
Ni— Ni— Ni— Ni— Ni—
1 ! 2 ! 3 ! 4 o QNl—}

i ; TC :
Ql:alihagavi*l+1’ l:].,...,lel, Z:].,...,le].,
1

wheres; is Croneker symbol.
In other words, the equations’ system (14), (12), (13) caprbeented as follows

1+1
S Qi =G +TFL, i=TN -1, j=11N,. (15)
k=0

The Fy;, for eachz?  are defined from the last two expressions on the right-hated si
of (13).

Theorem 1. Each problem, defined bgl0}<(12), is unconditionally stable for all
1<a,B<2.

Proof. Let matrix A, consist of the coefficient9;. For the theorem proof we will apply
the useful results described below.

(1+2)* = Z (Z) 2P = Z(—l)kgakzk, (16)

k=0 k=0
where the right side is the absolute convergent royzjat 1. Placingz = —1 in (16),
we get
—+oo
D> Jar =0
k=0
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and hence
+oo
Zgak <0
k=0
forall N > 1. According to Greschgorin theorem [11], we have

Qi =1-C'(i,k)gar = 1+ C'(i, k)

Moreover, the term§)? are the centers of circles with radiuses

N,—1 i41
ri= Y Qi< Y. C'i, k) gaiisa < C(i K)o
1=1,l%i 1=1,l%i

ThusRe A(Ay) > 1 and the spectral radius of the inverse matrix is less tha(‘nAj;Jl) <1.
We obtain the results faf.,, analogously. Therefore, all problems,defined by (10)}(12
are unconditionally stable. O

Example 1. Consider fractional order partial differential equation

ou(xy, x2,t) o9 o164
— :Cl(ml’@)&':p—%'g+02(m1’m2)8x—§'6+f(m1’m2’t)’ a7

here0 < z1, 22 < 1 for 0 < ¢ < T with the known exact solution
2.9,.2.6 7t.

u=2a7"25"¢€

The diffusion coefficients are

, _attallad
I'(3.9)’ (3.6)

and the forcing function is
f(x1,20,t) = —(1 + 2m}‘1x§'4)67tm%9m%6.

The algorithm was implemented using the Mathematica 5.1pidlemon a Dell
Pentium PC.

Fig. 1 shows the exact solution of the equation (17) on thgelgrid. Fig. 2 shows
the numerical solution obtained by the discussed above adefh3), with+ = 0.1,
hy = hs = h. Fig. 3, 4 show the typical property of modified vector decosifion
algorithms||y" ™ — y5 | — 0 asn — oo. Numerical model (10)-(12) demonstrate an
appropriate numerical abilities on large-size and curserd grids, see Fig. 3, 4.

It should be noted that this example problem does not meetthgrement for the
commutativity of the operators in (3) which was used to dithlihe stability of the
numerical decomposition model (10)—(12).
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Fig. 1.7 = 0.1, h = 0.1. Fig. 2.7 = 0.1,h = 0.1.
2107 ) 10° \\
1-10°8 \\ 1078
8-10"’ 108 \
6-10"7 \\ 100 \
4.1077 N
5.10°7 \‘ 1078 \\

\
2 4 6 8 10 % 200 40 60 80 100
Fig. 3.7 = 0.1,h = 0.1. Fig. 4.7 = 0.01,h = 0.1.

Indicate how one can check the exact solution. One simplgtgutes back into (17)
and uses the fact that

ﬁ[az”] ~ Tp+1)
Oz CT(p+1-a)

P
for the Riemann-Liouville fractional derivative (1) with = 0.

3 Conclusions
The offered numerical vector decomposition model yieldaumerical solution that is
O(72) 4+ O(hy) + O(hy) accurate.

We emphasize that the vector additive methods do not meeetjugrement for the
commutativity of the decomposition operatot$ andAg .
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